Monetary Union Begets Fiscal Union

Adrien Auclert Matthew Rognlie

Stanford

Northwestern

Workshop on Current Monetary Policy Challenges
European Central Bank
19 December 2016

Ever-closer union?

- Why did Europe form a currency union?
 - ▶ Given nominal rigidities, real exchange rate realignments are costly
 - ▶ Friedman (1953)
 - ► Benefits are elusive
 - ▶ Problems made worse by lack of fiscal integration (Kenen 1969)
- As evidenced by Brexit and angry German voters:
 - Europe's fiscal union is only implicit
 - Donor countries often hit their participation constraint

Our argument

- Assume that the costs of monetary union are mitigated by fiscal risk-sharing ("fiscal union")
 - Captures Kenen's view
 - ► Starkly true in our benchmark model: "risk-sharing miracle"

Our argument

- Assume that the costs of monetary union are mitigated by fiscal risk-sharing ("fiscal union")
 - Captures Kenen's view
 - Starkly true in our benchmark model: "risk-sharing miracle"
- ► Our argument: monetary union enhances/enables fiscal union:
 - ▶ It makes real exchange rate realignments impossible in the short-run
 - ... not sharing risks becomes more costly
 - ... transfers are facilitated

Our argument

- Assume that the costs of monetary union are mitigated by fiscal risk-sharing ("fiscal union")
 - Captures Kenen's view
 - Starkly true in our benchmark model: "risk-sharing miracle"
- Our argument: monetary union enhances/enables fiscal union:
 - ▶ It makes real exchange rate realignments impossible in the short-run
 - ... not sharing risks becomes more costly
 - ... transfers are facilitated
- ► This doesn't mean monetary union is Pareto improving overall: tradeoff is

risk-sharing benefits vs. stabilization costs

Moreover: cooperation is facilitated, not guaranteed

Optimal Currency Areas: review

Benefits	Costs
Reduced transactions costs	Stabilization (Friedman 1953)
Thicker currency markets	due to:
	Nominal rigidities (Friedman 1953)
	Labor immobility (Mundell 1961)
	Asymmetric shocks (Mundell 1961)
	Lack of fiscal integration (Kenen 1969)

Optimal Currency Areas: review

Benefits	Costs
Reduced transactions costs	Stabilization (Friedman 1953)
Thicker currency markets	due to:
	Nominal rigidities (Friedman 1953)
Improved central bank credibility	Labor immobility (Mundell 1961)
(Chari, Dovis, Kehoe 2015)	Asymmetric shocks (Mundell 1961)
	Lack of fiscal integration (Kenen 1969)

Optimal Currency Areas: review

Benefits	Costs
Reduced transactions costs	Stabilization (Friedman 1953)
Thicker currency markets	due to:
	Nominal rigidities (Friedman 1953)
Improved central bank credibility	Labor immobility (Mundell 1961)
(Chari, Dovis, Kehoe 2015)	Asymmetric shocks (Mundell 1961)
Risk-sharing (this paper)	Lack of fiscal integration (Kenen 1969)

Other related literature

Limited commitment

- Kehoe and Levine (1993), Coate and Ravallion (1993), Kocherlakota (1996), Alvarez and Jermann (2000), Ligon, Thomas and Worrall (2002)
- Sovereign debt applications: Kletzer and Wright (2000), Kehoe and Perri (2003)

Currency unions with nominal rigidities

- ▶ New Open Economy Macro (Obstfeld and Rogoff 1995,...)
- Benigno (2004), Gali and Monacelli (2005, 2008)
- ► Farhi and Werning (2013)

Commitment benefits of monetary unions

- Avoiding beggar-thy-neighbor: Fuchs and Lippi (2006)
- ▶ Loosening borrowing constraints: Arellano and Heathcote (2010)

Outline

1. Model structure and intuitions

2. Risk-sharing benefits

3. Optimal joint policy & other extensions

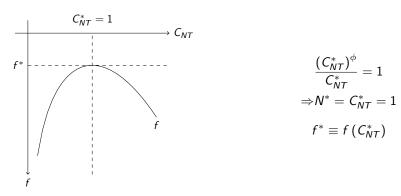
Preferences, endowments and technologies

2 countries, infinite horizon, same preferences

$$\mathbb{E}\left[\sum_{t=0}^{\infty}\beta^{t}u\left(C_{T,t},C_{NT,t},N_{t}\right)\right]$$

Each period, special case of Farhi-Werning (2013):

$$u(C_T, C_{NT}, N) = \log C_T + \alpha \left(\log C_{NT} - \frac{1}{1+\phi} N^{1+\phi} \right)$$


- ▶ Nontradables are produced from labor: $Y_{NT} = N$ (immobility)
- ▶ Tradables: risky endowment $\frac{E_T^1(s)}{E_T^2(s)} \neq \frac{E_T^1(s')}{E_T^2(s')}$, $s \in \mathbf{S}$ finite
 - → ex-ante benefits from risk-sharing (asymmetric shocks)
- ▶ External balance: $C_T^1(s) + C_T^2(s) = E_T^1(s) + E_T^2(s) \equiv E_T(s)$

Preference assumptions: nontradables

▶ Substituting production $Y_{NT} = C_{NT} = N$:

$$u = \log C_T + \underbrace{\alpha \left(\log C_{NT} - \frac{1}{1 + \phi} C_{NT}^{1 + \phi} \right)}_{f(C_{NT})}$$

 \Rightarrow efficient amount of nontradable production constant across dates and states:

Preference assumptions: homotheticity

Consumption demand is homothetic:

$$C_{NT}^{i}(s) = \alpha \left(\frac{P_{NT}^{i}(s)}{P_{T}^{i}(s)}\right)^{-1} C_{T}^{i}(s) = \alpha \underbrace{\frac{P_{T}^{i}(s)}{P_{NT}^{i}(s)}}_{\text{Real exchange rate}} C_{T}^{i}(s)$$

- With flexible prices:
 - C_{NT} always achieved.
 - ▶ Real exchange rate adjusts: appreciates $(\frac{P_T^i(s)}{P_{NT}^i(s)} \downarrow)$ when $C_T^i(s) \uparrow$ to ensure rebalancing towards tradables.

Preference assumptions: homotheticity

Consumption demand is homothetic:

$$C_{NT}^{i}(s) = \alpha \left(\frac{P_{NT}^{i}(s)}{P_{T}^{i}(s)}\right)^{-1} C_{T}^{i}(s) = \alpha \underbrace{\frac{P_{T}^{i}(s)}{P_{NT}^{i}(s)}}_{\text{Real exchange rate}} C_{T}^{i}(s)$$

- With flexible prices:
 - C_{NT} always achieved.
 - ▶ Real exchange rate adjusts: appreciates $(\frac{P_T'(s)}{P_{NT}^i(s)}\downarrow)$ when $C_T^i(s)\uparrow$ to ensure rebalancing towards tradables.
- ▶ Introduce **nominal rigidities** in NT: P_{NT}^{i}
 - Prices set before s is realized (monopolistic competition+labor subsidy+flexible wages)
 - ▶ World price for tradables: $P_T^*(s) = 1$ in foreign currency
 - lacktriangle Domestic central bank adjusts the nominal exchange rate $\mathcal{E}^{i}\left(s
 ight)$

Consequences of nominal rigidities

$$C_{NT}^{i}(s) = \alpha \frac{\mathcal{E}^{i}(s)}{P_{NT}^{i}} C_{T}^{i}(s)$$

- An independent central bank:
 - can adjust $\mathcal{E}^{i}(s)$ to recreate efficient ReR variations
- A union-wide monetary policy
 - ▶ sets a common exchange rate $\mathcal{E}^{i}(s) = \mathcal{E}(s)$ for i = 1, 2
 - ▶ in general, is no longer able to stabilize perfectly
 - indirect utility

$$v\left(C_{T}, \frac{\mathcal{E}\left(s\right)}{P_{NT}^{i}}\right) = \log C_{T} + f\left(\alpha \frac{\mathcal{E}\left(s\right)}{P_{NT}^{i}}C_{T}\right)$$

Risk-sharing miracle

Observe:

$$C_{NT}^{i}(s) = \alpha \frac{\mathcal{E}(s)}{P_{NT}^{i}} C_{T}^{i}(s) \quad \Rightarrow \quad \frac{C_{NT}^{1}(s)}{C_{NT}^{2}(s)} = \left(\frac{P_{NT}^{1}}{P_{NT}^{2}}\right)^{-1} \frac{C_{T}^{1}(s)}{C_{T}^{2}(s)}$$

- ▶ Under perfect risk-sharing of tradables: $C_T^1(s) = \gamma^1 E_T(s)$

 - ▶ Price-setting ensures $\frac{P_{NT}^1}{P_{NT}^2} = \frac{\gamma^1}{1-\gamma^1}$
 - ► CB maintains $\mathcal{E}(s) E_T(s)$ constant at $\frac{P_{NT}^1}{\alpha \gamma^1}$. Then

$$C_{NT}^{i}(s) = \alpha \frac{\mathcal{E}(s) E_{T}(s)}{P_{NT}^{i}} \gamma^{i} = 1 \quad \forall i$$

Risk-sharing miracle

Observe:

$$C_{NT}^{i}(s) = \alpha \frac{\mathcal{E}(s)}{P_{NT}^{i}} C_{T}^{i}(s) \quad \Rightarrow \quad \frac{C_{NT}^{1}(s)}{C_{NT}^{2}(s)} = \left(\frac{P_{NT}^{1}}{P_{NT}^{2}}\right)^{-1} \frac{C_{T}^{1}(s)}{C_{T}^{2}(s)}$$

- ▶ Under perfect risk-sharing of tradables: $C_T^1(s) = \gamma^1 E_T(s)$
 - Central bank regains ability to stabilize:
 - ▶ Price-setting ensures $\frac{P_{NT}^1}{P_{NT}^2} = \frac{\gamma^1}{1-\gamma^1}$
 - ► CB maintains $\mathcal{E}(s) E_T(s)$ constant at $\frac{P_{NT}^1}{\alpha \gamma^1}$. Then

$$C_{NT}^{i}(s) = \alpha \frac{\mathcal{E}(s) E_{T}(s)}{P_{NT}^{i}} \gamma^{i} = 1 \quad \forall i$$

- ▶ **Risk-sharing miracle**: alignment of fiscal policy allows the central bank to achieve the first-best
- ▶ Departures from **fiscal integration** are the source of costs (Kenen)

Commitment assumptions

- Countries cannot commit to tradables risk-sharing
 - Any transfer has to be sustained by a credible promise of future reciprocity (subgame-perfect equilibrium)
 - State-by-state participation constraints:

loss from making transfer

 $\leq \beta \cdot (\text{discounted expected benefits from receiving future transfers})$

- ▶ We focus on the "best SPEs" in a stationary class
- ► Countries fully commit to monetary union. One-off decision.
- Under flexible prices or independent MP, the SPEs are characterized in the limited commitment literature
- Under monetary union, aggregate demand effects complicate the problem

Endowment structure and contracts

▶ Assume that $\{s^t\}$ is iid symmetric:

$$\forall s, \exists s': \pi(s') = \pi(s) \text{ and } (E_T^1(s'), E_T^2(s')) = (E_T^2(s), E_T^1(s))$$

- ▶ Group pairs $(s, s') \equiv z$. Given z, each country has:
 - 1/2 chance of E^L_T(z)
 1/2 chance of E^L_T(z) > E^L_T(z)
- ightharpoonup Restrict contracts to stationary transfer schemes T(z) such that

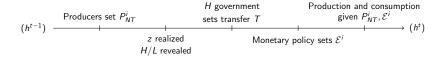
$$C_T^L(z) = E_T^L(z) + T(z)$$

$$C_T^H(z) = E_T^H(z) - T(z)$$

Definition: T features some risk sharing if $\forall z$

$$0 \leq T(z) \leq \frac{E_T^H(z) - E_T^L(z)}{2}$$

implying $E_T^L(z) \le C_T^L(z) \le C_T^H(z) \le E_T^H(z)$


Outline

1. Model structure and intuitions

2. Risk-sharing benefits

3. Optimal joint policy & other extensions

Timing

Ex-ante symmetry implies identical price-setting in both countries. Normalize:

$$P_{NT}^L = P_{NT}^H = 1$$

▶ In monetary union: central bank sets $\mathcal{E}^i = \mathcal{E}$ to maximise

$$\frac{1}{2}v\left(C_{T}^{L},\mathcal{E}\right)+\frac{1}{2}v\left(C_{T}^{H},\mathcal{E}\right)$$

- ▶ Takes into account the aggregate demand externalities
- ▶ Look for transfers $\{T(z)\}$ that form an SPE
 - Worst punishment is autarky, T=0
 - ▶ Best SPE can be sustained by threat of T = 0 reversion

Two results

- ► Consider an implicit fiscal union without monetary union, with transfers $\{T(z)\}$. We show:
 - 1. After joining the monetary union, holding fixed the limited commitment friction, the same $\{T(z)\}$ is still achievable: risk-sharing in tradables is always weakly better in the monetary union
 - 2. In an example, the improvement is so powerful that countries go all the way from *autarky* to *first-best*.

Central bank problem, continued

▶ Given z, T, the central bank knows that

$$C_T^H = E_T^H(z) - T(z)$$
$$C_T^L = E_T(z) - C_T^H$$

Maximization of its objective leads to a real exchange-rate rule

$$\mathcal{E}_{z}\left(C_{T}^{H}\right) = \frac{1}{\alpha} \left(\frac{1}{2} \left(\frac{1}{C_{T}^{H}}\right)^{-(1+\phi)} + \frac{1}{2} \left(\frac{1}{E_{T}\left(z\right) - C_{T}^{H}}\right)^{-(1+\phi)}\right)^{-\frac{1}{1+\phi}}$$

- ▶ Puts *H* in a boom and *L* in a bust, unless $C_T^H = \frac{E_T(z)}{2}$ (RS miracle)
- Define indirect utility to reflect this monetary policy response

$$\tilde{v}_z(C_T) \equiv \log C_T + f(\alpha \mathcal{E}_z(C_T) C_T)$$

▶ Compares with log $C_T + f^*$ under independent monetary policy.

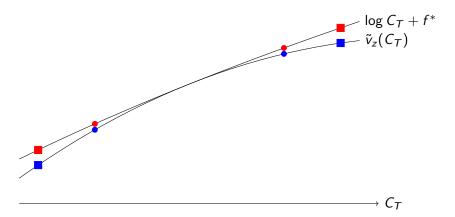
Risk-sharing benefit of monetary union

Theorem

Any state-contingent $\{T(z)\}$ plan with some risk sharing that is achievable in SPE under independent monetary policy is achievable under currency union.

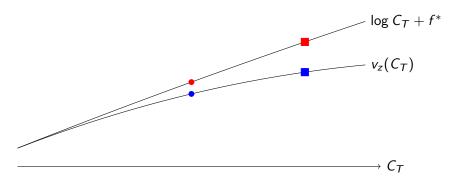
- This is the precise sense in which currency union allows us to do (weakly) better with risk sharing.
- Any transfer arrangement that was achievable and desirable without currency union is still achievable with it, but there may be additional options.

Proof of theorem


▶ If $\{T(z)\}$ is achievable under independent monetary policy, it must satisfy H's participation constraint at each z

$$\begin{split} &\log\left(E_{T}^{H}(z)\right) - \log\left(C_{T}^{H}(z)\right) \\ &\leq \frac{\beta}{1-\beta} \sum_{z} \frac{\pi\left(z'\right)}{2} \left[\log\left(\frac{C_{T}^{L}(z')}{E^{L}(z')}\right) - \log\left(\frac{E^{H}(z')}{C_{T}^{H}(z')}\right)\right] \end{split}$$

- ► Left is one-shot gain from defaulting, right is expected gain from future risk sharing.
- ▶ Under currency union, same participation constraint...
 - ... with $\tilde{v}_z(\cdot)$ instead of log


Proof of theorem

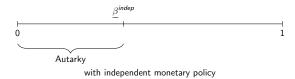
- This change slackens both sides of the inequality.
- ▶ On the right, there are greater expected gains from risk-sharing.

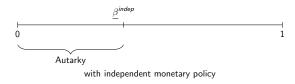
Proof of theorem

▶ On the left, the temptation to leave the arrangement is less due to the boom.

- Current boom: ReR is not appreciated enough as a result of monetary union membership
- ▶ Refusing to make transfer ⇒ ReR is further away from its optimal level ⇒ worse inflationary pressures

- ▶ Example: z = 1: 2 states, endowments $(e_L, e_H) = (1 e, e)$, $e > \frac{1}{2}$
- An improvement is $(c_L, c_H) = (1 e + T, e T)$, $0 < T \le \frac{1}{2} e$
- ▶ Suppose countries run their **independent monetary policy**. The value of being in the high state under the contract is

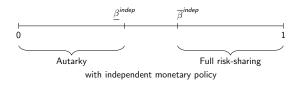

$$V^{H}(T) = \log(e - T) + \frac{\beta}{1 - \beta} \left(\frac{1}{2}\log(e - T) + \frac{1}{2}\log(1 - e + T)\right) + \frac{f^{*}}{1 - \beta}$$


▶ The participation constraint states that $V^{H}(T) \ge V^{H}(0)$ implying

$$\left. \frac{dV^H}{dT} \right|_{T=0} = -\frac{1}{e} + \frac{\beta}{1-\beta} \frac{1}{2} \left(-\frac{1}{e} + \frac{1}{1-e} \right) \ge 0$$

▶ Better-than-autarky risk-sharing can be sustained if and only if

$$\beta \geq \underline{\beta}^{indep} = 2(1-e)$$

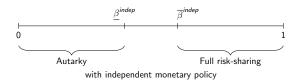


- ▶ When risk-sharing is **perfect**, $T = \frac{1}{2} e$, both countries are at first-best
- Under independent monetary policy, this is sustained if

$$\log(e) - \log\left(\frac{1}{2}\right) \leq \frac{\beta}{1-\beta}\frac{1}{2} \quad \left(2\log\frac{1}{2} - \log(e) - \log(1-e)\right)$$
One-shot gain from defaulting

Expected loss from lack of future risk-sharing

yielding $\beta \geq \overline{\beta}^{indep} \geq \beta^{indep}$



- ▶ When risk-sharing is **perfect**, $T = \frac{1}{2} e$, both countries are at first-best
- Under independent monetary policy, this is sustained if

$$\log(e) - \log\left(\frac{1}{2}\right) \leq \frac{\beta}{1-\beta}\frac{1}{2} \quad \left(2\log\frac{1}{2} - \log(e) - \log(1-e)\right)$$
One-shot gain from defaulting

Expected loss from lack of future risk-sharing

yielding $\beta \geq \overline{\beta}^{indep} \geq \beta^{indep}$

- ▶ When risk-sharing is **perfect**, $T = \frac{1}{2} e$, both countries are at first-best
- Under independent monetary policy, this is sustained if

$$\log(e) - \log\left(\frac{1}{2}\right) \leq \frac{\beta}{1-\beta}\frac{1}{2} \quad \left(2\log\frac{1}{2} - \log(e) - \log(1-e)\right)$$
One-shot gain from defaulting

Expected loss from lack of future risk-sharing

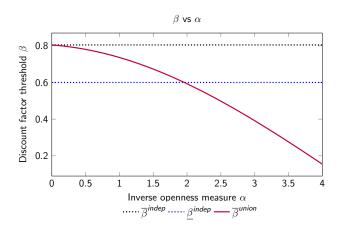
yielding $\beta \geq \overline{\beta}^{\text{indep}} \geq \beta^{\text{indep}}$

▶ Under monetary union, sustained with $\beta \geq \overline{\beta}^{union}$ (α, ϕ, e) , stricly declining in α

- ▶ When risk-sharing is **perfect**, $T = \frac{1}{2} e$, both countries are at first-best
- Under independent monetary policy, this is sustained if

$$\log(e) - \log\left(\frac{1}{2}\right) \leq \frac{\beta}{1-\beta}\frac{1}{2} \quad \left(2\log\frac{1}{2} - \log(e) - \log(1-e)\right)$$
One-shot gain from defaulting

Expected loss from lack of future risk-sharing


One-shot gain from defaulting

yielding $\beta \geq \overline{\beta}^{\text{indep}} \geq \beta^{\text{indep}}$

Under monetary union, sustained with $\beta \geq \overline{\beta}^{union}(\alpha, \phi, e)$, strictly declining in α

Parametrization: e = 0.7, $\phi = 1$

▶ For countries with $\overline{\beta}^{union} \leq \beta \leq \underline{\beta}^{indep}$, the risk-sharing benefit of monetary union is so powerful that countries can move from autarky to first-best

Recap on costs and benefits

Stabilization costs of monetary union:

- ► Recall: Conditional on tradable consumption, utility is always weakly lower under a monetary union than under independent policy.
- $\beta \leq \underline{\beta}^{\mathit{union}} \Rightarrow \text{independent monetary policy Pareto-dominates monetary union}$

Risk-sharing benefits

- Recall the risk-sharing miracle: any allocation that achieves FB risk sharing in tradables enables monetary union to attain the overall first-best
- ▶ $\overline{\beta}^{union} \leq \beta \leq \overline{\beta}^{indep}$ ⇒ monetary union Pareto-dominates independent monetary policy *conditional* on maximal collaboration
- In general there is a tradeoff
- ▶ EU may not have realized the potential for improved risk-sharing

Outline

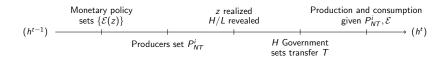
1. Model structure and intuitions

2. Risk-sharing benefits

3. Optimal joint policy & other extensions

Extensions

- 1. Alternative timing with more commitment for monetary policy
 - Optimal joint monetary and fiscal policy
- 2. Shocks to nontradables
- 3. Exploring the full frontier of contracts Go


Alternative timing

$$(h^{t-1}) \xrightarrow{\text{Monetary policy} \\ \text{sets } \{\mathcal{E}(z)\} \\ \text{H}/L \text{ revealed} \\ \text{Production and consumption} \\ \text{given } P_{NT}^i, \mathcal{E} \\ \text{Producers set } P_{NT}^i \\ \text{H Government} \\ \text{sets transfer } T$$

- Central bank can now internalize the constraints facing the fiscal union
- ▶ Sets $\{\mathcal{E}(z)\}$ to maximize:

$$\sum \pi(z) \left\{ \frac{1}{2} v\left(C_T^L(z), \mathcal{E}(z)\right) + \frac{1}{2} v\left(C_T^H(z), \mathcal{E}(z)\right) \right\}$$

Alternative timing

- Central bank can now internalize the constraints facing the fiscal union
- ▶ Sets $\{\mathcal{E}(z)\}$ to maximize:

$$\sum \pi(z) \left\{ \frac{1}{2} v\left(C_T^L(z), \mathcal{E}(z)\right) + \frac{1}{2} v\left(C_T^H(z), \mathcal{E}(z)\right) \right\}$$

- ▶ **Result**: in best SPE, the average labor wedge in state z—a measure of economic slack across the union—is strictly decreasing in the dispersion $\frac{E^H(z)}{E^L(z)}$ between endowments (unless countries fully share risks)
 - Contrasts with usual results in optimal monetary policy in currency union, where the average labor wedge is always zero.

Active monetary policy, comments

- Monetary policy can proactively slant policy in order to encourage fiscal union.
 - Aggregate stabilization is not always the right objective.
- Should have a "counter-dispersion" policy, creating booms in states where there is high dispersion of endowments and better-endowed countries are reluctant to make transfers.
- Without proactive monetary policy, fiscal union will not live up to its full potential.

Shocks to nontradable side

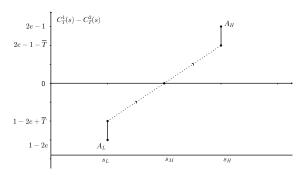
- Shocks to the nontradable side of the economy break the "risk-sharing miracle".
 - Perfect risk sharing of tradables is no longer sufficient for first-best nontradable consumption.
 - Instead, is optimal to move away from first-best tradable risk sharing in order to partly offset nontradable shocks.
- When nontradable shocks are relatively more important, the balance of costs and benefits generally shifts against monetary union.
 - ▶ Less benefit from encouraging risk sharing of tradable shocks.
 - Fiscal union can help offset nontradable shocks, but this problem wouldn't even exist with independent monetary policy.
 - In extreme case of only nontradable shocks, can achieve first-best without monetary union, and it can only hurt.
- ▶ In practice, nontradable shocks (e.g. housing sector) are big contributors to economic instability in Europe.

Conclusion

- ... it is worth recalling that most of Europe regards the single-currency project as primarily political. Many countries see EMU as a big step towards the goal of 'ever closer union'... (The Economist, April 1998)
- ▶ Balassa's integration staircase (1962, "The theory of economic integration")

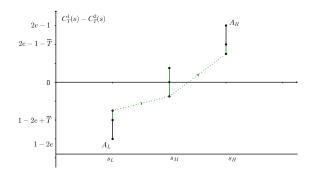
- We provide a sense in which monetary union is a step towards fiscal union: risk-sharing benefit adds to this side of the ledger for monetary unions
- ► To balance against stabilization costs, especially with *NT* shocks when the risk-sharing miracle breaks down
- Proactive monetary policy can help the fiscal union

Thank you!


Dynamics: iid stationary case

► Endowments: ex-ante symmetric iid 3-state:

$$(e_L, e_M, e_H) = \left(1 - e, \frac{1}{2}, e\right) \quad (\pi_L, \pi_M, \pi_H) = (\pi, 1 - 2\pi, \pi)$$


ightharpoonup Consider the best contract from section 2: maximal sustainable \overline{T} such that

$$(c_L, c_M, c_H) = \left(1 - e + \overline{T}, \frac{1}{2}, e - \overline{T}\right)$$

Dynamics: improved contract

▶ We can give more to country 1 in *L*:

- ► These more complex dynamics prevent us from being as clear about the nature of the risk-sharing improvement of monetary unions as in the stationary case.
- ► (They have independent interest since the stationary distribution is more complex than in the "traditional" limited commitment literature) Go back