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Abstract

Macroeconomists are increasingly working with large Vector Autoregressions (VARs)
where the number of parameters vastly exceeds the number of observations. Existing
approaches either involve prior shrinkage or the use of factor methods. In this paper, we
develop an alternative based on ideas from the compressed regression literature. It
involves randomly compressing the explanatory variables prior to analysis. A huge
dimensional problem is thus turned into a much smaller, more computationally tractable
one. Bayesian model averaging can be done over various compressions, attaching greater
weight to compressions which forecast well. In a macroeconomic application involving up
to 129 variables, we find compressed VAR methods to forecast better than either factor
methods or large VAR methods involving prior shrinkage.
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1 Introduction

Vector autoregressions (VARs) have been an important tool in macroeconomics since the

seminal work of Sims (1980). Recently, many researchers in macroeconomics and finance

have been using large VARs involving dozens or hundreds of dependent variables (see, among

many others, Banbura, Giannone and Reichlin, 2010, Carriero, Kapetanios and Marcellino,

2009, Koop, 2013, Koop and Korobilis, 2013, Korobilis, 2013, Giannone, Lenza, Momferatou

and Onorante, 2014 and Gefang, 2014). Such models often have many more parameters

than observations, over-fit the data in-sample, and, as a consequence, forecast poorly out-of-

sample. Researchers working in the literature typically use prior shrinkage on the parameters

to overcome such over-parametrization concerns. The Minnesota prior is particularly popular,

but other approaches such as the LASSO (least absolute shrinkage and selection operator, see

Park and Casella, 2008 and Gefang, 2014) and SSVS (stochastic search variable selection, see

George, Sun and Ni, 2008) have also been used. Most flexible Bayesian priors that result

in shrinkage of high-dimensional parameter spaces rely on computationally intensive Markov

Chain Monte Carlo (MCMC) methods and their application to recursive forecasting exercises

can, as a consequence, be prohibitive or even infeasible. The only exception is a variant of the

Minnesota prior that is based on the natural conjugate prior, an idea that has recently been

exploited by Banbura, Giannone and Reichlin (2010) and Giannone, Lenza and Primiceri

(2015), among others. While this prior allows for an analytical formula for the posterior,

there is a cost in terms of flexibility in that a priori all VAR equations are treated in the same

manner; see Koop and Korobilis (2010) for a further discussion of this aspect of the natural

conjugate prior.

The themes of wishing to work with Big Data1 and needing empirically-sensible shrinkage

of some kind also arise in the compressed regression literature; see Donoho (2006). In this

literature, shrinkage is achieved by compressing the data instead of the parameters. These

methods are used in a variety of models and fields (e.g. neuroimaging, molecular epidemiology,

astronomy). A crucial aspect of these methods is that the projections used to compress

1Big Data comes in two forms that are often called Tall and Fat. Tall data involves a huge number of
observations, whereas Fat Data involves a huge number of variables. In this paper, we fall in the Fat Data
part of the literature.
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the data are drawn randomly in a data oblivious manner. That is, the projections do not

involve the data and are thus computationally trivial. Recently, Guhaniyogi and Dunson

(2015) introduced the idea of Bayesian Compressed regression, where a number of different

projections are randomly generated and the explanatory variables are compressed accordingly.

Next, Bayesian model averaging (BMA) methods are used to attach different weights to the

projections based on the explanatory power the compressed variables have for the dependent

variable.

In economics, alternative methods for compressing the data exist. The most popular of

these is principal components (PC) as used, for instance, in the Factor-Augmented VAR,

FAVAR, of Bernanke, Boivin and Eliasz (2005) or the dynamic factor model (DFM) of, e.g.,

Geweke (1977) and Stock and Watson (2002). PC methods compress the original data into a

set of lower-dimensional factors which can then be exploited in a parsimonious econometric

specification, for example, a univariate regression or a small VAR. The gains in computation

from such an approach are large (but not as large as the data oblivious methods used in the

compressed regression literature), since principal components are relatively easy to compute

and under mild conditions provide consistent estimates of unobserved factors for a wide variety

of models, including those with structural instabilities in coefficients (Bates, Plagborg-Møller,

Stock and Watson, 2013). However, the data compression is done without reference to the

dependent variable(s). PC is thus referred to as an unsupervised data compression method. In

contrast, the methods used in the compressed regression literature, including the Guhaniyogi

and Dunson (2015) approach, are supervised. To our knowledge, supervised compressed

regression methods of this sort have not yet been used in the VAR literature.2

In this paper, we extend the Bayesian random compression methods of Guhaniyogi and

Dunson (2015), developed for the regression model, to the VAR leading to the Bayesian

Compressed VAR (BCVAR). In doing so, we introduce several novel features to our method.

First, we generalize the compression schemes of Guhaniyogi and Dunson (2015) and apply

them both to the VAR coefficients and the elements of the error covariance matrix. In

2Carriero, Kapetanios and Marcellino (2015) use a reduced rank VAR framework they refer to as a
multivariate autoregressive index model that shares similarities with the BCVAR used in this paper. However,
they use computationally-burdensome MCMC methods which would preclude their use in very high dimensional
models.
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high dimensional VARs, the error covariance matrix will likely contain a large number of

unknown parameters. As a concrete example, the error covariance matrix of the largest

VAR we considered in our empirical application includes more than 8,000 free parameters.

Compressing the VAR coefficients while leaving these parameters unconstrained may still lead

to a significant degree of over-parametrization and, arguably, to a poor forecast performance,

which explains our desire to compress the covariance matrix. Second, we allow the explanatory

variables in the different equations of the VAR to be compressed in potentially different ways.

In macroeconomic VARs, where the first own lag in each equation is often found to have

important explanatory power, forcing the same (compressed) variables to appear in each

equation seems problematic. We accomplish this by developing a computationally efficient

algorithm that breaks down the estimation of the high dimensional compressed VAR into the

estimation of individual univariate regressions. Our algorithm has very low requirements in

terms of memory allocation and, since the VAR equations are assumed to be independent, can

be easily parallelized to fully exploit the power of modern high-performance computer clusters

(HPCC).3 Third, we generalize our compressed VAR methods to the case of large-dimensional

VARs with equation-specific time-varying parameters and volatilities. This is achieved by

extending the approach developed in Koop and Korobilis (2013) to the compressed VAR,

relying on variance discounting methods to model, in a computationally efficient way, the

time variation in the VAR coefficients and error covariance matrix.

We then carry out a substantial macroeconomic forecasting exercise involving VARs with

up to 129 dependent variables and 13 lags. We compare the forecasting performance of

seven key macroeconomic variables using the BCVAR to various popular alternatives:

univariate AR models, the DFM, the FAVAR, and the Minnesota prior VAR (implemented

as in Banbura, Giannone and Reichlin, 2010). Our results are encouraging for the BCVAR,

showing substantial forecast improvements in many cases and comparable forecast

performance in the remainder.

The rest of the paper is organized as follows. Section 2 provides a description of the

theory behind random compression. Section 3 introduces the Bayesian Compressed VAR

with constant parameters, and develops methods for posterior and predictive analysis, while

3This work made use of the High Performance Computing Cluster (HPC64) at Brandeis University.
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section 4 describes the empirical application. Next, section 5 introduces heteroskedasticity and

time-variation in the parameters of the BCVAR and documents that these extensions further

improve the forecasting performance of our approach. Section 6 provides some concluding

remarks.

2 The Theory and Practice of Random Compression

Random compression methods have been used in fields such as machine learning and image

recognition as a way of projecting the information in data sets with a huge number of variables

into a much lower dimensional set of variables. In this way, they are similar to PC methods,

which take as inputs many variables and produce as the output orthogonal factors. With PC

methods, the first factor accounts for as much of the variability in the data as possible, the

second factor the second most, etc. Typically, a few factors are enough to explain most of

the variability in the data and, accordingly, parsimonious models involving only a few factors

can be constructed. Random compression does something similar, but is computationally

simpler, and capable of dealing with a massively huge number of variables. For instance,

in a regression context, Guhaniyogi and Dunson (2015) have an application involving 84,363

explanatory variables.

To fix the basic ideas of random compression, let X be a T × k data matrix involving

T observations on k variables where k � T . Xt is the tth row of X. Define the projection

matrix, Φ, which is m × k with m � k and X̃ ′t = ΦX ′t. Then X̃t is the tth row of the

compressed data matrix, X̃. Since X̃ has m columns and X has k, the former is much smaller

and is much easier to work with in the context of a statistical model such as a regression or a

VAR. The question is: what information is lost by compressing the data in this fashion? The

answer is that, under certain conditions, the loss of information may be small. The underlying

motivation for compression arises from the Johnson-Lindenstrauss lemma (see Johnson and

Lindenstrauss, 1984). This states that any k point subset of Euclidean space can be embedded

in m = O
(
log (k) /ε2

)
dimensions without distorting the distances between any pair of points

by more than a factor of 1± ε for any 0 < ε < 1.

The random compression literature recommends treating Φ as a random matrix and

drawing its elements in some fashion. A key early paper in this literature is Achlioptas
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(2003), which provides theoretical justification for various ways of drawing Φ in a

computationally-trivial manner. One such scheme, which we rely on in our empirical work,

is to draw Φij , the ijth element of Φ, (where i = 1, ..,m and j = 1, .., k) from the following

distribution:
Pr
(

Φij = 1√
ϕ

)
= ϕ2

Pr (Φij = 0) = 2 (1− ϕ)ϕ

Pr
(

Φij = − 1√
ϕ

)
= (1− ϕ)2

, (1)

where ϕ and m are unknown parameters. The theory discussed above suggests that Φ

should be a random matrix whose columns have unit lengths and, hence, Gram-Schmidt

orthonormalization is done on the rows of the matrix Φ.

These methods are referred to as data oblivious, since Φ is drawn without reference to the

data. However, the statistical theory proves that even data oblivious random compression can

lead to good properties. For instance, in the compressed regression model, Guhaniyogi and

Dunson (2015) provide proofs of its theoretical properties asymptotically in T and k. Under

some weak assumptions, the most significant relating to sparsity (e.g. on how fast m can grow

relative to k as the sample size increases), Guhaniyogi and Dunson (2015) show that their

Bayesian compressed regression algorithm produces a predictive density which converges to

the true predictive density. The convergence rate depends on how fast m and k grow with T .

With some loose restrictions on this, they obtain near parametric rates of convergence to the

true predictive density. In a simulation study and empirical work, they document excellent

coverage properties of predictive intervals and large computational savings relative to popular

alternatives. In the large VAR, there is likely to be a high degree of sparsity since most VAR

coefficients are likely to be zero, especially for more distant lag lengths. In such a case, the

theoretical results of Guhaniyogi and Dunson (2015) suggest fast convergence should occur

and the computational benefits will likely be large.

These desirable properties of random compression hold even for a single, data-oblivious,

random draw of Φ. In practice, when working with random compressions, many random

draws are taken and then averaged. For example, Guhaniyogi and Dunson (2015) rely on

BMA to average across the different random projections they considered. Treating each Φ(r)

(r = 1, .., R) as defining a new model, they first calculate the marginal likelihood for each

model, and then average across the various models using weights proportional to their marginal
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likelihoods. Note also that m and ϕ can be estimated as part of this BMA exercise. In fact,

Guhaniyogi and Dunson (2015) recommend simulating ϕ from the U [a, b] distribution, where

a (b) is set to a number slightly above zero (below one) to ensure numerical stability. As for

m, they recommend simulating it from the U [2 log (k) ,min (T, k)] distribution.

To see precisely how this works in a regression context, let yt be the dependent variable

and consider the regression:

yt = Xtβ + εt. (2)

If k � T , then working directly with (2) is impossible with some statistical methods (e.g.

maximum likelihood estimation) and computationally demanding with others (e.g. Bayesian

approaches which require the use of MCMC methods). Some of the computational burden can

arise simply due to the need to store in memory huge data matrices. Manipulating such data

matrices even a single time can be very demanding. For instance, calculation of the Bayesian

posterior mean under a natural conjugate prior requires, among other manipulations, inversion

of a k × k matrix involving the data. This can be difficult if k is huge.

In order to deal with a large number of predictors, one can specify a compressed regression

variant of (2)

yt = (ΦXt)β
c + εt. (3)

This model is similar to a reduced-rank regression (see Geweke, 1996 and Kleibergen and Van

Dijk, 1998), as the k explanatory variables in the original regression model are squeezed into

a small number of explanatory variables given by the vector X̃t = ΦXt. The crucial difference

with likelihood-based approaches such as the ones proposed by Geweke (1996), Kleibergen

and Van Dijk (1998), and Carriero, Kapetanios and Marcellino (2015) is that the matrix Φ

is not estimated. In fact it is independent of the data and is drawn randomly using schemes

such as the ones in equation (1). Once the explanatory variables have been compressed (i.e.

conditional on Φ), standard Bayesian regression methods can be used for the regression of yt

on X̃t. If a natural conjugate prior is used, then analytical formulae exist for the posterior,

marginal likelihood, and predictive density and computation is trivial.

It is clear that there are huge computational gains by adopting specification (3) instead

of (2). In addition, the use of BMA will ensure that bad compressions (i.e. those that lead
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to the loss of information important for explaining yt) are avoided or down-weighted. To

provide some more intuition, note that if we were to interpret m and ϕ and, thus, Φ, as

random parameters (instead of specification choices defining a particular compressed

regression), then BMA can be interpreted as importance sampling. That is, the U [a, b] and

U [2 log (k) ,min (T, k)] distributions that Guhaniyogi and Dunson (2015) use for drawing ϕ

and m, respectively, can be interpreted as importance functions. Importance sampling

weights are proportional to the posterior for m and ϕ. But this is equivalent to the marginal

likelihood which arises if Φ is interpreted as defining a model. Thus in this particular setting

importance sampling is equivalent to BMA. In the same manner that importance sampling

attaches more weight to draws from high regions of posterior probability, doing BMA with

randomly compressed regressions attaches more weight to good draws of Φ which have high

marginal likelihoods.

In a VAR context, doing BMA across models should only improve empirical performance

since this will lead to more weight being attached to choices of Φ which are effective in

explaining the dependent variables. Such supervised dimension reduction techniques contrast

with unsupervised techniques such as PC. It is likely that supervised methods such as this

will forecast better than unsupervised methods, a point we investigate in our empirical work.

In summary, for a given compression matrix, Φ, the huge dimensional data matrix is

compressed into a much lower dimension. This compressed data matrix can then be used

in a statistical model such as a regression or a VAR. The theoretical statistical literature on

random compression has developed methods such as (1) for randomly drawing the compression

matrix and showed them to have desirable properties under weak conditions which are likely

to hold in large VARs. By averaging over different draws for Φ (which can differ both in terms

of m and ϕ) BMA can be done. All this can be done in a computationally simple manner,

working only with models of low dimension.

8



3 Random Compression of VARs

We start with the standard reduced form VAR model,4

Yt = BYt−1 + εt (4)

where Yt for t = 1, ..., T is an n× 1 vector containing observations on n time series variables,

εt is i.i.d. N (0,Ω) and B is an n × n matrix of coefficients. Note that, with n = 100, the

uncompressed VAR will have 10, 000 coefficients in B and 5, 050 in Ω. In a VAR(13), such

as the one used in this paper, the former number becomes 130, 000. It is easy to see why

computation can become daunting in large VARs and why there is a need for shrinkage.

To compress the explanatory variables in the VAR, we can use the matrix Φ given in (1)

but now it will be an m× n matrix where m� n, subject to the normalization Φ′Φ = I. In

a similar fashion to (3), we can define the compressed VAR:

Yt = Bc (ΦYt−1) + εt, (5)

where Bc is m×n. Thus, we can draw upon the motivations and theorems of, e.g., Guhaniyogi

and Dunson (2015) to offer theoretical backing for the compressed VAR. If a natural conjugate

prior is used, for a given draw of Φ the posterior, marginal likelihood, and predictive density

of the compressed VAR in (5) have familiar analytical forms (see, e.g., Koop and Korobilis,

2009). These, along with a method for drawing Φ, is all that are required to forecast with the

BCVAR. And, if m is small, the necessary computations of the natural conjugate BCVAR are

straightforward.

We note however that the natural conjugate prior has some well-known restrictive

properties in VARs.5 In the context of the compressed VAR, working with a Φ of dimension

m × n as defined in (5), with only n columns instead of n2 would likely be much too

restrictive in many empirical contexts. For instance, it would imply that to delete a variable

in one equation, then that same variable would have to be deleted from all equations. In

macroeconomic VARs, where the first own lag in each equation is often found to have

4For notational simplicity, we explain our methods using a VAR(1) with no deterministic terms. These can
be added in a straightforward fashion. In our empirical work, we have monthly data and use 13 lags and an
intercept.

5These are summarized on pages 279-280 of Koop and Koroblis (2009).
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important explanatory power, such a property seems problematic. It would imply, say, that

lagged inflation could either be included in every equation or none when what we might

really want is for lagged inflation to be included in the inflation equation but not most of

the other equations in the VAR.

An additional issue with the natural conjugate BCVAR is that it allows the error covariance

matrix to be unrestricted. In high dimensional VARs, Ω contains a large number of parameters

and we may want a method which allows for their compression. This issue does not arise in the

regression model of Guhaniyogi and Dunson (2015) but is potentially very important in large

VARs. For example, in our application the largest VAR we estimate has an error covariance

matrix containing 8, 385 unknown parameters. These considerations motivate working with

a re-parametrized version of the BCVAR that allows for compression of the error covariance

matrix. Following common practice (see, e.g., Primiceri, 2005, Eisenstat, Chan and Strachan,

2015 and Carriero, Clark and Marcellino, 2015) we use a triangular decomposition of Ω:

AΩA′ = ΣΣ, (6)

where Σ is a diagonal matrix with diagonal elements σi (i = 1, ..., n), and A is a lower

triangular matrix with ones on the main diagonal. Next, we rewrite A = In + Ã, where In

is the (n× n) identity matrix and Ã is a lower triangular matrix with zeros on the main

diagonal. Using this notation, we can rewrite the reduced-form VAR in (4) as follows

Yt = BYt−1 +A−1ΣEt (7)

where Et ∼ N (0, In). Further rearranging, we have

Yt = ΓYt−1 + Ã (−Yt) + ΣEt (8)

= ΘZt + ΣEt

where Zt =
[
Y
′
t−1,−Y

′
t

]′
, Γ = AB and Θ =

[
Γ, Ã

]
. Because of the lower triangular structure

of Ã, the first equation of the VAR above includes only Yt−1 as explanatory variables, the

second equation includes
(
Y
′
t−1,−Y1,t

)′
, the third equation includes

(
Y
′
t−1,−Y1,t,−Y2,t

)′
, and

so on (here Yi,t denotes the i-th element of the vector Yt). Note that this lower triangular

structure, along with the diagonality of Σ, means that equation-by-equation estimation of the
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VAR can be done, a fact we exploit in our algorithm. Furthermore, since the elements of

Ã control the error covariances, by compressing the model in (8) we can compress the error

covariances as well as the reduced form VAR coefficients.

Given that in the triangular specification of the VAR each equation has a different number

of explanatory variables, a natural way of applying compression in (8) is through the following

specification:

Yi,t = Θc
i

(
ΦiZ

i
t

)
+ σiEi,t i = 1, ..., n (9)

where now Zit denotes the subset of the vector Zt which applies to the i-th equation of the

VAR: Z1
t = (Yt−1), Z

2
t =

(
Y
′
t−1,−Y1,t

)′
, Z3

t =
(
Y
′
t−1,−Y1,t,−Y2,t

)′
, and so on. Similarly, Φi

is a matrix with m rows and column dimension that conforms with Zit . Following (9), we

now have n compression matrices (each of potentially different dimension and with different

randomly drawn elements), and as a result the explanatory variables in the equations of the

original VAR can be compressed in different ways. Note also that an alternative way to

estimate a compressed VAR version of model (8) would be to write the model in its SUR

form; see Koop and Korobilis (2009). Doing so implies that the data matrix Zt would have

to be expanded by taking its Kronecker product with In. For large n such an approach would

require multiple times the memory than a modern personal computer has available. Even if

using sparse matrix calculations, having to define the non-zero elements of the matrices in

the SUR form of a large VAR will result in very slow computations. On the other hand, the

equation-by-equation estimation we propose in (9) is simpler and can be easily parallelizable,

since the VAR equations are assumed to be independent.

For a given set of posterior draws of Θc
i and σi (i = 1, .., n), estimation and prediction

can be done in a computationally-fast fashion using a variety of methods since each model

will be of low dimension and, for the reasons discussed previously, all these can be done one

equation at a time. In the empirical work in this paper, we use standard Bayesian methods

suggested in Zellner (1971) for the seemingly unrelated regressions model. In particular, for

each equation we use the prior:

Θc
i |σ2i ∼ N

(
Θc
i , σ

2
i V i

)
(10)

σ−2i ∼ G
(
s−2i , νi

)
,
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where G
(
s−2i , νi

)
denotes the Gamma distribution with mean s−2i and degrees of freedom νi.

In our empirical work, we set set Θc
i = 0, V i = 0.5× I and, for σ−2i use the non-informative

version of the prior (i.e. νi = 0). We then use familiar Bayesian results for the Normal linear

regression model (e.g. Koop, 2003, page 37) to obtain analytical posteriors for both Θc
i and

σi. The one-step ahead predictive density is also available analytically. However, h-step ahead

predictive densities for h > 1 are not available analytically.6 To compute them, we proceed

by first converting the estimated compressed triangular VAR in equation (9) back into the

triangular VAR of equation (8), noting that

Θ =
[
(Θc

1Φ1,0n)′, (Θc
2Φ2,0n−1)

′, ..., (Θc
n−1Φn−1, 0)′, (Θc

nΦn)′
]′

(11)

where 0n is an (1× n) vector of zeros, 0n−1 is an (1× n− 1) vector of zeros, and so on.

Subsequently, we go from the triangular VAR in equation (8) to the original reduced-form

VAR in equation (4) by noting that B = A−1Γ, where Γ can be recovered from the first

n×n block of Θ in (11), and A is constructed from Ã using the remaining elements of Θ (see

equation (8)). Finally, the covariance matrix of the reduced form VAR is simply given by

equation (6), where both A and Σ are known. After these transformations are implemented,

standard results for Bayesian VARs can be used to obtain multi-step-ahead density forecasts.

So far we have discussed specification and estimation of the compressed VAR conditional

on a single compression Φ (or Φi, i = 1, .., n). In practice, we generate R sets of such

compression matrices Φ
(r)
i (i = 1, .., n and r = 1, .., R), and estimate an equal number of

compressed VAR models, which we denote with M1, ...,MR. Then, for each model, we use

the predictive simulation methods described above to obtain the full predictive density

p
(
Yt+h|Mr,Dt

)
, where h = 1, ...,H. For each forecast horizon h, the final BMA forecast is a

mixture of the form

p
(
Yt+h|Dt

)
=

R∑
r=1

wrp
(
Yt+h|Mr,Dt

)
, (12)

where Dt is the information set available at time t, wr = exp (−.5Ψr) /
∑R

r=1 exp (−.5Ψr) is

model Mr weight, and Ψr = BICr − BICmin, with BICr being the value of the Bayesian

Information Criterion (BIC) of model Mr and BICmin the minimum value of the BIC among

6Point forecasts can be iterated forward in the usual fashion, but predictive simulation is required to produce
h-step ahead predictive densities.
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all R models. We use BIC to approximate the marginal likelihood because it can be computed

easily for high-dimensional VARs and is insensitive to the choice of the priors.

In our empirical work, the Φ
(r)
i ’s are randomly drawn using the strategy described in (1).

This scheme means that for each of the R random compression matrices, we have to generate

the parameter ϕ and decide on the number of rows m of each Φ
(r)
i (that is, the dimension

of the projected space). Both these parameters are drawn randomly: ϕ is drawn from the

uniform U [0.1, 0.8] distribution and m is drawn from the discrete U [1, 5 ln (ki)], where ki is

the number of explanatory variables included in Zit for VAR equation i.7

We note, to conclude this section, that papers such as Achlioptas (2003) have proposed

alternative schemes to the one we adopted in (1) to randomly draw the elements of Φi.

While some of these may be potentially more efficient and can provide a higher degree of

sparsity (zeros in Φi), in our macroeconomic application we found that a wide range of

alternative random projection schemes produced almost identical forecasts. Thus, in our

empirical application we will focus exclusively on the scheme proposed by Guhaniyogi and

Dunson (2015), as described in equation (1).

4 Empirical Application: Macroeconomic Forecasting with
Large VARs

This section introduces the macroeconomic data considered in our application and reports the

forecasting performance of the Bayesian Compressed VAR methods described in section 3,

relative to a number of popular alternatives. We first consider the accuracy of point forecasts,

using Mean Squared Forecast Errors (MSFEs). Next, we turn to the quality of the density

forecasts, and for that rely on the average of the log predictive likelihoods (ALPL), as in

Geweke and Amisano (2010).

4.1 Data

We use the FRED-MD data-base of monthly US variables from January 1960 through

December 2014. The reader is referred to McCracken and Ng (2015) for a description of this

macroeconomic data set, which includes a range of variables from a broad range of

7Due to numerical stability reasons, for ϕ we do not consider the full support [0, 1].
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categories (e.g. output, capacity, employment and unemployment, prices, wages, housing,

inventories and orders, stock prices, interest rates, exchange rates and monetary aggregates).

We use the 129 variables for which complete data was available, after transforming all

variables using the transformation codes provided in Appendix A.8 We present detailed

forecasting results for seven variables of interest: industrial production growth (INDPRO),

the unemployment rate (UNRATE), total nonfarm employment (PAYEMS), the change in

the Fed funds rate (FEDFUNDS), the change in the 10 year T-bill rate (GS10), the finished

good producer price inflation (PPIFGS) and consumer price inflation (CPIAUCSL). In

particular, we estimate VARs of different dimensions, with these seven variables included in

all of our specifications. We have a Medium VAR with 19 variables, a Large VAR with 46

variables and a Huge VAR with all 129 variables. A listing of all variables (including which

appear in which VAR) is given in Appendix A. Note that most of our variables have

substantial persistence in them and, accordingly, the first own lag in each equation almost

always has important explanatory power. Accordingly, we do not compress the first own lag.

This is included in every equation, with compression being done on the remaining variables.9

4.2 Alternative Methods for Large VARs

We use the Bayesian compressed VAR methods introduced in section 3 in two ways: the

first one, which we label as BCVARC , compresses both the VAR coefficients and the error

covariances as in (9). The second one, which we label BCVAR, is the same, except for the

fact that it does not compress the error covariances.

To better assess the forecasting accuracy of these compressed VAR methods, we compare

their performances against a number of popular alternatives. Reasoning that previous work

with large numbers of dependent variables have typically used factor methods or large

Bayesian VARs, we focus on these. In addition, we compare the forecasts using all of these

methods to a benchmark approach which uses OLS forecasts from univariate AR(1) models.

8In addition to dropping a few series with missing observations, we also remove the series non-borrowed
reserves, as it became extremely volatile during the Great Recession.

9We also standardize our variables prior to estimation and forecasting. The forecasts of the original variables
are then computed by inverting the transformation and reassigning means and variances. This standardization
is computed recursively, i.e., using only the data that would have been available at each point in time to
estimate the various models.
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Dynamic Factor Model

The dynamic factor model (DFM) can be written as:

Yt = λ0 + λ1Ft + εt

Ft = Φ1Ft−1 + ...+ ΦpFt−p + εFt (13)

where Ft is a q×1 vector of unobserved latent factors (with q � n) which contains information

extracted from all n variables, λ0 and λ1 are n × 1 and n × q matrices, and εt ∼ N
(
0,ΣY

)
where ΣY is a diagonal matrix. The vector of factors is assumed to follow a VAR(p) process

with εFt ∼ N
(
0,ΣF

)
, with εt independent of εFs at all t and s. We rely on principal component

methods to identify the common factors.

We select the number of factors q and the lag length p as follows: We specify the maximum

number of factors and lag lengths to be qmax =
√
n and pmax = 13, respectively. Next, at each

point in time we use BIC to choose the optimal lag length and number of factors. We use

Bayesian methods with non-informative priors to estimate and forecast with this model (note

that the law of motion for the common factors in equation (13) is needed to iterate forward

the forecasts when h > 1).

Factor-Augmented VAR

We use the Factor-Augmented VAR (FAVAR) of Bernanke, Boivin, Eliasz (2005) dividing

Yt into a set of primary variables of interest, Y ∗t (these are the same key seven variables listed

above), and the remainder Ỹt, and work with the model:

Ỹt = ΛFt + εỸt (14)[
Ft
Y ∗t

]
= B0 +B1

[
Ft−1
Y ∗t−1

]
+ ...+Bp

[
Ft−p
Y ∗t−p

]
+ ε∗t .

The vector (F ′t , Y
∗′
t )′ is assumed to follow a VAR(p) process with εỸt ∼ N

(
0,ΣỸ

)
, ε∗t ∼

N (0,Σ∗), and εt independent of ε∗s at all t and s. As with the DFM model, we rely on

principal component methods to extract the common factors Ft, and select the optimal number

of factors q and the lag length p using BIC. We use Bayesian methods with non-informative

priors to forecast with this model.

Bayesian VAR using the Minnesota Prior
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We follow closely Banbura et al (2010)’s implementation of the Minnesota prior VAR which

involves a single prior shrinkage parameter, ω. However, we select ω in a different manner

than Banbura et al (2010), and estimate it in a data-based fashion similar to Giannone, Lenza

and Primiceri (2015). We choose a grid of values for the inverse of the shrinkage factor ω−1

ranging from 0.5×√np to 10×√np, in increments of 0.1×√np. At each point in time, we use

BIC to choose the optimal degree of shrinkage. All remaining specification and forecasting

choices are exactly the same as in Banbura et al (2010) and, hence, are not reported here. In

our empirical results, we use the acronym BVAR to refer to this approach.

4.3 Measures of Predictive Accuracy

We use the first half of the sample, January 1960–June 1987, to obtain initial parameter

estimates for all models, which are then used to predict outcomes from July 1987 (h = 1)

to June 1987 (h = 12). The next period, we include data for July 1987 in the estimation

sample, and use the resulting estimates to predict the outcomes from August 1987 to July

1988. We proceed recursively in this fashion until December 2014, thus generating a time

series of forecasts for each forecast horizon h, with h = 1, ..., 12. Note that when h > 1, point

forecasts are iterated and predictive simulation is used to produce the predictive densities.

Next, for each of the seven key variables listed above we summarize the precision of the

h-step-ahead point forecasts for model i, relative to that from the univariate AR(1), by means

of the ratio of MSFEs:

MSFEijh =

∑t−h
τ=t e

2
i,j,τ+h∑t−h

τ=t e
2
bcmk,j,τ+h

, (15)

where t and t denote the start and end of the out-of-sample period, and where e2i,j,τ+h and

e2bcmk,j,τ+h are the squared forecast errors of variable j at time τ and forecast horizon h

associated with model i (i ∈ {DFM,FAV AR,BV AR,BCV AR,BCV ARc}) and the AR(1)

model, respectively. The point forecasts used to compute the forecast errors are obtained by

averaging over the draws from the various models’ h-step-ahead predictive densities. Values

of MSFEijh below one suggest that model i produces more accurate point forecasts than the

AR(1) benchmark for variable j and forecast horizon h.

We also assess the accuracy of the point forecasts of the various methods using the

multivariate loss function of Christoffersen and Diebold (1998). Specifically, we compute the
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ratio between the multivariate weighted mean squared forecast error (WMSFE) of model i

and the WMSFE of the benchmark AR(1) model as follows:

WMSFEih =

∑t−h
τ=t wei,τ+h∑t−h

τ=t webcmk,τ+h
, (16)

where wei,τ+h =
(
e′i,τ+h ×W × ei,τ+h

)
and webcmk,τ+h =

(
e′bcmk,τ+h ×W × ebcmk,τ+h

)
are

time τ +h weighted forecast errors of model i and the benchmark model, ei,τ+h and ebcmk,τ+h

are the (7× 1) vector of forecast errors for the key series we focus on, and W is an (7× 7)

matrix of weights. Following Carriero, Kapetanios and Marcellino (2011), we set the matrix

W to be a diagonal matrix featuring on the diagonal the inverse of the variances of the series

to be forecast.

As for the quality of the density forecasts, we follow Geweke and Amisano (2010) and

compute the average log predictive likelihood differential between model i and the AR(1)

benchmark,

ALPLijh =
1

t− t− h+ 1

t−h∑
τ=t

(LPLi,j,τ+h − LPLbcmk,j,τ+h) , (17)

where LPLi,j,τ+h (LPLbcmk,j,τ+h) denotes model i’s (benchmark’s) log predictive score of

variable j, computed at time τ+h, i.e., the log of the h-step-ahead predictive density evaluated

at the outcome. Positive values of ALPLijh indicate that for variable j and forecast horizon

h on average model i produces more accurate density forecasts than the benchmark model.

Finally, we consider the multivariate average log predictive likelihood differentials between

model i and the benchmark AR(1),

MVALPLih =
1

t− t− h+ 1

t−h∑
τ=t

(MV LPLi,τ+h −MV LPLbcmk,τ+h) , (18)

where MV LPLi,τ+h and MV LPLbcmk,τ+h denote the multivariate log predictive likelihoods

of model i and the benchmark model at time τ + h, computed under the assumption of joint

normality.

In order to test the statistical significance of differences in point and density forecasts, we

consider pairwise tests of equal predictive accuracy (henceforth, EPA; Diebold and Mariano,

1995; West, 1996) in terms of MSFE, WMSFE, ALPL, and MVALPL. All EPA tests we

conduct are based on a two sided test with the null hypothesis being the AR(1) benchmark.
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We use standard normal critical values. Based on simulation evidence in Clark and McCracken

(2013), when computing the variance estimator which enters the test statistic we rely on

Newey and West (1987) standard errors, with truncation at lag h − 1, and incorporate the

finite sample correction due to Harvey et al. (1997). In the tables, we use ***, ** and * to

denote results which are significant at the 1%, 5% and 10% levels, respectively, in favor of the

model listed at the top of each column.

4.4 Forecasting Results

Following Banbura et al. (2010), we choose a relatively large value for lag length (p = 13) for

all the methods we compare, trusting in the compression or shrinkage of the various methods

to remove unnecessary lags. Tables 1 through 3 and the left side of Table 7 present evidence on

the quality of our point forecasts for our seven main variables of interest relative to the AR(1)

benchmark. With a few exceptions we are finding that BCVARs beat the benchmark and

often tend to forecast better than the other approaches. This holds, with several exceptions,

for every VAR dimension, variable and forecast horizon. Table 7, which presents the WMSFEs

over the seven variables of interest, provides the best overall summary of our results as they

relate to point forecasts. With six forecast horizons and three VAR dimensions, this table

contains 18 dimensions in which point forecasts can be compared. In 17 of these, either

BCVAR or BCVARc is the model with the lowest MSFE. In 12 of these cases, compressed

VAR approaches beat the benchmark in a statistically significant manner. The FAVAR is

the next best approach, although it is worth noting that in some cases (e.g. with short term

forecasting and particularly with the medium VAR) it does poorly, failing to beat the AR(1)

benchmark.

Thus, random compression of the VAR coefficients is leading to improvements in forecast

performance. Evidence relating to compression of the error covariance is more mixed. That

is, in some instances the BCVARC forecasts better than the BCVAR, but there are many

cases where the forecasts from the BCVAR model are more accurate.

With regards to forecast horizon, no clear pattern emerges. There is a slight tendency

for compressed VAR approaches to do particularly well at shorter horizons, but there are no

strong differences across horizons. In terms of the individual variables, one notable pattern in
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these tables is that BCVAR and BCVARC are (with some exceptions) forecasting particularly

well for the most important macroeconomic aggregates such as prices, unemployment and

industrial production. In contrast, for the long-term interest rate (GS10), our Huge or Large

VAR methods are almost never beating the benchmark. But at least in this case, where

small models are forecasting well, it is reassuring to see that MSFEs obtained using random

compression methods are only slightly worse than the benchmark ones. This indicates that

random compression methods are finding that the GS10 equation in the Huge VAR is hugely

over-parametrized, but is successfully compressing the explanatory variables so as obtain

results that are nearly the same as those from parsimonious univariate models.

Figures 1 through 3 present evidence on when the forecasting gains of BCVARs relative

to the other approaches are achieved. These plot the cumulative sum of weighted forecasting

errors (jointly for the N = 7 variables of interest) for the benchmark AR(1) model minus

those for a competing approach, CSWFEDiht =
∑t−h

τ=t (webcmk,τ+h − wei,τ+h), for different

sized VAR sizes and different forecasting horizons. Positive values for this metric imply that

an approach is beating the benchmark. For short horizons, BCVAR is the only approach that

consistently beats the benchmark model, throughout the whole forecast period. All other

approaches accumulate more forecast errors over time compared to the simple AR(1). It is

particularly interesting that during the 2007-2009 crisis all multivariate methods seem to,

at least temporarily, improve over the univariate AR(1). However, towards the end of the

crisis, for all methods but the BCVAR relative forecast performance deteriorates abruptly.

For longer forecast horizons some of the alternative multivariate models perform fairly well

(e.g., at h = 12, the FAVAR ends up being the best model by a short margin). Nevertheless,

even at these horizons BCVAR remains consistently a reliable forecasting model.10

Tables 4 through 6 and the right hand side of Table 7 shed light on the quality of our

density forecasts by presenting averages of log predictive likelihoods for the VARs of different

dimensions. Results are similar as for MSFEs and we will not discuss them in detail. But they

do differ in their strength in two ways. First, the evidence that compressed VAR approaches

can beat univariate benchmarks becomes much more strong. See in particular the right hand

10Figure B.1 through Figure B.6 in Appendix B plot the cumulative sum of squared forecast error differentials
individually for the seven series we focus on.
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side of Table 7 which shows strong rejection of the hypothesis of EPA at every horizon and for

every VAR dimension. Second, the evidence that compressed VARs can forecast better than

BVAR or FAVAR approaches becomes somewhat weaker. In particular, with the medium and

large VARs standard large Bayesian VAR methods using the Minnesota prior tend to forecast

slightly better than the compressed VAR approaches. On the other hand, our BCVAR does

particularly well in the Huge VAR case, improving over the standard large Bayesian VAR and

FAVAR methods at all forecast horizons.

Figures 4, 5 and 6 plot the cumulative sums of the multivariate log predictive likelihood

differentials, CSMV LPLDij =
∑t−h

τ=t (MV LPLi,τ+h −MV LPLbcmk,τ+h), for VARs of

different dimensions and across a number of forecast horizons. It is interesting to note that,

in contrast to Figures 1 through 3, there is not strong evidence of a large deterioration in

forecasting performance relative to the univariate benchmark. In general, our compressed

VAR approaches may not be best in every case, but even when they are not they are close

to the best.11

Finally, it is worth stressing that this section is simply comparing the forecast performance

of different plausible methods for a particular data set. However, the decision whether to use

compression methods should not be based solely on this forecasting comparison. In other,

larger applications, plausible alternatives to random compression such as the Minnesota prior

BVAR or any VAR approach which requires the use of MCMC methods, may simply be

computationally infeasible. The results presented in this section show that with the present

data set, random compression works fairly well. With larger data sets, it may very well be

that BCVAR is the only approach that is computationally feasible.

5 Time-variation in Parameters: The Compressed TVP-SV
VAR

In macroeconomic forecasting applications, it is often empirically necessary to allow for

time-variation in the VAR coefficients and/or the error covariance matrix. There is an

increasing literature that shows that ignoring macroeconomic volatility and possible

11Figure B.7 through Figure B.12 in Appendix B plot the cumulative sum of log predictive likelihood
differentials individually for the seven series we focus on.
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structural changes in coefficients of a VAR can result in bad in-sample fit and poor

out-of-sample forecast performance; see for example Clark (2011). Both such extensions add

greatly to the computational burden since MCMC methods are usually required. In the

context of the constant coefficient VAR with conjugate prior for the VAR coefficients there

is a growing literature (e.g. Carriero, Clark and Marcellino, 2015, 2016 and Chan, 2015)

investigating various structures for time-varying error covariance matrices which do not lead

to excessively large computational demands. However, even these can be restrictive and

require the use of MCMC methods which will make them unsuitable for use in extremely

large models. Allowing for time-variation in the VAR coefficients (e.g. through assuming

coefficients evolve according to a random walk or a Markov switching process) will also

greatly increase the burden.

In this section, we show how the compressed VAR methods can be generalized to the case

of a VAR with time-varying parameters and stochastic volatilities (BCVARtvp). Our model

becomes

Yi,t = Θc
i,t

(
ΦiZ

i
t

)
+ σi,tEi,t. (19)

Notice that relative to equation (9) now all parameters including the error variances may

vary over time and, thus, they have t subscripts, t = 1, ..., T . We also remind the reader that

the variables Zit contain lags of the dependent variables and the terms which relate to the

error covariances as defined in (8). This TVP-SV VAR model is different from the previous

literature because it allows for equation by equation estimation. Papers such as Primiceri

(2005) would specify the VAR in the familiar seemingly unrelated regression form, where all

n VAR equations are modeled jointly. Estimation using the latter form can become

cumbersome as n increases, since the posterior for both the time-varying regression

coefficients and volatilities involves many manipulations involving large data matrices.

Using (19), estimation of the BCVARtvp is reduced to the estimation of n univariate

time-varying parameter regressions which is computationally more efficient for large n.

Additionally, the possibly large matrix Zit is still compressed using Φi as with the BCVAR.

In general, forecasting with TVP-SV VARs is computationally demanding as it typically

relies on MCMC methods. In our case, even if we use Φi to compress the data, a full Bayesian

analysis could be computationally demanding with large n since MCMC methods are required
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and must be run for each of the n equations. Accordingly, we turn to approximate methods to

deal with the TVP-SV aspect of our BCVAR. These are generalizations of those developed by

Koop and Korobilis (2013) in the context of a time-varying parameter with time varying error

covariance matrix. They use variance discounting methods to model the time-variation in the

VAR coefficients and error covariance matrix, and provide analytical formulae for updating

them. Thus, in (19), once we draw Φi randomly, Θc
i,t and σ2i,t can be updated using simple

recursive formulae based on the Kalman filter, without relying on computationally intensive

MCMC methods.

Adapting Koop and Korobilis (2013), the compressed TVP-SV VAR model involves

estimating Θc
i,t and σ2i,t by assuming that they evolve according to:

Θc
i,t = Θc

i,t−1 +

√√√√(1− λi,t) var
(

Θc
i,t−1|t−1

)
λi,t

ui,t, (20)

σ2i,t = κi,tσ
2
i,t−1 + (1− κi,t) Ê2

i,t. (21)

That is, Θc
i,t follows a random walk using a forgetting factor approximation to its error

covariance matrix. Kalman filtering methods can be used for this equation. For σ2i,t we have

an Exponentially Weighted Moving Average filter. Ê2
i,t is the time t prediction error

estimated from the i-th equation of the VAR, ui,t ∼ N (0, 1), and var
(

Θc
i,t−1|t−1

)
is the

variance of Θc
i,t−1 given information up to time t − 1 and is produced by the Kalman filter

(see Koop and Korobilis, 2013, for details). The crucial parameters in this specification are

the forgetting and decay factors λi,t and κi,t. These factors, which are typically in the range

of (0.9, 1), control how quickly discounting of past data occurs. For example, if λi,t = 0.90

then Θc
i,t depends very heavily on recent observations, and changes very rapidly over time.

On the other hand, if λi,t = 0.99 the discounting of the past is more gradual and Θc
i,t varies

more smoothly. Finally, when λi,t = 1 we go back to the constant parameter VAR. Similar

arguments can be made for σ2i,t and its decay factor κi,t.

For out-of-sample forecasting, we extend the methods of Koop and Korobilis (2013) by

allowing for the decay and forgetting factors to vary over time using simple updating formulae:
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λi,t = λ+ (1− λ)× exp

(
−0.5×

Ê2
i,t−1

σ̂2i,t−1

)
, (22)

κi,t = κ+ (1− κ)× exp
(
−0.5× kurt

(
Êi,t−12:t−1

))
, (23)

where σ̂2i,t−1 is the time t− 1 estimate of the variance and kurt
(
Êi,t−12:t−1

)
is the kurtosis of

the VAR prediction error, evaluated over the past year (i.e. with monthly data this is based

on a rolling sample of 12 observations). λ and κ put bounds on the minimum values of the

forgetting and decay factors. We set λ = 0.98 and κ = 0.94 which, in the context of monthly

data, allow for the possibility of a fairly large amount of time variation.12

Note that, if the prediction error is close to zero then λit = 1 which is the value consistent

with the parameters in equation i being constant. In words, if the model forecast well last

month, we do not change its parameters this month. However, the larger the prediction error

is, the smaller λit becomes and, thus, a higher degree of parameter change is allowed for.

For the decay factor κi,t, we use a similar reasoning, except in terms of the kurtosis of the

prediction error. As is well known (e.g. from the GARCH literature), assuming that errors

are Normally distributed, in times of constant volatility kurtosis will be equal to zero, but in

times of increased volatility kurtosis is higher. Allowing for κit to depend on the kurtosis over

the past year is a simple way of allowing σi,t to change more rapidly in unstable times than

in stable times. Using these methods, it is straightforward to allow for time-variation in our

compressed VAR approach in a computationally simple manner.

Figure 7, which plots the time series of the predictive density volatilities for the Medium

BCVARtvp against the time series of volatilities obtained from the alternative methods

described in section 4, confirms that heteroskedasticity plays a very important role in our

data. While the alternative methods allow for some time variation in the volatilities (they

are estimated on an expanding window of data), BCVARtvp is finding a lot more variation.

This is particularly true at the time of the financial crisis.

Table 8, Figure 8, and Figure 9 present results on the forecast performance of our

BCVARtvp approach. The story that jumps out is a strong one: adding time variation in the

12The idea of allowing the value of the forgetting factor to depend on the most recent prediction error is
used, e.g., in Park, Jun, and Kim (1991).
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parameters and volatilities leads to substantial improvements in forecast performance.

Conventional wisdom has it that allowing for time-variation (particularly in the error

covariance matrix) is particularly important for predictive density estimation. In a time of

fluctuating volatility, working with a homoskedastic model may not seriously affect point

forecasts, but may lead to poor estimates of higher predictive moments. This wisdom is

strongly reinforced by our results. The right panels of Table 8 show that in terms of

predictive likelihoods, the BCVARtvp performs much better than our other compressed VAR

approaches, and better (with some exceptions) than standard large VAR and factor

methods. This is particularly true when focusing on the multivariate predictive performance

and short to medium forecast horizons. In addition, improvements relative to the univariate

benchmark (as indicated by the stars in the table) are almost always strongly statistically

significant. In terms of MSFEs, allowing for time variation in parameters leads to some

improvements, but these improvements are not as large as those we find with predictive

likelihoods. Again, the multivariate results are particularly strong, for all VAR sizes and

forecast horizons. In summary, the message conveyed by Table 8 is a particularly strong one:

BCVARtvp is forecasting better than any other approach considered in this paper.

Figure 8 indicates that, with some exceptions, the reported success in terms of overall

point forecast accuracy of the BCVARtvp relative to the alternative methods we considered

(namely, DFM, FAVAR, and BVAR) is not the result of any specific and short-lived episodes

but is instead built gradually throughout the forecast evaluation period, as indicated by

the increasing lines depicted in the figure. Interestingly, both at h = 1 and h = 12, the

improvements in forecast performance relative to the various alternatives are particularly

notable around the time of the financial crisis, but are not confined to it. Figure 9 provides

a similar analysis in terms of the overall density forecast accuracy of the BCVARtvp model.

The left panels of the figure show that at h = 1 the previously reported forecast success of

the BCVARtvp is once again built steadily throughout the forecast evaluation period. On the

other hand, the right panels of the figure, which focus on h = 12, show that while up until

the beginning of the last financial crisis the BCVARtvp is forecasting more accurately than

all the alternatives, the 2007-2009 period has a strong negative impact on its density forecast

performance.
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6 Conclusions

In this paper, we have drawn on ideas from the random projection literature to develop

methods suitable for use with large VARs. For such methods to be suitable, they must be

computationally simple, theoretically justifiable and empirically successful. We argue that the

BCVAR methods developed in this paper meet all these goals. In a substantial macroeconomic

application, involving VARs with up to 129 variables, we find BCVAR methods to be fast

and yield results which are at least as good as or better than competing approaches. And,

in contrast to the Minnesota prior BVAR, BCVAR methods can easily be scaled up to much

higher dimensional models and extended to allow for time-variation in its parameters.
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Tables and Figures

Table 1. Out-of-sample point forecast performance, Medium VAR

Variable DFM FAVAR BVAR BCVAR BCVARc DFM FAVAR BVAR BCVAR BCVARc

h = 1 h = 2
PAYEMS 1.082 1.138 0.865 0.830*** 0.838*** 0.921 1.000 0.554*** 0.728*** 0.732***
CPIAUCSL 1.142 1.017 0.949 0.958 0.967 1.086 1.037 0.999 0.940 0.936*
FEDFUNDS 2.278 1.848 2.760 1.023 0.962 1.441 1.424 2.448 0.974 0.945
INDPRO 0.863*** 0.879** 0.810** 0.828*** 0.889*** 0.909 0.952 0.825* 0.931 0.929*
UNRATE 0.878 0.840** 0.783*** 0.803*** 0.848*** 0.894 0.908 0.805** 0.844*** 0.869**
PPIFGS 1.000 1.002 0.980 0.970 0.993 1.052 1.037 1.083 1.029 1.012
GS10 1.141 0.988 1.092 0.996 1.013 1.038 1.023 1.082 1.003 1.003

h = 3 h = 6
PAYEMS 0.846 0.915 0.522*** 0.683*** 0.687*** 0.951 0.903 0.686* 0.747** 0.738**
CPIAUCSL 1.096 1.031 1.042 0.982 0.978 1.042 0.979 1.057 1.003 0.995
FEDFUNDS 1.289 1.272 1.858 1.017 1.001 1.198 1.017 1.195 0.991 0.986
INDPRO 0.928 0.991 0.931 0.939 0.949 0.959 1.024 1.024 0.970 0.957
UNRATE 0.942 0.959 0.850* 0.871** 0.866*** 0.993 0.995 0.947 0.939* 0.946*
PPIFGS 1.032 1.016 1.102 1.050 1.042 1.047 1.026 1.135 1.059 1.043
GS10 1.038 1.036 1.140 1.046 1.032 1.006 1.015 1.115 1.036 1.038

h = 9 h = 12
PAYEMS 1.005 0.936 0.824 0.838 0.843 1.015 0.963 0.931 0.934 0.935
CPIAUCSL 1.001 0.960 1.036 0.979 0.961 1.007 0.969 1.069 1.016 1.012
FEDFUNDS 1.133 0.945 0.991 0.921 0.950 1.137 0.975 1.077 0.991 0.996
INDPRO 0.958 1.009 1.024 0.967 0.978 0.981 1.011 1.004 0.974 0.975
UNRATE 1.009 1.001 0.972 0.954 0.951 1.007 1.010 1.008 0.968 0.968
PPIFGS 1.017 1.004 1.116 1.055 1.042 1.018 1.000 1.140 1.070 1.053
GS10 0.997 0.997 1.025 1.005 1.016 1.012 1.000 1.052 1.029 1.023

This table reports the ratio between the MSFE of model i and the MSFE of the benchmark AR(1) for the
Medium size VAR, computed as

MSFEijh =

∑t−h
τ=t e

2
i,j,τ+h∑t−h

τ=t e
2
bcmk,j,τ+h

,

where e2i,j,τ+h and e2bcmk,j,τ+h are the squared forecast errors of variable j at time τ and forecast

horizon h generated by model i and the AR(1) model, respectively. t and t denote the

start and end of the out-of-sample period, i ∈ {DFM,FAV AR,BV AR,BCV AR,BCV ARc}, j ∈
{PAY EMS,CPIAUCSL, FEDFUNDS, INDPRO,UNRATE,PPIFGS,GS10}, and h ∈ {1, 2, 3, 6, 9, 12}.
All forecasts are generated out-of-sample using recursive estimates of the models, with the out of sample period

starting in 1987:07 and ending in 2014:12. Bold numbers indicate the lowest MSFE across all models for a given

variable-forecast horizon pair. ∗ significance at the 10% level; ∗∗ significance at the 5% level; ∗∗∗ significance

at the 1% level.
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Table 2. Out-of-sample point forecast performance, Large VAR

Variable DFM FAVAR BVAR BCVAR BCVARc DFM FAVAR BVAR BCVAR BCVARc

h = 1 h = 2
PAYEMS 1.137 1.146 0.792** 0.831*** 0.864*** 0.869 0.914 0.512*** 0.747*** 0.762***
CPIAUCSL 1.148 1.017 1.000 0.951 0.942* 1.165 1.085 1.099 0.911** 0.898***
FEDFUNDS 2.449 1.731 2.449 0.949 0.944 1.961 1.376 2.532 0.963 0.924
INDPRO 0.824** 0.877*** 0.778*** 0.820*** 0.904*** 0.855 0.918* 0.771** 0.907** 0.935*
UNRATE 0.851** 0.798*** 0.770*** 0.809*** 0.897*** 0.803** 0.841*** 0.794** 0.857*** 0.893***
PPIFGS 1.042 1.002 1.041 0.967 0.991 1.157 1.057 1.166 1.013 1.006
GS10 1.015 1.001 1.113 0.997 1.002 0.999 1.023 1.116 0.996 1.009

h = 3 h = 6
PAYEMS 0.780 0.842* 0.467*** 0.717*** 0.732*** 0.841 0.920* 0.604** 0.764** 0.783***
CPIAUCSL 1.132 1.061 1.146 0.923** 0.926** 1.045 1.018 0.988 0.897*** 0.885***
FEDFUNDS 1.714 1.063 2.174 1.001 0.989 1.247 0.974 1.234 0.998 0.963
INDPRO 0.900 0.944 0.852 0.927** 0.938* 0.939 0.981 0.980 0.975 0.971
UNRATE 0.855* 0.911** 0.840* 0.906** 0.930** 0.906** 0.956*** 0.887** 0.927** 0.962
PPIFGS 1.143 1.003 1.168 1.004 1.007 1.104 1.008 1.088 1.001 0.993
GS10 1.040 1.024 1.211 1.050 1.047 1.038 1.009 1.098 1.031 1.022

h = 9 h = 12
PAYEMS 0.877 0.962** 0.762 0.858* 0.863** 0.926 0.994 0.922 0.962 0.956
CPIAUCSL 1.047 0.998 0.910 0.848*** 0.841*** 1.065 1.002 0.898 0.880*** 0.860***
FEDFUNDS 1.113 1.008 1.179 0.970 1.025 1.062 0.964* 1.281 1.010 0.997
INDPRO 0.962 1.009 1.003 0.987 0.988 0.957 1.006 1.043 0.998 1.000
UNRATE 0.949** 0.987 0.965 0.979 0.987 0.954** 0.992 1.002 0.998 0.985
PPIFGS 1.059 1.002 1.049 0.973 0.973 1.096 1.002 1.042 0.989 0.981
GS10 0.998 0.998 1.043 0.995 1.022 1.001 0.990 1.043 1.012 1.000

This table reports the ratio between the MSFE of model i and the MSFE of the benchmark AR(1) for the Large

size VAR, across a number of different forecast horizons h. i ∈ {DFM,FAV AR,BV AR,BCV AR,BCV ARc}
and h ∈ {1, 2, 3, 6, 9, 12}. See notes under Table 1 for additional details.
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Table 3. Out-of-sample point forecast performance, Huge VAR

Variable DFM FAVAR BVAR BCVAR BCVARc DFM FAVAR BVAR BCVAR BCVARc

h = 1 h = 2
PAYEMS 0.789** 1.068 0.748*** 0.777*** 0.796*** 0.710* 0.801 0.481*** 0.640*** 0.671***
CPIAUCSL 0.930 0.925 0.860** 0.928** 0.935* 1.003 0.996 0.932 0.887** 0.892**
FEDFUNDS 2.120 1.669 2.061 0.965 1.013 1.766 1.338 2.178 0.962 0.892
INDPRO 0.830** 0.858** 0.778*** 0.844*** 0.902*** 0.860 0.884 0.801* 0.945 0.920**
UNRATE 0.807** 0.740*** 0.796** 0.810*** 0.860*** 0.811** 0.829** 0.769** 0.852*** 0.852***
PPIFGS 0.940 0.984 0.938 0.974 1.012 1.065 1.047 1.063 1.013 1.019
GS10 1.111 1.037 1.103 1.009 1.015 1.036 1.057 1.136 1.005 1.044

h = 3 h = 6
PAYEMS 0.715 0.726 0.474*** 0.611*** 0.622*** 0.923 0.828 0.620 0.668** 0.706**
CPIAUCSL 0.979 0.988 0.979 0.912 0.904* 0.961 0.922 1.044 0.931 0.916
FEDFUNDS 1.526 1.104 1.819 0.967 0.987 1.395 0.959 1.325 0.991 0.988
INDPRO 0.943 0.950 0.893 0.950 0.938 1.035 0.977 1.022 0.967 0.983
UNRATE 0.888 0.868* 0.836* 0.876** 0.882*** 0.981 0.931* 0.886* 0.924** 0.943*
PPIFGS 1.086 1.040 1.089 1.034 1.048 1.112 1.057 1.151 1.063 1.041
GS10 1.067 1.094 1.215 1.049 1.064 1.073 1.038 1.179 1.022 1.042

h = 9 h = 12
PAYEMS 1.001 0.916 0.743 0.766 0.760* 1.065 0.996 0.870 0.848 0.866
CPIAUCSL 0.944 0.887** 1.022 0.895 0.885 0.947 0.915*** 1.036 0.901 0.872**
FEDFUNDS 1.279 0.995 1.115 0.969 0.995 1.225 0.976 1.151 1.023 1.035
INDPRO 1.043 1.004 1.068 0.975 0.990 0.993 0.997 1.074 0.989 1.012
UNRATE 1.019 0.967* 0.938 0.951 0.957 1.014 0.981 0.982 0.979 0.989
PPIFGS 1.060 1.011 1.149 1.047 1.035 1.100 1.032 1.182 1.073 1.042
GS10 1.023 1.000 1.074 1.006 1.024 1.034 1.003 1.081 1.013 1.006

This table reports the ratio between the MSFE of model i and the MSFE of the benchmark AR(1) for the Huge

size VAR, across a number of different forecast horizons h. i ∈ {DFM,FAV AR,BV AR,BCV AR,BCV ARc}
and h ∈ {1, 2, 3, 6, 9, 12}. See notes under Table 1 for additional details.
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Table 4. Out-of-sample density forecast performance, Medium VAR

Variable DFM FAVAR BVAR BCVAR BCVARc DFM FAVAR BVAR BCVAR BCVARc

h = 1 h = 2
PAYEMS 0.066*** 0.030 0.218*** 0.086*** 0.083*** 0.117*** 0.061* 0.366*** 0.158*** 0.163***
CPIAUCSL -0.115 -0.055 -0.674 0.003 0.156 -0.266 -0.280 -1.669 -0.263 -0.247
FEDFUNDS -0.012 0.043*** 0.131*** 0.006 0.005 0.028 0.042*** 0.115** 0.022*** 0.022***
INDPRO -0.105 0.046 -0.098 -0.063 0.028 0.008 0.028 -0.049 0.084** 0.109**
UNRATE 0.083** 0.121*** 0.167*** 0.105*** 0.081*** 0.072** 0.060** 0.131*** 0.077*** 0.062***
PPIFGS 0.025 -0.033 -0.448 -0.071 0.020 -0.043 -0.135 -0.725 0.019 -0.063
GS10 -0.029 0.007 0.015 -0.001 -0.007 -0.011 -0.017 -0.009 -0.008 -0.016

h = 3 h = 6
PAYEMS 0.124*** 0.085** 0.364*** 0.172*** 0.185*** 0.050 0.071 0.245*** 0.144*** 0.168***
CPIAUCSL 0.034 0.043 -0.984 -0.095 -0.017 -0.007 0.004 -0.860 -0.220 -0.249
FEDFUNDS 0.021 0.023* 0.115*** 0.014 0.014* 0.013 0.015** 0.119*** 0.017** 0.011
INDPRO 0.144 0.090 -0.001 0.125 0.073*** -0.005 0.052 -0.227 -0.014 0.038***
UNRATE 0.041 0.024 0.109*** 0.065*** 0.062*** 0.022 0.007 0.058*** 0.042*** 0.040***
PPIFGS -0.081 0.044 -0.483 0.049 -0.098 -0.063 0.003 -0.807 -0.172 -0.100
GS10 0.012 0.014 0.010 0.013 0.003 0.003 0.001 0.002 -0.003 -0.013

h = 9 h = 12
PAYEMS 0.005 0.038 0.092 0.096*** 0.084*** 0.023 0.038 0.040 0.074*** 0.089***
CPIAUCSL -0.022 0.220 -0.746 -0.083 -0.184 -0.091 -0.037 -0.905 -0.254 -0.312
FEDFUNDS 0.007 0.008 0.119*** 0.008 0.005 -0.014 -0.002 0.109*** -0.006 -0.008
INDPRO -0.038 -0.067 -0.152 -0.012 -0.077 0.098 -0.007 -0.018 0.128 0.149
UNRATE 0.015 0.010 0.040 0.048*** 0.036*** -0.002 0.000 0.033 0.024** 0.020**
PPIFGS -0.006 0.106 -0.413 -0.070 0.060 -0.001 0.120 -0.391 -0.144 -0.108
GS10 0.009 0.009** 0.041** 0.011 0.001 -0.016 -0.001 0.010 -0.003 -0.014

This table reports the average log predictive likelihood (ALPL) differential between model i and the benchmark
AR(1) for the Medium size VAR , computed as

ALPLijh =
1

t− t− h+ 1

t−h∑
τ=t

(LPLi,j,τ+h − LPLbcmk,j,τ+h) ,

where LPLi,j,τ+h and LPLbcmk,j,τ+h are the log predictive likelihoods of variable j at time τ and

forecast horizon h generated by model i and the AR(1) model, respectively. t and t denote the

start and end of the out-of-sample period, i ∈ {DFM,FAV AR,BV AR,BCV AR,BCV ARc}, j ∈
{PAY EMS,CPIAUCSL, FEDFUNDS, INDPRO,UNRATE,PPIFGS,GS10}, and h ∈ {1, 2, 3, 6, 9, 12}.
All density forecasts are generated out-of-sample using recursive estimates of the models, with the out of sample

period starting in 1987:07 and ending in 2014:12. Bold numbers indicate the highest ALPL across all models

for a given variable-forecast horizon pair. ∗ significance at the 10% level; ∗∗ significance at the 5% level; ∗∗∗

significance at the 1% level.
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Table 5. Out-of-sample density forecast performance, Large VAR

Variable DFM FAVAR BVAR BCVAR BCVARc DFM FAVAR BVAR BCVAR BCVARc

h = 1 h = 2
PAYEMS 0.065*** -0.008 0.254*** 0.076*** 0.063*** 0.138*** 0.079*** 0.406*** 0.140*** 0.137***
CPIAUCSL -0.223 -0.002 -0.787 0.104** -0.026 -0.800 0.061 -2.100 0.032 0.182**
FEDFUNDS 0.022 0.042** 0.147** 0.004 -0.002 -0.002 0.018 -0.026 0.000 0.009
INDPRO 0.020 -0.030 -0.039 0.011 -0.047 0.162*** 0.064 0.181** 0.065*** 0.090**
UNRATE 0.114*** 0.127*** 0.170*** 0.089*** 0.051*** 0.118*** 0.080*** 0.150*** 0.083*** 0.058***
PPIFGS -0.191 -0.021 -0.679 0.096* -0.024 -0.477 -0.091 -1.105 0.053 -0.048
GS10 0.036* 0.020 -0.027 0.006 0.000 0.017 0.014 0.017 0.021 -0.003

h = 3 h = 6
PAYEMS 0.141*** 0.060*** 0.416*** 0.159*** 0.160*** 0.082** 0.029 0.300*** 0.121*** 0.140***
CPIAUCSL -0.246 -0.086 -1.873 -0.073 -0.075 -0.091 0.078 -0.826 0.087** -0.061
FEDFUNDS -0.046 0.011 0.029 0.004 0.006 -0.007 -0.002 0.159*** 0.003 0.012*
INDPRO -0.022 0.005 -0.056 0.010 -0.021 0.069** -0.128 -0.315 -0.063 -0.149
UNRATE 0.081*** 0.035** 0.119*** 0.061*** 0.054*** 0.039*** 0.017** 0.092*** 0.042*** 0.023**
PPIFGS -0.193 -0.061 -1.087 0.029 -0.125 -0.064 0.049 -0.791 0.007 -0.099
GS10 -0.001 -0.010 -0.028 0.000 -0.008 -0.005 -0.005 0.004 -0.004 -0.009

h = 9 h = 12
PAYEMS 0.059** 0.019 0.165*** 0.095*** 0.097*** 0.044 0.003 0.063 0.034* 0.032
CPIAUCSL -0.157 -0.040 -0.872 -0.104 -0.158 0.032 -0.016 -0.721 0.059 -0.058
FEDFUNDS -0.006 -0.006 0.145*** -0.002 -0.003 -0.001 -0.002 0.133*** -0.003 -0.004
INDPRO 0.085 0.029 -0.178 0.027*** 0.050 0.083 0.102 -0.188 0.078 0.180
UNRATE 0.033*** -0.002 0.050** 0.017** 0.013* 0.018** -0.002 0.017 0.002 0.008
PPIFGS -0.036 -0.021 -0.647 -0.047 -0.047 0.014 0.061 -0.549 -0.021 -0.138
GS10 0.004 -0.001 0.034 0.001 -0.017 0.000 0.012 0.029 -0.009 -0.022

This table reports the average log predictive likelihood (ALPL) differential between model i and the

benchmark AR(1) for the Large size VAR, across a number of different forecast horizons h. i ∈
{DFM,FAV AR,BV AR,BCV AR,BCV ARc} and h ∈ {1, 2, 3, 6, 9, 12}. See notes under Table 4 for additional

details.
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Table 6. Out-of-sample density forecast performance, Huge VAR

Variable DFM FAVAR BVAR BCVAR BCVARc DFM FAVAR BVAR BCVAR BCVARc

h = 1 h = 2
PAYEMS 0.189*** 0.061*** 0.302*** 0.104*** 0.102*** 0.224*** 0.155*** 0.471*** 0.196*** 0.196***
CPIAUCSL -0.005 0.041 -0.362 0.025 0.052 -0.419 -0.210 -2.118 0.098*** 0.095**
FEDFUNDS 0.030 0.052*** 0.291*** 0.014** 0.010** 0.019 0.036* 0.247*** 0.013* 0.014**
INDPRO -0.051 -0.029 -0.311 0.092*** 0.026 0.238* 0.170** -0.057 0.041 0.179
UNRATE 0.130*** 0.157*** 0.125** 0.095*** 0.079*** 0.102*** 0.092*** 0.163*** 0.076*** 0.079***
PPIFGS -0.111 0.002 -1.029 0.059* -0.087 -0.241 -0.157 -1.813 -0.064 -0.015
GS10 -0.008 -0.007 0.006 -0.001 0.000 0.006 -0.010 -0.009 0.012 -0.001

h = 3 h = 6
PAYEMS 0.197*** 0.168*** 0.447*** 0.229*** 0.225*** 0.090* 0.097** 0.296*** 0.199*** 0.191***
CPIAUCSL -0.190 -0.070 -2.294 0.000 0.121*** -0.119 0.087 -2.185 0.227 0.042
FEDFUNDS 0.016 0.032* 0.228*** 0.022** 0.016** 0.003 0.013* 0.186*** 0.007 0.013
INDPRO -0.025 0.029 0.065 0.052*** 0.043*** 0.082 -0.028 -0.151 0.056* -0.088
UNRATE 0.059** 0.061*** 0.106** 0.067*** 0.048*** 0.017 0.028** 0.084*** 0.036** 0.030***
PPIFGS -0.283 -0.002 -1.315 0.086 -0.062 -0.124 -0.100 -1.594 0.003 -0.173
GS10 0.018 0.012 -0.027 0.032 0.009 -0.014 0.000 -0.024 0.012 -0.005

h = 9 h = 12
PAYEMS 0.005 0.037 0.128 0.129*** 0.123*** 0.019 0.019 0.077 0.100*** 0.110***
CPIAUCSL 0.212 0.002 -0.995 -0.032 0.059 0.060 -0.239 -1.661 0.016 -0.171
FEDFUNDS 0.004 0.011*** 0.275*** 0.014* 0.010 0.002 0.007 0.211*** -0.002 -0.001
INDPRO 0.110 0.011 -0.183 0.081 0.050** 0.062 -0.038 -0.174 0.021* -0.057
UNRATE -0.002 0.007 0.045 0.026* 0.028** 0.008 0.019** 0.034 0.029** 0.021**
PPIFGS 0.022 0.064 -1.227 0.099 0.039 -0.189 -0.130 -0.724 -0.144 -0.274
GS10 -0.003 0.017 0.039 0.008 -0.011 -0.002 0.007 0.034 -0.005 -0.021

This table reports the average log predictive likelihood (ALPL) differential between model i and the

benchmark AR(1) for the Huge size VAR, across a number of different forecast horizons h. i ∈
{DFM,FAV AR,BV AR,BCV AR,BCV ARc} and h ∈ {1, 2, 3, 6, 9, 12}. See notes under Table 4 for additional

details.
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Table 7. Out-of-sample forecast performance: Multivariate results

Fcst h. Medium VAR

WMSFE MVALPL
DFM FAVAR BVAR BCVAR BCVARc DFM FAVAR BVAR BCVAR BCVARc

h= 1 1.158 1.066 1.132 0.916*** 0.935*** 0.551*** 0.770*** 0.979*** 0.925*** 0.285***
h= 2 1.051 1.052 1.115 0.929** 0.926*** 0.832*** 0.818*** 1.068*** 1.021*** 0.401***
h= 3 1.027 1.031 1.064 0.944* 0.940* 0.890*** 0.874*** 1.097*** 1.046*** 0.356***
h= 6 1.027 0.992 1.017 0.961 0.954 0.868*** 0.837*** 1.030*** 1.009*** 0.296***
h= 9 1.017 0.977 0.995 0.957 0.960 0.850*** 0.858*** 1.021*** 1.017*** 0.254***
h=12 1.025 0.988 1.039 0.996 0.994 0.877*** 0.867*** 0.927*** 0.886*** 0.176***

Large VAR

DFM FAVAR BVAR BCVAR BCVARc DFM FAVAR BVAR BCVAR BCVARc

h= 1 1.160 1.048 1.103 0.906*** 0.939*** 0.710*** 0.820*** 0.988*** 0.933*** 0.253***
h= 2 1.117 1.033 1.148 0.919*** 0.924*** 0.847*** 0.844*** 0.895*** 1.011*** 0.360***
h= 3 1.083 0.981 1.126 0.934** 0.939*** 0.886*** 0.835*** 0.945*** 1.023*** 0.264***
h= 6 1.016 0.980** 0.977 0.937** 0.935** 0.937*** 0.828*** 1.187*** 1.054*** 0.276***
h= 9 0.999 0.994 0.979 0.939** 0.951** 0.935*** 0.828*** 1.198*** 1.043*** 0.271***
h=12 1.009 0.993* 1.026 0.975 0.965** 0.886*** 0.837*** 1.017*** 0.956*** 0.157*

Huge VAR

DFM FAVAR BVAR BCVAR BCVARc DFM FAVAR BVAR BCVAR BCVARc

h= 1 1.049 1.009 1.017 0.907*** 0.940*** 0.950*** 0.935*** 0.905*** 0.996*** 0.303***
h= 2 1.037 0.996 1.053 0.909*** 0.908*** 1.053*** 0.971*** 0.944*** 1.139*** 0.406***
h= 3 1.030 0.970 1.045 0.916** 0.922** 1.049*** 0.999*** 0.974*** 1.179*** 0.368***
h= 6 1.063 0.955 1.026 0.933 0.940 0.957*** 0.995*** 0.830*** 1.131*** 0.269***
h= 9 1.049 0.965 1.009 0.938 0.943 0.972*** 0.954*** 0.879*** 1.076*** 0.243***
h=12 1.052 0.984 1.049 0.969 0.968 0.934*** 0.910*** 0.709** 1.009*** 0.145

The left half of this table reports the ratio between the multivariate weighted mean squared forecast error
(WMSFE) of model i and the WMSFE of the benchmark AR(1) model, computed as

WMSFEih =

∑t−h
τ=t wei,τ+h∑t−h

τ=t webcmk,τ+h
,

where wei,τ+h =
(
e′i,τ+h ×W × ei,τ+h

)
and webcmk,τ+h =

(
e′bcmk,τ+h ×W × ebcmk,τ+h

)
denote the weighted

forecast errors of model i and the benchmark model at time τ +h, ei,τ+h and ebcmk,τ+h are the (N × 1) vector
of forecast errors, and W is an (N ×N) matrix of weights. We set N = 7, to focus on the following key
seven series, {PAY EMS,CPIAUCSL, FEDFUNDS, INDPRO,UNRATE,PPIFGS,GS10}. In addition,
we set the matrix W to be a diagonal matrix featuring on the diagonal the inverse of the variances
of the series to be forecast. t and t denote the start and end of the out-of-sample period, i ∈
{DFM,FAV AR,BV AR,BCV AR,BCV ARc}, and h ∈ {1, 2, 3, 6, 9, 12}. The right half of the table shows
the multivariate average log predictive likelihood differentials between model i and the benchmark AR(1),
computed as

MVALPLih =
1

t− t− h+ 1

t−h∑
τ=t

(MV LPLi,τ+h −MV LPLbcmk,τ+h) ,

where MV LPLi,τ+h and MV LPLbcmk,τ+h denote the multivariate log predictive likelihoods of model i and

the benchmark model at time τ + h, and are computed under the assumption of joint normality. All forecasts

are generated out-of-sample using recursive estimates of the models, with the out of sample period starting in

1987:07 and ending in 2014:12. Bold numbers indicate the lowest WMSFE and highest MVALPL across all

models for any given VAR size - forecast horizon pair. ∗ significance at the 10% level; ∗∗ significance at the

5% level; ∗∗∗ significance at the 1% level.
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Table 8. Out-of-sample forecast performance: Compressed TVP-SV VAR

Variable Medium VAR

MSFE ALPL
h = 1 h = 2 h = 3 h = 6 h = 9 h = 12 h = 1 h = 2 h = 3 h = 6 h = 9 h = 12

PAYEMS 0.700*** 0.565*** 0.565*** 0.651** 0.769* 0.872 0.338*** 0.391*** 0.352*** 0.078 -0.422 -0.533
CPIAUCSL 0.924** 0.872*** 0.884*** 0.869** 0.841*** 0.845*** 0.284* 0.211*** 0.461 0.191 0.280 0.292
FEDFUNDS 0.879* 0.892 0.924 0.995 0.967 1.061 0.760*** 0.594** 0.423 0.382 0.303 0.365
INDPRO 0.899*** 0.925* 0.940 0.978 0.980 0.989 -0.030 -0.224 -0.128 -0.509 -0.414 -0.255
UNRATE 0.846*** 0.847** 0.876* 0.939 0.971 1.011 0.123*** 0.104*** 0.095*** 0.059*** 0.036 -0.009
PPIFGS 0.968 0.991 1.001 0.998 0.992 1.010 0.270* 0.349 0.401 0.283 0.407 0.354
GS10 1.018 1.017 1.039 1.030 0.995 1.030 0.025 -0.016 -0.053 -0.057 -0.004 0.030
Multivariate 0.905*** 0.884*** 0.892*** 0.916* 0.924* 0.967 1.653*** 1.701*** 1.573*** 1.224*** 1.049*** 0.851***

Large VAR

h = 1 h = 2 h = 3 h = 6 h = 9 h = 12 h = 1 h = 2 h = 3 h = 6 h = 9 h = 12
PAYEMS 0.699*** 0.566*** 0.565*** 0.648** 0.739** 0.837 0.326*** 0.387*** 0.335*** -0.064 -0.508 -0.929
CPIAUCSL 0.939 0.870*** 0.862*** 0.843*** 0.796*** 0.809*** 0.257 0.486 0.306 0.244 0.345 0.181
FEDFUNDS 0.875** 0.847** 0.843** 0.932 0.968 1.033 0.838*** 0.616** 0.531* 0.380 0.073 0.307
INDPRO 0.904*** 0.930* 0.936* 0.962 0.983 0.982 -0.079 -0.085 -0.189 -0.348 -0.290 -0.399
UNRATE 0.862*** 0.863*** 0.899** 0.926** 0.959** 0.984 0.104*** 0.104*** 0.078*** 0.052*** 0.031 -0.013
PPIFGS 0.972 0.985 0.983 0.987 0.958 0.976 0.285 0.400 0.371 0.361 0.379 0.359
GS10 1.013 1.007 1.037 1.023 1.012 1.021 0.015 0.009 -0.049 -0.008 -0.013 -0.001
Multivariate 0.910*** 0.878*** 0.877*** 0.896*** 0.908*** 0.941** 1.633*** 1.635*** 1.511*** 1.215*** 0.966*** 0.674

Huge VAR

h = 1 h = 2 h = 3 h = 6 h = 9 h = 12 h = 1 h = 2 h = 3 h = 6 h = 9 h = 12
PAYEMS 0.685*** 0.566*** 0.548*** 0.656* 0.762 0.879 0.338*** 0.405*** 0.374*** 0.083 -0.447 -0.530
CPIAUCSL 0.904** 0.846*** 0.844*** 0.848** 0.800*** 0.796*** 0.241 0.364* 0.361 0.354 0.539 0.074
FEDFUNDS 0.885 0.911 0.920 1.022 1.034 1.075 0.715*** 0.577* 0.489 0.445 0.100 0.269
INDPRO 0.896*** 0.928 0.957 0.996 1.002 1.020 0.116** 0.036 -0.184 -0.320 -0.205 -0.210
UNRATE 0.836*** 0.851** 0.880* 0.949 0.981 1.026 0.122*** 0.102*** 0.078*** 0.050** 0.034 0.010
PPIFGS 0.983 0.985 1.005 1.008 0.995 1.012 0.254* 0.363 0.371 0.346 0.385 0.213
GS10 1.021 1.021 1.034 1.024 1.013 1.021 0.008 0.037** 0.017 0.008 0.029 -0.033
Multivariate 0.902*** 0.883*** 0.885** 0.922 0.932 0.967 1.667*** 1.666*** 1.593*** 1.216*** 1.002*** 0.713*

The left half of this table reports the ratio between the univariate or multivariate weighted mean squared

forecast error of the BCVARtvp model and the univariate or multivariate weighted mean squared forecast

error of the benchmark AR(1) model. The right half of the table shows the univariate or multivariate

average log predictive likelihood differentials between the BCVARtvp model and the benchmark AR(1)

model. h denotes the forecast horizons, with h ∈ {1, 2, 3, 6, 9, 12}. All forecasts are generated out-of-sample

using recursive estimates of the models, with the out of sample period starting in 1987:07 and ending in

2014:12. Bold numbers indicate all instances where the BCVARtvp model outperforms all alternative models

(DFM,FAV AR,BV AR,BCV AR,BCV ARc), for any given VAR size/variable/forecast horizon combination.
∗ significance at the 10% level; ∗∗ significance at the 5% level; ∗∗∗ significance at the 1% level.
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Figure 1. Cumulative sum of weighted forecast error differentials, Medium VAR
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This figure plots the cumulative sum of weighted forecast errors generated by the AR(1) model minus the

cumulative sum of weighted forecast errors generated by model i for a Medium size VAR. We define the

weighted forecast error of model i and the AR(1) model at time τ + h as wei,τ+h =
(
e′i,τ+h ×W × ei,τ+h

)
and webcmk,τ+h =

(
e′bcmk,τ+h ×W × ebcmk,τ+h

)
, where ei,τ+h and ebcmk,τ+h are the (N × 1) vector of

forecast errors, and W is an (N ×N) matrix of weights. We set N = 7, to focus on the following key

seven series, {PAY EMS,CPIAUCSL, FEDFUNDS, INDPRO,UNRATE,PPIFGS,GS10}. In addition,

we set the matrix W to be a diagonal matrix featuring on the diagonal the inverse of the variances

of the series to be forecast. t and t denote the start and end of the out-of-sample period, i ∈
{DFM,FAV AR,BV AR,BCV AR,BCV ARc}, and h ∈ {1, 2, 3, 6, 9, 12}. All forecasts are generated out-

of-sample using recursive estimates of the models, with the out of sample period starting in 1987:07 and ending

in 2014:12. Each panel displays results for a different forecast horizon.
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Figure 2. Cumulative sum of weighted forecast error differentials, Large VAR
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This figure plots the cumulative sum of weighted forecast errors generated by the AR(1) model minus

the cumulative sum of weighted forecast errors generated by model i for a Large size VAR. i ∈
{DFM,FAV AR,BV AR,BCV AR,BCV ARc}. See notes to Figure 1 for additional details.
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Figure 3. Cumulative sum of weighted forecast error differentials, Huge VAR
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This figure plots the cumulative sum of weighted forecast errors generated by the AR(1) model minus

the cumulative sum of weighted forecast errors generated by model i for a Huge size VAR. i ∈
{DFM,FAV AR,BV AR,BCV AR,BCV ARc}. See notes to Figure 1 for additional details.
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Figure 4. Cumulative sum of multivariate log predictive likelihood differentials, Medium VAR
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This figure plots the cumulative sum of the multivariate log predictive likelihoods generated by model i minus

the cumulative sum of the multivariate log predictive likelihoods computed from an AR(1) model for a Medium

size VAR. i ∈ {DFM,FAV AR,BV AR,BCV AR,BCV ARc}, h ∈ {1, 2, 3, 6, 9, 12}, and the multivariate log

predictive likelihoods are computed under the assumption of joint normality, as described in the text. All

forecasts are generated out-of-sample using recursive estimates of the models, with the out of sample period

starting in 1987:07 and ending in 2014:12. Each panel displays results for a different forecast horizon.
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Figure 5. Cumulative sum of multivariate log predictive likelihood differentials, Large VAR
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This figure plots the cumulative sum of the multivariate log predictive likelihoods generated by model i minus

the cumulative sum of the multivariate log predictive likelihoods computed from an AR(1) model for a Large

size VAR. i ∈ {DFM,FAV AR,BV AR,BCV AR,BCV ARc}. See notes to Figure 4 for additional details.
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Figure 6. Cumulative sum of multivariate log predictive likelihood differentials, Huge VAR
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This figure plots the cumulative sum of the multivariate log predictive likelihoods generated by model i minus

the cumulative sum of the multivariate log predictive likelihoods computed from an AR(1) model for a Huge

size VAR. i ∈ {DFM,FAV AR,BV AR,BCV AR,BCV ARc}. See notes to Figure 4 for additional details.
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Figure 7. Predictive density volatilities, Medium VAR
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This figure plots the time series of the predicted volatilities over the entire out-of-sample period, for h = 1

and the different models entertained, {DFM,FAV AR,BV AR,BCV AR,BCV ARc, BCV ARtvp}. The out of

sample period starts in 1987:07 and ends in 2014:12. Each panel displays results for a different variable j,

where j ∈ {PAY EMS,CPIAUCSL, FEDFUNDS, INDPRO,UNRATE,PPIFGS,GS10}.
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Figure 8. Cumulative sum of weighted forecast error differentials, Compressed TVP-SV VAR
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This figure plots the cumulative sum of weighted forecast errors generated by either the DFM, FAVAR,

or BVAR models minus the cumulative sum of weighted forecast errors generated by the BCVARtvp

model for different VAR sizes and forecast horizons. We define the weighted forecast error of

the BCVARtvp model and model i alternative at time τ + h as weτ+h = (e′τ+h ×W × eτ+h) and

wei,τ+h =
(
e′i,τ+h ×W × ei,τ+h

)
, where eτ+h and ei,τ+h are the (N × 1) vector of forecast errors, and

W is an (N ×N) matrix of weights. We set N = 7, to focus on the following key seven series,

{PAY EMS,CPIAUCSL, FEDFUNDS, INDPRO,UNRATE,PPIFGS,GS10}. In addition, we set the

matrix W to be a diagonal matrix featuring on the diagonal the inverse of the variances of the series to be

forecast. h denotes the forecast horizon, with h ∈ {1, 12}. All forecasts are generated out-of-sample using

recursive estimates of the models, with the out of sample period starting in 1987:07 and ending in 2014:12.
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Figure 9. Cumulative sum of multivariate log predictive likelihood differentials, Compressed
TVP-SV VAR
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This figure plots the cumulative sum of the multivariate log predictive likelihoods generated by the BCVARtvp

model minus the cumulative sum of the multivariate log predictive likelihoods computed from either the

DFM, FAVAR, or BVAR model for different VAR sizes and forecast horizons. The multivariate log predictive

likelihoods are computed under the assumption of joint normality, as described in the text. All forecasts are

generated out-of-sample using recursive estimates of the models, with the out of sample period starting in

1987:07 and ending in 2014:12.
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Appendix A Data and transformations

The column Tcode denotes the following data transformation for a series x: (1) no

transformation; (2) ∆xt; (3) ∆2xt; (4) log(xt); (5) ∆ log(xt); (6) ∆2 log(xt). The FRED

column gives mnemonics in FRED followed by a short description. The comparable series

description in Global Insight is given in the column GSI:Description.

Table A.1. Output and Income

Series id Tcode Medium Large FRED Description GSI:Description

1 5 X X RPI Real Personal Income PI
2 5 X W875RX1 RPI ex. Transfers PI less transfers
6 5 X X INDPRO IP Index IP: total
7 5 IPFPNSS IP: Final Products and Supplies IP: products
8 5 IPFINAL IP: Final Products IP: final prod
9 5 IPCONGD IP: Consumer Goods IP: cons gds
10 5 IPDCONGD IP: Durable Consumer Goods IP: cons dble
11 5 IPNCONGD IP: Nondurable Consumer Goods IP: cons nondble
12 5 IPBUSEQ IP: Business Equipment IP: bus eqpt
13 5 IPMAT IP: Materials IP: matls
14 5 IPDMAT IP: Durable Materials IP: dble matls
15 5 IPNMAT IP: Nondurable Materials IP: nondble matls
16 5 IPMANSICS IP: Manufacturing IP: mfg
17 5 IPB51222S IP: Residential Utilities IP: res util
18 5 IPFUELS IP: Fuels IP: fuels
19 1 X NAPMPI ISM Manufacturing: Production NAPM prodn
20 1 CAPUTLB00004S Capacity Utilization: Manufacturing Cap util
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Table A.2. Labor Market

Series id Tcode Medium Large FRED Description GSI:Description

21 1 X X HWI Help-Wanted Index for US Help wanted indx
22 1 X HWIURATIO Help Wanted to Unemployed ratio Help wanted/unemp
23 5 X CLF16OV Civilian Labor Force Emp CPS total
24 5 CE16OV Civilian Employment Emp CPS nonag
25 2 X X UNRATE Civilian Unemployment Rate U: all
26 1 UEMPMEAN Average Duration of Unemployment U: mean duration
27 5 UEMPLT5 Civilians Unemployed ≤ 5 Weeks U ≤ 5 wks
28 5 UEMP5TO14 Civilians Unemployed 5-14 Weeks U 5-14 wks
29 5 UEMP15OV Civilians Unemployed > 15 Weeks U > 15 wks
30 5 UEMP15T26 Civilians Unemployed 15-26 Weeks U 15-26 wks
31 5 UEMP27OV Civilians Unemployed > 27 Weeks U > 27 wks
32 5 CLAIMSx Initial Claims UI claims
33 5 X X PAYEMS All Employees: Total nonfarm Emp: total
34 5 USGOOD All Employees: Goods-Producing Emp: gds prod
35 5 CES1021000001 All Employees: Mining and Logging Emp: mining
36 5 USCONS All Employees: Construction Emp: const
37 5 MANEMP All Employees: Manufacturing Emp: mfg
38 5 DMANEMP All Employees: Durable goods Emp: dble gds
39 5 NDMANEMP All Employees: Nondurable goods Emp: nondbles
40 5 SRVPRD All Employees: Service Industries Emp: services
41 5 USTPU All Employees: TT&U Emp: TTU
42 5 USWTRADE All Employees: Wholesale Trade Emp: wholesale
43 5 USTRADE All Employees: Retail Trade Emp: retail
44 5 USFIRE All Employees: Financial Activities Emp: FIRE
45 5 USGOVT All Employees: Government Emp: Govt
46 1 X CES0600000007 Hours: Goods-Producing Avg hrs
47 1 AWOTMAN Overtime Hours: Manufacturing Overtime: mfg
48 1 AWHMAN Hours: Manufacturing Avg hrs: mfg
49 1 NAPMEI ISM Manufacturing: Employment NAPM empl
128 5 CES0600000008 Ave. Hourly Earnings: Goods AHE: goods
129 5 CES2000000008 Ave. Hourly Earnings: Construction AHE: const
130 5 CES3000000008 Ave. Hourly Earnings: Manufacturing AHE: mfg

Table A.3. Housing

Series id Tcode Medium Large FRED Description GSI:Description

50 4 X HOUST Starts: Total Starts: nonfarm
51 4 HOUSTNE Starts: Northeast Starts: NE
52 4 HOUSTMW Starts: Midwest Starts: MW
53 4 HOUSTS Starts: South Starts: South
54 4 HOUSTW Starts: West Starts: West
55 4 X PERMIT Permits BP: total
56 4 PERMITNE Permits: Northeast BP: NE
57 4 PERMITMW Permits: Midwest BP: MW
58 4 PERMITS Permits: South BP: South
59 4 PERMITW Permits: West BP: West
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Table A.4. Consumption, Orders and Inventories

Series id Tcode Medium Large FRED Description GSI:Description

3 5 X DPCERA3M086SBEA Real PCE Real Consumption
4 5 X CMRMTSPLx Real M&T Sales M&T sales
5 5 X RETAILx Retail and Food Services Sales Retail sales
60 1 X NAPM ISM: PMI Composite Index PMI
61 1 X NAPMNOI ISM: New Orders Index NAPM new ordrs
62 1 X NAPMSDI ISM: Supplier Deliveries Index NAPM vendor del
63 1 X NAPMII ISM: Inventories Index NAPM Invent
65 5 AMDMNOx Orders: Durable Goods Orders: dble gds
67 5 AMDMUOx Unfilled Orders: Durable Goods Unf orders: dble
68 5 BUSINVx Total Business Inventories M&T invent
69 1 ISRATIOx Inventories to Sales Ratio M&T invent/sales

Table A.5. Money and Credit

Series id Tcode Medium Large FRED Description GSI:Description

70 5 X X M1SL M1 Money Stock M1
71 5 X M2SL M2 Money Stock M2
73 5 X M2REAL Real M2 Money Stock M2 (real)
74 5 X AMBSL St. Louis Adjusted Monetary Base MB
75 5 X TOTRESNS Total Reserves Reserves tot
77 5 X X BUSLOANS Commercial and Industrial Loans C&I loan plus
78 5 REALLN Real Estate Loans DC&I loans
79 5 X NONREVSL Total Nonrevolving Credit Cons credit
80 1 X CONSPI Credit to PI ratio Inst cred/PI
132 5 MZMSL MZM Money Stock N.A.
133 5 DTCOLNVHFNM Consumer Motor Vehicle Loans N.A.
134 5 DTCTHFNM Total Consumer Loans and Leases N.A.
135 5 X INVEST Securities in Bank Credit N.A.

Table A.6. Interest rates and Exchange rates

Series id Tcode Medium Large FRED Description GSI:Description

85 2 X X FEDFUNDS Effective Federal Funds Rate Fed Funds
86 2 X CP3M 3-Month AA Comm. Paper Rate Comm paper
87 2 X TB3MS 3-Month T-bill 3 mo T-bill
88 2 X TB6MS 6-Month T-bill 6 mo T-bill
89 2 X GS1 1-Year T-bond 1 yr T-bond
90 2 X GS5 5-Year T-bond 5 yr T-bond
91 2 X X GS10 10-Year T-bond 10 yr T-bond
92 2 X AAA Aaa Corporate Bond Yield Aaa bond
93 2 X BAA Baa Corporate Bond Yield Baa bond
94 1 COMPAPFF CP - FFR spread CP-FF spread
95 1 TB3SMFFM 3 Mo. - FFR spread 3 mo-FF spread
96 1 TB6SMFFM 6 Mo. - FFR spread 6 mo-FF spread
97 1 T1YFFM 1 yr. - FFR spread 1 yr-FF spread
98 1 T5YFFM 5 yr. - FFR spread 5 yr-FF spread
99 1 X T10YFFM 10 yr. - FFR spread 10 yr-FF spread
100 1 AAAFFM Aaa - FFR spread Aaa-FF spread
101 1 BAAFFM Baa - FFR spread Baa-FF spread
103 5 X EXSZUS Switzerland / U.S. FX Rate Ex rate: Switz
104 5 X EXJPUS Japan / U.S. FX Rate Ex rate: Japan
105 5 X X EXUSUK U.S. / U.K. FX Rate Ex rate: UK
106 5 X EXCAUS Canada / U.S. FX Rate EX rate: Canada
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Table A.7. Prices

Series id Tcode Medium Large FRED Description GSI:Description

107 5 X X PPIFGS PPI: Finished Goods PPI: fin gds
108 5 X PPIFCG PPI: Finished Consumer Goods PPI: cons gds
109 5 X PPIITM PPI: Intermediate Materials PPI: int materials
110 5 X PPICRM PPI: Crude Materials PPI: crude materials
111 5 X oilprice Crude Oil Prices: WTI Spot market price
112 5 PPICMM PPI: Commodities PPI: nonferrous
113 1 NAPMPRI ISM Manufacturing: Prices NAPM com price
114 5 X X CPIAUCSL CPI: All Items CPI-U: all
115 5 CPIAPPSL CPI: Apparel CPI-U: apparel
116 5 CPITRNSL CPI: Transportation CPI-U: transp
117 5 CPIMEDSL CPI: Medical Care CPI-U: medical
118 5 CUSR0000SAC CPI: Commodities CPI-U: comm.
119 5 CUUR0000SAD CPI: Durables CPI-U: dbles
120 5 CUSR0000SAS CPI: Services CPI-U: services
121 5 CPIULFSL CPI: All Items Less Food CPI-U: ex food
122 5 CUUR0000SA0L2 CPI: All items less shelter CPI-U: ex shelter
123 5 CUSR0000SA0L5 CPI: All items less medical care CPI-U: ex med
124 5 PCEPI PCE: Chain-type Price Index PCE defl
125 5 DDURRG3M086SBEA PCE: Durable goods PCE defl: dlbes
126 5 DNDGRG3M086SBEA PCE: Nondurable goods PCE defl: nondble
127 5 DSERRG3M086SBEA PCE: Services PCE defl: service

Table A.8. Stock Market

Series id Tcode Medium Large FRED Description GSI:Description

81 5 X X S&P 500 S&P: Composite S&P 500
82 5 X S&P: indust S&P: Industrials S&P: indust
83 1 X S&P div yield S&P: Dividend Yield S&P div yield
84 5 X S&P PE ratio S&P: Price-Earnings Ratio S&P PE ratio
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Appendix B Cumulative sums of squared forecast error and
log predictive likelihood differentials for
individual series

Figure B.1. Cumulative sum of squared forecast error differentials, Medium VAR, h = 1

1987 1992 1997 2002 2007 2012
-1

0

1

2

C
S

S
F

E
D

PAYEMS h=1

DFM FAVAR BVAR BCVAR BCVAR
c

BCVAR
tvp

1987 1992 1997 2002 2007 2012
-4

-2

0

2

C
S

S
F

E
D

CPIAUCSL h=1

1987 1992 1997 2002 2007 2012
-20

-10

0

10

C
S

S
F

E
D

FEDFUNDS h=1

1987 1992 1997 2002 2007 2012
-10

0

10

20

30

C
S

S
F

E
D

INDPRO h=1

1987 1992 1997 2002 2007 2012
-1

0

1

2

C
S

S
F

E
D

UNRATE h=1

1987 1992 1997 2002 2007 2012
-5

0

5

10

C
S

S
F

E
D

PPIFGS h=1

1987 1992 1997 2002 2007 2012
-4

-2

0

2

C
S

S
F

E
D

GS10 h=1

This figure plots the cumulative sum of squared forecast errors generated by the AR(1) model minus the
cumulative sum of squared forecast errors generated by model i for a Medium size VAR and forecast horizon
h = 1,

CSSEDijht =

t∑
τ=t

(
e2bcmk,j,τ+h − e2i,j,τ+h

)
where t = t, ..., t−h. Values above zero indicate that model i generates better performance than the benchmark,
while negative values suggest the opposite. i ∈ {DFM,FAV AR,BV AR,BCV AR,BCV ARc, BCV ARtvp},
j ∈ {PAY EMS,CPIAUCSL, FEDFUNDS, INDPRO,UNRATE,PPIFGS,GS10}, t and t denote the
start and end of the out-of-sample period. All forecasts are generated out-of-sample using recursive estimates
of the models, with the out of sample period starting in 1987:07 and ending in 2014:12. Each panel displays
results for a different series.
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Figure B.2. Cumulative sum of squared forecast error differentials, Large VAR, h = 1
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This figure plots the cumulative sum of squared forecast errors generated by the AR(1) model minus the
cumulative sum of squared forecast errors generated by model i for a Large size VAR and forecast horizon
h = 1. i ∈ {DFM,FAV AR,BV AR,BCV AR,BCV ARc, BCV ARtvp}. See notes to Figure B.1 for additional
details.
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Figure B.3. Cumulative sum of squared forecast error differentials, Huge VAR, h = 1
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This figure plots the cumulative sum of squared forecast errors generated by the AR(1) model minus the
cumulative sum of squared forecast errors generated by model i for a Huge size VAR and forecast horizon
h = 1. i ∈ {DFM,FAV AR,BV AR,BCV AR,BCV ARc, BCV ARtvp}. See notes to Figure B.1 for additional
details.
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Figure B.4. Cumulative sum of squared forecast error differentials, Medium VAR, h = 12
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This figure plots the cumulative sum of squared forecast errors generated by the AR(1) model minus the
cumulative sum of squared forecast errors generated by model i for a Medium size VAR and forecast horizon
h = 12. i ∈ {DFM,FAV AR,BV AR,BCV AR,BCV ARc, BCV ARtvp}. See notes to Figure B.1 for additional
details.
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Figure B.5. Cumulative sum of squared forecast error differentials, Large VAR, h = 12
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This figure plots the cumulative sum of squared forecast errors generated by the AR(1) model minus the
cumulative sum of squared forecast errors generated by model i for a Large size VAR and forecast horizon
h = 12. i ∈ {DFM,FAV AR,BV AR,BCV AR,BCV ARc, BCV ARtvp}. See notes to Figure B.1 for additional
details.
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Figure B.6. Cumulative sum of squared forecast error differentials, Huge VAR, h = 12
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This figure plots the cumulative sum of squared forecast errors generated by the AR(1) model minus the
cumulative sum of squared forecast errors generated by model i for a Huge size VAR and forecast horizon
h = 12. i ∈ {DFM,FAV AR,BV AR,BCV AR,BCV ARc, BCV ARtvp}. See notes to Figure B.1 for additional
details.
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Figure B.7. Cumulative sum of log predictive likelihood differentials, Medium VAR, h = 1
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This figure plots the cumulative sum of log predictive likelihoods generated by model i minus the cumulative
sum of log predictive likelihoods generated by the AR(1) model for a Medium size VAR and forecast horizon
h = 1,

CLPLDijht =

t∑
τ=t

(LPLi,j,τ+h − LPLbcmk,j,τ+h)

where t = t, ..., t−h. Values above zero indicate that model i generates better performance than the benchmark,
while negative values suggest the opposite. i ∈ {DFM,FAV AR,BV AR,BCV AR,BCV ARc, BCV ARtvp},
j ∈ {PAY EMS,CPIAUCSL, FEDFUNDS, INDPRO,UNRATE,PPIFGS,GS10}, t and t denote the
start and end of the out-of-sample period. All forecasts are generated out-of-sample using recursive estimates
of the models, with the out of sample period starting in 1987:07 and ending in 2014:12. Each panel displays
results for a different series.
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Figure B.8. Cumulative sum of log predictive likelihood differentials, Large VAR, h = 1
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This figure plots the cumulative sum of log predictive likelihoods generated by model i minus the cumulative
sum of log predictive likelihoods generated by the AR(1) model for a Large size VAR and forecast horizon
h = 1. i ∈ {DFM,FAV AR,BV AR,BCV AR,BCV ARc, BCV ARtvp}. See notes to Figure B.7 for additional
details.
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Figure B.9. Cumulative sum of log predictive likelihood differentials, Huge VAR, h = 1
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This figure plots the cumulative sum of log predictive likelihoods generated by model i minus the cumulative
sum of log predictive likelihoods generated by the AR(1) model for a Huge size VAR and forecast horizon
h = 1. i ∈ {DFM,FAV AR,BV AR,BCV AR,BCV ARc, BCV ARtvp}. See notes to Figure B.7 for additional
details.
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Figure B.10. Cumulative sum of log predictive likelihood differentials, Medium VAR, h = 12
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This figure plots the cumulative sum of log predictive likelihoods generated by model i minus the cumulative
sum of log predictive likelihoods generated by the AR(1) model for a Medium size VAR and forecast horizon
h = 12. i ∈ {DFM,FAV AR,BV AR,BCV AR,BCV ARc, BCV ARtvp}. See notes to Figure B.7 for additional
details.
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Figure B.11. Cumulative sum of log predictive likelihood differentials, Large VAR, h = 12
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This figure plots the cumulative sum of log predictive likelihoods generated by model i minus the cumulative
sum of log predictive likelihoods generated by the AR(1) model for a Large size VAR and forecast horizon
h = 12. i ∈ {DFM,FAV AR,BV AR,BCV AR,BCV ARc, BCV ARtvp}. See notes to Figure B.7 for additional
details.
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Figure B.12. Cumulative sum of log predictive likelihood differentials, Huge VAR, h = 12
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This figure plots the cumulative sum of log predictive likelihoods generated by model i minus the cumulative
sum of log predictive likelihoods generated by the AR(1) model for a Huge size VAR and forecast horizon h = 12.
i ∈ {DFM,FAV AR,BV AR,BCV AR,BCV ARc, BCV ARtvp}. See notes to Figure B.7 for additional details.
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