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Does the variability of inflation increase when the level of inflation 
increases? 
 
 
Old Question: 
 
Okun (1971), Friedman (1977), Logue and Willett (1976), Fischer (1981), 
Taylor (1981),  Engle (1983), … Devereux (1989), Ball (1992), … Garcia 
and Perron (1996) …  
 
 
Issues:  
 
(i) What variability?  (Anticipated/Unanticipated, Long-run/Short-run, 

etc.) 
 
(ii) What variation in level?  (Cross-section, time-series, etc.) 
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Ball and Cecchetti (BPEA 1990) "Inflation and Uncertainty at Short and 
Long Horizons" … 
 

 
 

 
 
Their findings:  
 
• US:  β1 > 0, δ1 ≈ 0 
• Different for some other countries 

 
 
Our contribution: Revisit, augmenting their analysis with (a) more data 
and (b) improved filtering tools. 

 Laurence Ball and Stephen G. Cecchetti 225

 uncertainty at any horizon is proportional to the variance of the inno-

 vation. (If, for example, inflation is a random walk, then the x-period-

 ahead forecast variance equals x times the variance of the innovation.)

 To the extent that the level of inflation affects the variance of innovations,

 it has the same proportional effect on uncertainty at all horizons.

 To allow different inflation-uncertainty relations at different horizons,
 we consider a model with more than one kind of innovation to inflation.

 Specifically, we assume that there are both permanent and temporary

 shocks. For simplicity, we study a univariate model (below we experi-
 ment with a multivariate approach). Our basic model is

 (1) Xt= *t + 6t

 (2) *.= *.- 1 + et,

 where the temporary and permanent shocks, t and E, respectively, are
 uncorrelated white noise. Equations 1-2 are a simple "unobserved

 components" model. The variable 'rT is actual inflation, and fr,is "core"

 or "trend" inflation, which is not directly observable. Trend inflation

 follows a random walk, and actual inflation equals trend inflation plus
 white noise.

 This framework captures the broad kinds of inflation movements in

 the United States and similar economies. The permanent shock Et
 captures events that change trend inflation. A negative >, occurs, for

 example, when the Federal Reserve creates a recession to disinflate. A

 positive E, occurs if, in accommodating a supply shock, the Federal

 Reserve allows trend inflation to rise. The shock t captures events that
 affect inflation temporarily but do not affect the trend, such as supply

 shocks that are not accommodated, fluctuations in velocity, and bad
 weather.

 Two features of our specification deserve discussion. First, since $T,

 follows a random walk, inflation is nonstationary. That is, there are
 events that permanently shift trend inflation, with no tendency for

 inflation to revert to a constant mean. Barsky finds that U.S. inflation
 has followed a nonstationary process since 1960, and statistical tests

 reported below fail to reject nonstationarity for most countries in our

 sample. 14 Further, informal inspection of inflation time series suggests
 regimes with different trend inflation rather than fluctuations around a

 14. Barsky (1987).
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 (10) o2 (t) = po + 3 It- ;

 (11) CoE(t) = Io ? 8rft-l

 This paper's basic hypothesis is that trend inflation has a stronger effect

 on cr than on a,,. In terms of the equivalent IMA(1, 1) model, a high trend
 makes changes in inflation more persistent. A strong effect of trend

 inflation on Cr means that the trend is less stable when it is high-as
 suggested by Okun and Ball, high inflation makes the Federal Reserve

 more likely to disinflate or to allow inflation to rise further. A weak effect

 on a,, means that high inflation does not greatly increase monetary
 control errors, fluctuations in money demand, or other sources of
 temporary movements in inflation.

 If our hypothesis is true, then it explains our preliminary finding that

 inflation has larger effects on uncertainty at longer horizons. To see this,

 substitute equations 10 and 11 into equation 9 to compute uncertainty
 about inflation conditional on the current trend:

 (12) E[('rrt+x - frt)2[$t] =x(PO + P3*ft) + (80 + 81 rft)

 (The variances of future shocks conditional on *,rt are the same as the
 variances of current shocks, because the best forecast of future *a's is
 the current *a.) The effect of an increase in *,r is given by

 (13) = -frt) I*r] - Xp + 81.
 ditr

 If PI is large and 81 is small-*, has a larger effect on the variance of
 permanent shocks-then *,r has a much larger effect on uncertainty at
 long horizons.

 Main Results

 Here we present our main empirical findings. We estimate our
 statistical model and examine the relations between the level of inflation

 and the variances of the two shocks. We estimate these relations both

 across countries and over time, and we consider both moderate- and

 high-inflation countries.
 In principle, one could estimate our model with a time series for one

 country and allow the variances to change over time according to
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Framework: Univariate UCSV model (with outlier adjustment: SW(2015)) 
 
πt = τt +  εt  
 
τt = τt-1 + σΔτ,t  × ητ,t 

 
εt = σε,t × st × ηε,t 
 
Δln(  σε ,t

2 ) = γενε,t 
 
Δln(  σ Δτ ,t

2 ) = γΔτνΔτ,t 
 
(ηε, ητ, νε, νΔτ) are iidN(0, I4) 
 
st = i.i.d. multinomial with values 1, 5, 10  

and probability 0.975, 1/60, and 1/120 
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US Inflation 
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UCSV model with regressors in volatility process 
 
πt = τt +  εt  
 
τt = τt-1 + σΔτ,t  × ητ,t 

 
εt = σε,t × st × ηε,t 
 
ln(  σε ,t

2 ) = xt'δ  + ξε,t        with  Δξε,t =  γενε,t 
 
ln(  σ Δτ ,t

2 ) = xt'β  + ξΔτ,t      with  ΔξΔτ,t = γΔτνΔτ,t 
 
(ηε, ητ, νε, νΔτ) are iidN(0, I4) 
 
 
xt = τt −1   (Ball-Cecchetti:  β > 0,  δ ≈ 0 ?) 
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Implications for forecasting: 
 
πt+h  = (τt+h  − τt)  +  τt|t  + (τt  − τt|t)  + εt+h 
 

τt+h  − τt = 
  

σ Δτ ,t+iητ ,t+i
i=1

h

∑  

 
ln(  σ Δτ ,t

2 ) = xt'β  + ξΔτ,t      with  ΔξΔτ,t = γΔτνΔτ,t 
 
(ητ,t, νΔτ,t ) ~ iidN(0,I2) 
 
 
Three cases  
     (i)   γΔτ = β  = 0 
     (ii)  γΔτ > 0,  β  = 0 
     (iii) γΔτ , β  > 0 
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Illustrative Predictive Densities 
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Illustrative Predictive Densities 
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Illustrative Predictive Densities 
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Some empirical results 
 

ln(  σε ,t
2 ) = xt'δ  + ξε,t        with  Δξε,t =  γενε,t 

 
ln(  σ Δτ ,t

2 ) = xt'β  + ξΔτ,t      with  ΔξΔτ,t = γΔτνΔτ,t 
 

(We'll set δ = 0 for the preliminary results presented here) 
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ln(  σ Δτ ,t

2 ) = xt'β  + ξΔτ,t      with  ΔξΔτ,t = γΔτνΔτ,t 
 

xt = τt −1 
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UCSV and β ≠ 0 
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UCSV and β ≠ 0 
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Alternative Regressors 
 

ln(  σ Δτ ,t
2 ) = xt'β  + ξΔτ,t    with  ΔξΔτ,t = γΔτνΔτ,t 

 
xt = (τt −1 + τt −2 + ... + τt −h)/h 

 
so Δln(  σ Δτ ,t

2 ) = β (τt −1 −τt −h-1)/h  + γΔτνΔτ,t 
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Posteriors for β with different values of h  
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Model Selection 
 

Consider n models: 
 
Common features:  

πt = τt +  εt  
τt = τt-1 + σΔτ,t  × ητ,t 

εt = σε,t × st × ηε,t 

Δln(  σε ,t
2 ) = γενε,t 

 
Differences: 
 
    Model i (Mi):       ln(  σ Δτ ,t

2 ) = xi,t'β i + ξΔτ,t   with  ΔξΔτ,t = γΔτνΔτ,t 
     
 
Let Y =   π t{ }t=1

T
.  We want to calculate P(Mi|Y) for i = 1, … , n. 
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Let Z = 
  
τ t ,ln(σ Δτ ,t

2 ){ }
t=1

T
 and  Y =   π t{ }t=1

T
 

 
Note: 
 
(1) P(Mi|Y) = ∫P(Mi|Y,Z) f(Z|Y) dZ   
 
(2)  P(Mi|Y,Z) = P(Mi|Z)   

(3)  f(Z|Y) = 
	  

f (Z |Y , M j )P( M j |Y )
j=1

n

∑   

 
 

Thus:    

	  

P( Mi |Y ) = P( Mi | Z ) f (Z |Y , M j )dZ∫⎡⎣ ⎤
⎦P( M j |Y )

j=1

n

∑

= aij P( M j |Y )
j=1

n

∑ ,  where aij = E P( Mi | Z ) |Y , M j
⎡⎣ ⎤⎦
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Stacking:  P(M | Y) = A P(M | Y) 
 
so P(M | Y) is an eigenvector of A corresponding to a unit eigenvalue. 
 
 
Estimation: 
 

	   
aij
! = 1

nj

P( Mi | Zk )
k=1

nj

∑   with  Zk ~ f(Z | Y, Mj)  
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Model probabilities:  xt = xt = (τt −1 + τt −2 + ... + τt −h)/h  
 

P(Mh | Y) 
1 2 3 4 

0.13 0.20 0.32 0.35 
 
 
 
Compare model Mh (with h = 4) to UCSV model 
 

P(M4 | Y) P(UCSV | Y) 
0.74 0.26 
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Implications for forecasting: 
 
πt+h  = (τt+h  − τt)  +  τt|t  + (τt  − τt|t)  + εt+h 

τt+h  − τt = 
  

σ Δτ ,t+iητ ,t+i
i=1

h

∑  

ln(  σ Δτ ,t
2 ) = xt'β  + ξΔτ,t      with  ΔξΔτ,t = γΔτνΔτ,t 

 
(ητ,t, νΔτ,t ) ~ iidN(0,I2) 
 
 
Three Five cases  
     (i)   γΔτ = β  = 0 
     (ii)  γΔτ > 0,  β  = 0  (Posterior Median from UVSCO) 
     (iii) γΔτ , β  > 0        (Posterior Median from h = 4 model) 
     (iv)-(v)  Same as (ii) and (iii) but with parameter uncertainty,  
     [σε,T, σΔτ,T, γε, γΔτ, β]. 
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     (ii)  γΔτ > 0,  β  = 0  (Posterior Median from UVSCO) 
     (iii) γΔτ , β  > 0        (Posterior Median from h = 4 model) 
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(iv)-(v)  Same as (ii) and (iii) but with parameter uncertainty,  
     [σε,T, σΔτ,T, γε, γΔτ, β]. 
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A quick tour of Germany, Italy, and Sweden 
 

(Data 1960 – 2014) 
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Germany 
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Germany 
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Germany 
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Italy 
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Italy 
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Italy 
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Sweden 
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Sweden 
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Sweden 
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Ball and Cecchetti (BPEA 1990) "Inflation and Uncertainty at Short and 
Long Horizons" … 
 

 
 

 
 
Their findings:  
 
• US:  β1 > 0, δ1 ≈ 0 
• Different for some other countries 

 
 
Our contribution (in progress): Revisit, augmenting their analysis with (a) 
more data and (b) improved filtering tools. 

 Laurence Ball and Stephen G. Cecchetti 225

 uncertainty at any horizon is proportional to the variance of the inno-

 vation. (If, for example, inflation is a random walk, then the x-period-

 ahead forecast variance equals x times the variance of the innovation.)

 To the extent that the level of inflation affects the variance of innovations,

 it has the same proportional effect on uncertainty at all horizons.

 To allow different inflation-uncertainty relations at different horizons,
 we consider a model with more than one kind of innovation to inflation.

 Specifically, we assume that there are both permanent and temporary

 shocks. For simplicity, we study a univariate model (below we experi-
 ment with a multivariate approach). Our basic model is

 (1) Xt= *t + 6t

 (2) *.= *.- 1 + et,

 where the temporary and permanent shocks, t and E, respectively, are
 uncorrelated white noise. Equations 1-2 are a simple "unobserved

 components" model. The variable 'rT is actual inflation, and fr,is "core"

 or "trend" inflation, which is not directly observable. Trend inflation

 follows a random walk, and actual inflation equals trend inflation plus
 white noise.

 This framework captures the broad kinds of inflation movements in

 the United States and similar economies. The permanent shock Et
 captures events that change trend inflation. A negative >, occurs, for

 example, when the Federal Reserve creates a recession to disinflate. A

 positive E, occurs if, in accommodating a supply shock, the Federal

 Reserve allows trend inflation to rise. The shock t captures events that
 affect inflation temporarily but do not affect the trend, such as supply

 shocks that are not accommodated, fluctuations in velocity, and bad
 weather.

 Two features of our specification deserve discussion. First, since $T,

 follows a random walk, inflation is nonstationary. That is, there are
 events that permanently shift trend inflation, with no tendency for

 inflation to revert to a constant mean. Barsky finds that U.S. inflation
 has followed a nonstationary process since 1960, and statistical tests

 reported below fail to reject nonstationarity for most countries in our

 sample. 14 Further, informal inspection of inflation time series suggests
 regimes with different trend inflation rather than fluctuations around a

 14. Barsky (1987).
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 (10) o2 (t) = po + 3 It- ;

 (11) CoE(t) = Io ? 8rft-l

 This paper's basic hypothesis is that trend inflation has a stronger effect

 on cr than on a,,. In terms of the equivalent IMA(1, 1) model, a high trend
 makes changes in inflation more persistent. A strong effect of trend

 inflation on Cr means that the trend is less stable when it is high-as
 suggested by Okun and Ball, high inflation makes the Federal Reserve

 more likely to disinflate or to allow inflation to rise further. A weak effect

 on a,, means that high inflation does not greatly increase monetary
 control errors, fluctuations in money demand, or other sources of
 temporary movements in inflation.

 If our hypothesis is true, then it explains our preliminary finding that

 inflation has larger effects on uncertainty at longer horizons. To see this,

 substitute equations 10 and 11 into equation 9 to compute uncertainty
 about inflation conditional on the current trend:

 (12) E[('rrt+x - frt)2[$t] =x(PO + P3*ft) + (80 + 81 rft)

 (The variances of future shocks conditional on *,rt are the same as the
 variances of current shocks, because the best forecast of future *a's is
 the current *a.) The effect of an increase in *,r is given by

 (13) = -frt) I*r] - Xp + 81.
 ditr

 If PI is large and 81 is small-*, has a larger effect on the variance of
 permanent shocks-then *,r has a much larger effect on uncertainty at
 long horizons.

 Main Results

 Here we present our main empirical findings. We estimate our
 statistical model and examine the relations between the level of inflation

 and the variances of the two shocks. We estimate these relations both

 across countries and over time, and we consider both moderate- and

 high-inflation countries.
 In principle, one could estimate our model with a time series for one

 country and allow the variances to change over time according to
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