Inflation Variability and the Level of Inflation

Paul Ho and Mark Watson Princeton University

- Work-in-Progress -

9th ECB Workshop on Forecasting Techniques

June 3 2016

1

Does the variability of inflation increase when the level of inflation increases?

Old Question:

Okun (1971), Friedman (1977), Logue and Willett (1976), Fischer (1981), Taylor (1981), Engle (1983), ... Devereux (1989), Ball (1992), ... Garcia and Perron (1996) ...

Issues:

(i) What variability? (Anticipated/Unanticipated, Long-run/Short-run, etc.)

(ii) What variation in level? (Cross-section, time-series, etc.)

Ball and Cecchetti (BPEA 1990) "Inflation and Uncertainty at Short and Long Horizons" ...

(1)
$$\pi_t = \hat{\pi}_t + \eta_t,$$

(2)
$$\hat{\pi}_t = \hat{\pi}_{t-1} + \boldsymbol{\epsilon}_t,$$

(10)
$$\sigma_{\epsilon}^{2}(t) = \beta_{0} + \beta_{1} \hat{\pi}_{t-1};$$

(11)
$$\sigma_{\eta}^{2}(t) = \delta_{0} + \delta_{1} \hat{\pi}_{t-1}.$$

Their findings:

- US: $\beta_1 > 0, \ \delta_1 \approx 0$
- Different for some other countries

Our contribution: Revisit, augmenting their analysis with (a) more data and (b) improved filtering tools.

Framework: Univariate UCSV model (with outlier adjustment: SW(2015))

$$\pi_{t} = \tau_{t} + \varepsilon_{t}$$

$$\tau_{t} = \tau_{t-1} + \sigma_{\Delta\tau,t} \times \eta_{\tau,t}$$

$$\varepsilon_{t} = \sigma_{\varepsilon,t} \times s_{t} \times \eta_{\varepsilon,t}$$

$$\Delta \ln(\sigma_{\varepsilon,t}^{2}) = \gamma_{\varepsilon} v_{\varepsilon,t}$$

$$\Delta \ln(\sigma_{\Delta\tau,t}^{2}) = \gamma_{\Delta\tau} v_{\Delta\tau,t}$$

$$(\eta_{\varepsilon}, \eta_{\tau}, v_{\varepsilon}, v_{\Delta\tau}) \text{ are iidN}(0, I_{4})$$

 s_t = i.i.d. multinomial with values 1, 5, 10 and probability 0.975, 1/60, and 1/120

US Inflation

UCSV model with regressors in volatility process

$$\pi_{t} = \tau_{t} + \varepsilon_{t}$$

$$\tau_{t} = \tau_{t-1} + \sigma_{\Delta\tau,t} \times \eta_{\tau,t}$$

$$\varepsilon_{t} = \sigma_{\varepsilon,t} \times s_{t} \times \eta_{\varepsilon,t}$$

$$\ln(\sigma_{\varepsilon,t}^{2}) = x_{t}'\boldsymbol{\delta} + \boldsymbol{\xi}_{\varepsilon,t} \quad \text{with } \Delta\boldsymbol{\xi}_{\varepsilon,t} = \gamma_{\varepsilon}v_{\varepsilon,t}$$

$$\ln(\sigma_{\Delta\tau,t}^{2}) = x_{t}'\boldsymbol{\beta} + \boldsymbol{\xi}_{\Delta\tau,t} \quad \text{with } \Delta\boldsymbol{\xi}_{\Delta\tau,t} = \gamma_{\Delta\tau}v_{\Delta\tau,t}$$

$$(\eta_{\varepsilon}, \eta_{\tau}, v_{\varepsilon}, v_{\Delta\tau}) \text{ are iidN}(0, I_{4})$$

 $x_t = \tau_{t-1}$ (Ball-Cecchetti: $\beta > 0, \ \delta \approx 0$?)

Implications for forecasting:

$$\pi_{t+h} = (au_{t+h} - au_t) + au_{t|t} + (au_t - au_{t|t}) + au_{t+h}$$

$$\tau_{t+h} - \tau_t = \sum_{i=1}^h \sigma_{\Delta \tau, t+i} \eta_{\tau, t+i}$$

$$\ln(\sigma_{\Delta\tau,t}^2) = x_t' \boldsymbol{\beta} + \xi_{\Delta\tau,t} \quad \text{with } \Delta\xi_{\Delta\tau,t} = \gamma_{\Delta\tau} v_{\Delta\tau,t}$$

$$(\eta_{\tau,t}, v_{\Delta\tau,t}) \sim \operatorname{iidN}(0, I_2)$$

Three cases

(i)
$$\gamma_{\Delta\tau} = \beta = 0$$

(ii) $\gamma_{\Delta\tau} > 0, \ \beta = 0$
(iii) $\gamma_{\Delta\tau}, \ \beta > 0$

Illustrative Predictive Densities

Illustrative Predictive Densities

Illustrative Predictive Densities

Some empirical results

 $\ln(\sigma_{\varepsilon,t}^2) = x_t' \delta + \xi_{\varepsilon,t} \quad \text{with } \Delta \xi_{\varepsilon,t} = \gamma_{\varepsilon} v_{\varepsilon,t}$

$$\ln(\sigma_{\Delta\tau,t}^2) = x_t' \boldsymbol{\beta} + \boldsymbol{\xi}_{\Delta\tau,t} \quad \text{with } \Delta \boldsymbol{\xi}_{\Delta\tau,t} = \gamma_{\Delta\tau} \boldsymbol{v}_{\Delta\tau,t}$$

(We'll set $\delta = 0$ for the preliminary results presented here)

$$\ln(\sigma_{\Delta\tau,t}^2) = x_t' \boldsymbol{\beta} + \xi_{\Delta\tau,t} \quad \text{with} \quad \Delta\xi_{\Delta\tau,t} = \gamma_{\Delta\tau} v_{\Delta\tau,t}$$

 $x_t = \tau_{t-1}$

UCSV and $\beta \neq 0$

UCSV and $\beta \neq 0$

Alternative Regressors

 $\ln(\sigma_{\Delta\tau,t}^{2}) = x_{t}'\boldsymbol{\beta} + \xi_{\Delta\tau,t} \quad \text{with} \quad \Delta\xi_{\Delta\tau,t} = \gamma_{\Delta\tau} v_{\Delta\tau,t}$ $x_{t} = (\tau_{t-1} + \tau_{t-2} + \dots + \tau_{t-h})/h$ $\text{so } \Delta \ln(\sigma_{\Delta\tau,t}^{2}) = \boldsymbol{\beta} (\tau_{t-1} - \tau_{t-h-1})/h + \gamma_{\Delta\tau} v_{\Delta\tau,t}$

Posteriors for β with different values of h

Model Selection

Consider *n* models:

Common features:

$$\pi_{t} = \tau_{t} + \varepsilon_{t}$$

$$\tau_{t} = \tau_{t-1} + \sigma_{\Delta\tau,t} \times \eta_{\tau,t}$$

$$\varepsilon_{t} = \sigma_{\varepsilon,t} \times s_{t} \times \eta_{\varepsilon,t}$$

$$\Delta \ln(\sigma_{\varepsilon,t}^{2}) = \gamma_{\varepsilon} v_{\varepsilon,t}$$

Differences:

Model *i* (*M_i*):
$$\ln(\sigma_{\Delta\tau,t}^2) = x_{i,t}' \beta_i + \xi_{\Delta\tau,t}$$
 with $\Delta\xi_{\Delta\tau,t} = \gamma_{\Delta\tau} v_{\Delta\tau,t}$

Let $Y = \{\pi_i\}_{i=1}^T$. We want to calculate $P(M_i|Y)$ for i = 1, ..., n.

Let
$$Z = \left\{ \tau_t, \ln(\sigma_{\Delta\tau,t}^2) \right\}_{t=1}^T$$
 and $Y = \left\{ \pi_t \right\}_{t=1}^T$

Note:

(1) $P(M_i|Y) = \int P(M_i|Y,Z) f(Z|Y) dZ$ (2) $P(M_i|Y,Z) = P(M_i|Z)$

(3)
$$f(Z|Y) = \sum_{j=1}^{n} f(Z|Y, M_j) P(M_j|Y)$$

$$P(M_{i} | Y) = \sum_{j=1}^{n} \left[\int P(M_{i} | Z) f(Z | Y, M_{j}) dZ \right] P(M_{j} | Y)$$
$$= \sum_{j=1}^{n} a_{ij} P(M_{j} | Y), \text{ where } a_{ij} = E \left[P(M_{i} | Z) | Y, M_{j} \right]$$

Thus:

Stacking: P(M | Y) = A P(M | Y)

so P(M | Y) is an eigenvector of A corresponding to a unit eigenvalue.

Estimation:

$$\widehat{a_{ij}} = \frac{1}{n_j} \sum_{k=1}^{n_j} P(M_i | Z_k) \text{ with } Z_k \sim f(Z | Y, M_j)$$

Model probabilities: $x_t = x_t = (\tau_{t-1} + \tau_{t-2} + ... + \tau_{t-h})/h$

$P(M_h \mid Y)$				
1	2	3	4	
0.13	0.20	0.32	0.35	

Compare model M_h (with h = 4) to UCSV model

$P(M_4 \mid Y)$	$P(UCSV \mid Y)$	
0.74	0.26	

Implications for forecasting:

$$\pi_{t+h} = (\tau_{t+h} - \tau_t) + \tau_{t|t} + (\tau_t - \tau_{t|t}) + \varepsilon_{t+h}$$

$$\tau_{t+h} - \tau_t = \sum_{i=1}^h \sigma_{\Delta\tau,t+i} \eta_{\tau,t+i}$$

$$\ln(\sigma_{\Delta\tau,t}^2) = x_t' \beta + \xi_{\Delta\tau,t} \quad \text{with} \quad \Delta\xi_{\Delta\tau,t} = \gamma_{\Delta\tau} v_{\Delta\tau,t}$$

 $(\eta_{\tau,t}, v_{\Delta\tau,t}) \sim \operatorname{iidN}(0, I_2)$

Three Five cases

(i)
$$\gamma_{\Delta\tau} = \beta = 0$$

(ii) $\gamma_{\Delta\tau} > 0$, $\beta = 0$ (Posterior Median from UVSCO)
(iii) $\gamma_{\Delta\tau}$, $\beta > 0$ (Posterior Median from $h = 4$ model)
(iv)-(v) Same as (ii) and (iii) but with parameter uncertainty,
 $[\sigma_{\varepsilon T}, \sigma_{\Delta\tau T}, \gamma_{\varepsilon}, \gamma_{\Delta\tau}, \beta]$.

(iv)-(v) Same as (ii) and (iii) but with parameter uncertainty, $[\sigma_{\varepsilon,T}, \sigma_{\Delta\tau,T}, \gamma_{\varepsilon}, \gamma_{\Delta\tau}, \beta].$

A quick tour of Germany, Italy, and Sweden (Data 1960 – 2014)

Germany

Germany

Germany

Italy

Italy

Italy

Sweden

Sweden

Sweden

Ball and Cecchetti (BPEA 1990) "Inflation and Uncertainty at Short and Long Horizons" ...

(1)
$$\pi_t = \hat{\pi}_t + \eta_t,$$

(2)
$$\hat{\pi}_t = \hat{\pi}_{t-1} + \boldsymbol{\epsilon}_t,$$

- (10) $\sigma_{\epsilon}^{2}(t) = \beta_{0} + \beta_{1} \hat{\pi}_{t-1};$
- (11) $\sigma_{\eta}^{2}(t) = \delta_{0} + \delta_{1} \hat{\pi}_{t-1}.$

Their findings:

- US: $\beta_1 > 0, \ \delta_1 \approx 0$
- Different for some other countries

Our contribution (*in progress*): Revisit, augmenting their analysis with (a) more data and (b) improved filtering tools.