Finance and Synchronization

A. Cesa-Bianchi¹ J. Imbs² J. Saleheen³

¹Bank of England & Centre for Macroeconomics ²Paris School of Economics (CNRS), and CEPR ³Bank of England

ECB/BoE/IMF Workshop "Global Spillovers: How Much Do We Really Know?"

ECB - April 26, 2016

ĺ

Disclaimer

The views expressed in this paper are solely those of the authors and should not be taken to represent those of the Bank of England.

This paper

- We revisit a classic question in international macro: what is the impact of financial integration on business cycle synchronization?
- ▶ International synchronization of cycles first-order question
 - Propagation of shocks, external constraint on macro policy, coordination,...
- ▶ Old literature: openness in general main culprit
 - Historically, trade openness [Frankel and Rose (1998); Baxter and Kouparitsas (2005)]

► Recent events shifted the focus on financial openness. Heuristically, it seems financial linkages helped propagate the great recession

But Theory Ambiguous

- ▶ International Real Business Cycle model [Backus, Kehoe, and Kydland (1992, JPE)]
 - Idiosyncratic productivity shock leads to cross-country MPK differential
 - Because of efficient finance, resources shift where MPK is higher ⇒
 Negatively correlated cycles
- ▶ IRBC model with credit frictions and integrated financial markets [Allen and Gale (2000), Devereux and Yetman (2010), Dedola and Lombardo (2010)]
 - Idiosyncratic shock (not necessarily to productivity) affects tightness of the constraint at home
 - Because of financial integration, credit constraints are interdependent across countries ⇒ Positively correlated cycles

▶ Key ingredient is idiosyncratic (ie, country-specific) shock

Common Shocks

- ► Shocks common to two or more countries (but with country-specific loadings) constitute a key driver of business cycles
 - Large role of world and regional factor in developed countries (60% for US, 72% for Canada, 72% for France, 56% for Germany) [Kose, Otrok, and Whiteman (2003, 2008), Crucini, Kose, and Otrok (2011)]
- Empirically important to distinguish country-specific shocks from common shocks with country-specific loadings
- ► We will show this is especially important in the literature on cycle synchronization

This paper: results

- ► Shows that financial linkages lowers synchronization, conditional on common shocks
- ► Shows that financial linkages do not lower synchronization, conditional on idiosyncratic shocks
- Explains theoretically why common shocks can create such a reversal
- Since theory builds from idiosyncratic shocks, evidence suggests credit constraints may be relevant empirically

Plan

- ► Estimation & Data
- ► Results
- ► Conclude

Empirics

Frankel and Rose (1998, EJ), Imbs (2006, JIE):

$$\rho_{ij} = \alpha + \beta K_{ij} + \delta T_{ij} + \eta_{ij,t}$$

where K_{ij} is a measure of bilateral financial linkages, ρ_{ij} Pearson correlation coefficient

- ▶ Results: $\beta > 0$, $\delta > 0 \Rightarrow$ Positively correlated cycles.
- But if the true model is

$$\rho_{ij,t} = \alpha_{ij} + \beta K_{ij,t} + \delta T_{ij,t} + \eta_{ij,t}$$

then the between result is fallacious. Need time series to check. Pearson correlation not adapted (Forbes-Rigobon, 2002)

Empirics (cont'd)

► Giannone, Lenza and Reichlin (2008), Morgan, Rime and Strahan (2004):

$$\begin{aligned} \mathcal{S}_{ij,t} &= -\left|y_{it} - y_{jt}\right| \\ \mathcal{S}_{ij,t}^e &= -\left|e_{it} - e_{jt}\right| & \text{where} & y_{it} = \alpha_i + \gamma_t + e_{it} \end{aligned}$$

► Then can estimate

$$S_{ij,t} = \alpha_{ij} + \gamma_t + \beta \cdot K_{ij,t} + \delta \cdot Z_{ij,t} + \eta_{ij,t}$$

- ▶ Kalemli-Ozcan, Papaioannou and Peydro (2013, JF): 18 OECD countries over 1978-2006 $\beta < 0$ ⇒ Negative correlated cycles
- But common shocks pollute this estimation if they have country-specific loadings

Why common shocks matter

► Suppose true model is:

$$y_{i,t} = a_i^y + b_i^y \mathcal{F}_t^y + \varepsilon_{i,t}^y$$

where \mathcal{F}_t is a vector of common factors

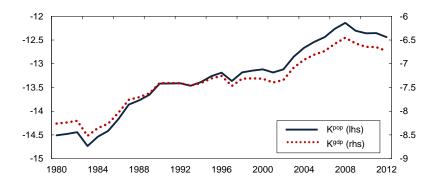
▶ Then S_{ijt} embeds heterogeneous responses to common shocks:

$$S_{ij,t} = -\left|a_i^y - a_j^y + \left(b_i^y - b_j^y\right)\mathcal{F}_t^y + \varepsilon_{i,t}^y - \varepsilon_{j,t}^y\right|$$

▶ True of both $S_{ij,t}$ and $S_{ij,t}^e$.

Data: Sample

- ▶ Data is extension of Kalemli-Ozcan, Papaioannou, Peydro (JF, 2013)
- ▶ KPP data set covers 18 advanced economies
 - Australia, Austria, Belgium, Canada, Switzerland, Germany, Denmark, Spain, Finland, France, UK, Ireland, Italy, Japan, Netherlands, Portugal, Sweden, and US
 - 153 country pairs
- ► Annual data from 1980 to 2012


Banking integration measures

- Virtually non existent time varying measures of international capital but for bank assets and liabilities
- "International Locational Banking Statistics Database" provided by the BIS
 - Asset (A_{ij}) and liability (L_{ij}) of banks located in i (the "reporting area") held in country j (the "vis-a-vis area")
- ► Two measures: normalized by population or by GDP

$$BANKINT1_{ij,t} = \frac{1}{4} \left[\ln \left(\frac{A_{ij,t}}{P_i + P_j} \right) + \ln \left(\frac{L_{ij,t}}{P_i + P_j} \right) + \ln \left(\frac{A_{ji,t}}{P_i + P_j} \right) + \ln \left(\frac{L_{ji,t}}{P_i + P_j} \right) \right]$$

$$BANKINT2_{ij,t} = \frac{1}{4} \left[\ln \left(\frac{A_{ij,t}}{Y_i + Y_j} \right) + \ln \left(\frac{L_{ij,t}}{Y_i + Y_j} \right) + \ln \left(\frac{A_{ji,t}}{Y_i + Y_j} \right) + \ln \left(\frac{L_{ji,t}}{Y_i + Y_j} \right) \right]$$

Banking integration measures

The solid and dotted lines plot the evolution over time of the average value of $K_{ij,t}^{pop}$ and $K_{ij,t}^{gdp}$ for the 1980-2012 period. The average is computed across 153 country pairs (our sample spans 18 countries) for each year.

Synchronization measures we consider

Consider the following measures

$$S_{ij,t} = -\left|a_i^y - a_j^y + \left(b_i^y - b_j^y\right) \mathcal{F}_t^y + \varepsilon_{i,t}^y - \varepsilon_{j,t}^y\right|$$

$$S_{ij,t}^{\mathcal{F}} = -\left|\left(b_i^y - b_j^y\right) \mathcal{F}_t^y\right|$$

$$S_{ij,t}^{\varepsilon} = -\left|\varepsilon_{i,t}^y - \varepsilon_{j,t}^y\right|$$

- ▶ $S_{ij,t}^{\mathcal{F}}$ and $S_{ij,t}^{\varepsilon}$ are the components of $S_{ij,t}$ associated with common and idiosyncratic shocks, respectively
- ▶ Use either measure in conventional panel regression

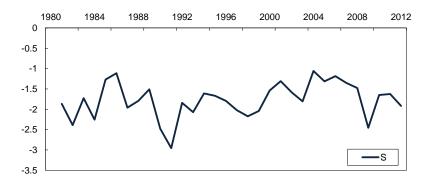
$$S_{ij,t} = \alpha_{ij} + \gamma_t + \beta \cdot K_{ij,t} + \delta \cdot Z_{ij,t} + \eta_{ij,t}$$

OLS between, then OLS within. With or without trade controls.

How to proxy for unobserved common factors?

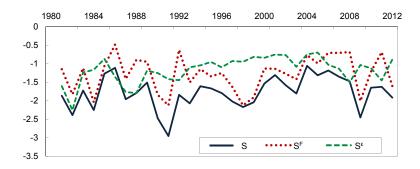
▶ Objective: compute *country-specific* decompositions of the type

$$y_{i,t} = a_i^y + b_{1,i}^y \mathcal{F}_{1,t}^y + \dots + b_{n,i}^y \mathcal{F}_{n,t}^y + \nu_{it}^y,$$


- ▶ Simple methodology: extract the first n principal components (\mathcal{F}^n_t) from the panel (28 years \times 18 countries) of GDP growth rates
- \blacktriangleright How many principal components? Retain principal components as long as their associated eigenvalue is >1

How to proxy for unobserved common factors? Factor estimates

	Eigenvalues			re of ance	Cum. share of variance		
	$y_i t$	$K_{ij,t}$	$\underline{} y_i t$	$K_{ij,t}$	$\underline{} y_i t$	$K_{ij,t}$	
\mathcal{F}_1	10.67	13.15	59%	73%	59%	73%	
\mathcal{F}_2	2.21	2.89	12%	16%	72%	89%	
\mathcal{F}_3	1.02	0.79	6%	4%	77%	93%	
\mathcal{F}_4	0.89	0.66	5%	4%	82%	97%	
\mathcal{F}_5	0.83	0.27	5%	2%	87%	99%	


- ► Compute $S_{ij,t}^{\mathcal{F}}$ using fitted values $\hat{a}_i + \hat{b}_{1,i}^y \hat{\mathcal{F}}_{1,t}^y + \hat{b}_{2,i}^y \hat{\mathcal{F}}_{2,t}^y + \hat{b}_{3,i}^y \hat{\mathcal{F}}_{3,t}^y$
- ▶ Compute $S_{ii,t}^{\varepsilon}$ using residuals ν_{it}^{y}

How do our synchronization measures look like?

The solid line plots the evolution over time of the average value of $\mathcal{S}_{ij,t}$ for the 1980-2012 period. The average is computed across 153 country pairs (our sample spans 18 countries) for each year. The chart also reports the cross-sectional averages of the idiosyncratic component (dashed line) and the common component (dotted line) of $\mathcal{S}_{ij,t}$. \mathcal{F}_t has been proxied by the first 3 principal components on the full panel of GDP growth rates. The averages are computed across 153 country pairs for each year over the 1980-2012 period.

How do our synchronization measures look like?

The solid line plots the evolution over time of the average value of $\mathcal{S}_{ij,t}$ for the 1980-2012 period. The average is computed across 153 country pairs (our sample spans 18 countries) for each year. The chart also reports the cross-sectional averages of the idiosyncratic component (dashed line) and the common component (dotted line) of $\mathcal{S}_{ij,t}$. \mathcal{F}_t has been proxied by the first 3 principal components on the full panel of GDP growth rates. The averages are computed across 153 country pairs for each year over the 1980-2012 period.

Plan

► Estimation & Data

- Results
- ► Conclude

OLS "between" estimates (1980-2012)

	$\mathcal S$	$\mathcal{S}^{\mathcal{F}}$	$\mathcal{S}^{arepsilon}$	$\mathcal S$	$\mathcal{S}^{\mathcal{F}}$	$\mathcal{S}^{arepsilon}$
	(1)	(2)	(3)	(4)	(5)	(6)
${Banking \; / \; Pop. \; \left(K^{pop}\right)}$	0.095 (0.011) [8.70]	0.106 (0.008) [12.85]	0.038 (0.007) [5.43]			
Banking / GDP (K^{gdp})				0.091 (0.010) [9.52]	0.082 (0.007) [11.31]	0.049 (0.006) [7.98]
Observations R^2 Country Pairs	4863 0.092 153	4863 0.176 153	4863 0.121 153	4863 0.095 153	4863 0.170 153	4863 0.127 153

All regression specifications include a vector of year fixed effects. Estimation is performed over the 1980-2012 period.

OLS "within" estimates (1980–2012)

	${\mathcal S}$	$\mathcal{S}^{\mathcal{F}}$	$\mathcal{S}^{\varepsilon}$	${\mathcal S}$	$\mathcal{S}^{\mathcal{F}}$	$\mathcal{S}^{arepsilon}$
	(1)	(2)	(3)	(4)	(5)	(6)
Banking / Pop. (K^{pop})	-0.144 (0.040) [-3.63]	-0.154 (0.030) [-5.05]	0.075 (0.021) [3.54]			
Banking $/$ GDP (K^{gdp})				-0.148 (0.042) [-3.56]	-0.159 (0.032) [-4.98]	0.072 (0.022) [3.28]
Observations R^2 Country Pairs	4863 0.099 153	4863 0.222 153	4863 0.133 153	4863 0.099 153	4863 0.222 153	4863 0.133 153

All regression specifications include a vector of country-pair fixed effects and a vector of year

fixed effects. Estimation is performed over the 1980-2012 period. Standard errors are adjusted for country-pair-level heteroskedasticity and autocorrelation.

OLS "within" estimates with controls (1980–2012)

	S	$\mathcal{S}^{\mathcal{F}}$	$\mathcal{S}^{arepsilon}$	S	$\mathcal{S}^{\mathcal{F}}$	$\mathcal{S}^{arepsilon}$
	(1)	(2)	(3)	(4)	(5)	(6)
Banking / Pop. (K^{pop})	-0.102	-0.132	0.060			
	(0.040)	(0.028)	(0.024)			
	[-2.57]	[-4.71]	[2.55]			
Banking / GDP (K^{gdp})				-0.106	-0.137	0.056
				(0.041)	(0.029)	(0.024)
				[-2.55]	[-4.65]	[2.32]
Trade	-0.382	-0.198	0.132	-0.386	-0.203	0.141
	(0.134)	(0.114)	(0.078)	(0.133)	(0.113)	(0.078)
	[-2.86]	[-1.75]	[1.69]	[-2.90]	[-1.79]	[1.81]
Observations	4859	4859	4859	4859	4859	4859
R^2	0.103	0.224	0.134	0.103	0.225	0.134
Country Pairs	153	153	153	153	153	153

All regression specifications include a vector of country-pair fixed effects and a vector of year

fixed effects. Estimation is performed over the 1980-2012 period. Standard errors are adjusted for country-pair-level heteroskedasticity and autocorrelation.

Summing up

- ▶ Sign of β is negative for $S_{ij,t}$ and $S_{ij,t}^{\mathcal{F}}$, positive for $S_{ij,t}^{\varepsilon}$
 - Show that reversal is due to permanent country features
- Robustness
 - 1. Focus on tranquil times (1980-2006)
 - ightharpoonup eta less significant but still positive
 - Deal with endogeneity: bilateral, time-varying IV using the instrument of KPP:
 - \blacktriangleright β positive and significant
 - 3. Pairwise correlations
 - \blacktriangleright β is not statistically different from zero
 - 4. Time-varying factor loadings
 - \triangleright β positive and significant

This paper: results

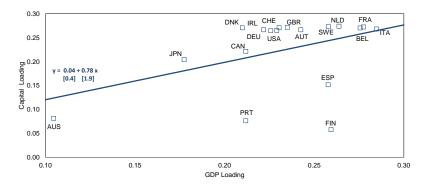
- ► Shows that financial linkages lowers synchronization, conditional on common shocks
- ► Shows that financial linkages do not lower synchronization, conditional on idiosyncratic shocks
- Explains theoretically why common shocks can create such a reversal
- Since theory builds from idiosyncratic shocks, evidence suggests credit constraints may be relevant empirically

Appendix

Why common factors matter? Analytical results

Assume $K_{ij,t}$ also responds to both common and idiosyncratic shocks, i.e.:

$$K_{ij,t} = a_{ij}^K + b_{ij}^K \mathcal{F}_t^K + \varepsilon_{ij,t}^K$$

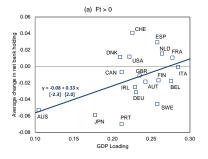

- Forbes and Warnock (2012), Rey (2013), Bruno and Shin (2014)
- ullet Common shock term is general. Accounts for global cycles in financial linkages, or a potential trend in $K_{ij,t}$
- lacktriangle Consider our baseline regression with $\mathcal{S}^{\mathcal{F}}_{ij,t}$

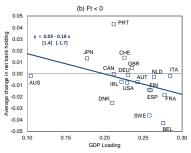
$$-\left|\left(b_{i}^{y}-b_{j}^{y}\right)\mathcal{F}_{t}^{y}\right|=\alpha_{ij}+\gamma_{t}+\beta^{\mathcal{F}}\cdot\left[a_{ij}^{K}+b_{ij}^{K}\mathcal{F}_{t}^{K}+\varepsilon_{ij,t}^{K}\right]+\delta\cdot Z_{ij,t}+\eta_{ij,t}^{\mathcal{F}}$$

▶ Sign of $\beta^{\mathcal{F}}$ is given by:

$$-\left|b_{i}^{y}-b_{j}^{y}\right|\cdot b_{ij}^{K}\ Cov\left[\left|\mathcal{F}_{t}^{y}\right|,\mathcal{F}_{t}^{K}\right]$$

- \blacktriangleright Suppose now a systematic positive correlation exists between $\left(b_i^y-b_j^y\right)$ and b_{ij}^K
 - E.g., in response to common shocks, capital intensity between i and j is larger in country pairs with large differences in GDP elasticity (high $b_i^y-b_j^y$)
- ▶ Then a negative correlation exists between $S_{ij,t}^{\mathcal{F}}$ and $K_{ij,t}$, and it is driven by permanent features of GDP and capital flows
- lacktriangle Empirical question: do high b_i countries also display high b_{ij}^K ?
- ▶ Plot estimates of $\hat{b}_{1,i}$ against $\hat{b}_{1,i}^K$, where $\hat{b}_{1,i}^K = \frac{1}{J}\sum_{j}\hat{b}_{1,ij}^K$


On the horizontal axis is the loading on GDP $(\hat{b}_{1,i}^y)$. On the vertical axis is the loading on capital $\hat{b}_{1,i}^K$, where $\hat{b}_{1,i}^K = \frac{1}{J}\sum_j \hat{b}_{1,ij}^K$ is the average capital loading in country i. The slope and the constant of the fitted line are reported together with t-Statistics in square brackets.


- ▶ Also implies that capital $(\hat{K}_{ij,t} = \hat{a}_{ij}^K + \hat{\mathfrak{b}}_{ij}^K \mathcal{F}_t)$ should go TO countries with elastic GDP in periods of global (or regional) booms $(\mathcal{F}_t > 0)$, but FROM them in years of global recession $(\mathcal{F}_t < 0)$.
- ▶ Define the average change in net bank holdings, computed for positive or negative values of \mathcal{F}_t :

$$KNET_{i}^{+} = \sum_{\mathcal{F}_{t}>0} \Delta_{t} \left[\sum_{j} \ln \left(A_{ji,t} + L_{ij,t} \right) - \ln \left(A_{ij,t} + L_{ji,t} \right) \right],$$

and:

$$KNET_i^- = \sum_{\mathcal{F}_t < 0} \Delta_t \left[\sum_j \ln \left(A_{ji,t} + L_{ij,t} \right) - \ln \left(A_{ij,t} + L_{ji,t} \right) \right]$$

On the horizontal axis is the loading on GDP $(\hat{b}_{1,i}^y)$. On the vertical axis is the change in net bank holdings averaged over periods when $\mathcal{F}_t > 0$ $(KNET_i^+)$, in panel (a); and when $\mathcal{F}_t < 0$ $(KNET_i^-)$, in panel (b). The slope and the constant of the fitted line are reported together with t-Statistics in square brackets.