Home production as a substitute to market consumption: Estimating the elasticity using houseprice shocks from the Great Recession

Jim Been1, Susann Rohwedder2, Michael Hurd3

1Department of Economics, Leiden University and Netspar
2RAND Corporation, Santa Monica, CA, USA, MEA and Netspar
3RAND Corporation, Santa Monica, CA, USA, NBER, MEA and Netspar

December 17th, 2015, 4th ECB Conference on household finance and consumption, Frankfurt
Motivation

Analyses of *well-being* have relied on measures of income and spending.

- Becker’s 1965 theory on the allocation of time: Home production.
- Time can be used to increase consumption beyond market spending (Aguiar & Hurst 2005).
- Share of home production in consumption bundle depends on *relative price of time*.
- Shift to home production when the price of time drops.
Home production can smooth consumption in response to shocks in income (Hicks 2015):

- Home production and retirement (e.g. Aguiar & Hurst 2005).
- Home production and unemployed households (e.g. Guler & Taskin 2013).
- Home production and health (e.g. Halliday & Podor 2012).
- Home production and wealth (e.g. Kuehn 2015).
Identification strategies

- Transitory shocks in income.
 - Monetary- and Time-budget: substitution or time-endowment?
- Disputable instruments: lagged consumption (Rupert et al. 1995).
- Very specific subsample: EITC and single women (Gelber & Mitchell 2009).
- Permanent shocks in income: permanent income (Hicks 2015).
 - Identification from cross-sectional differences between poorer and richer persons.
Contribution

- **Intratemporal elasticity from within-person variation.**
- **Causal identification:**
 - Wealth-shocks only influence monetary-budget.
 - Large exogenous shock: *houseprices* in the Great Recession.
 - Consumption (Angrisani et al. 2014).
 - Home production (Kuehn 2015).
- **Panel data with detailed consumption spending and time-use information of persons in US households (HRS/CAMS).**
 - Consumption: *Retirement-Consumption "Puzzle"* literature.
 - Time-use: Burda & Hamermesh (2010); Aguiar et al. (2013).
HRS/CAMS

Health and Retirement Survey
- Representative 50+ population of the US.
- Longitudinal: 12 waves.
- 20,000 persons every two years (one wave).
- Detailed information on demographics, economic status, etc.

Consumption and Activities Mail Survey
- Supplementary study to HRS.
- Survey to subset of HRS respondents.
- 37 time-use categories, 39 spending categories.
- Information on both spouses within a household.
Definition of home production

Following Aguiar et al. (2013):

- House cleaning
- Washing, ironing or mending clothes (Laundry)
- Yard work or gardening (Gardening)
- Shopping or running errands (Shopping)
- Preparing meals and cleaning up afterwards (Cooking)
- Taking care of finances or investments, such as banking, paying bills, balancing the checkbook, doing taxes, etc. (Financial Management)
- Doing home improvements, including painting, redecorating, or making home repairs (Home maintenance)
- Working on, maintaining, or cleaning car(s) and vehicle(s) (Vehicle maintenance)
What can home production substitute?

"Home Production Substitutable Consumption":

- House cleaning ⇔ Housekeeping services
- Laundry ⇔ Housekeeping services, Washing/Drying machine
- Gardening ⇔ Gardening services
- Shopping ⇔ n.a.
- Cooking ⇔ Dining out, Dishwasher
- Financial Management ⇔ n.a.
- Home maintenance ⇔ Homerepair services
- Vehicle maintenance ⇔ Vehicle maintenance services
Consumption spending across Time ($/y)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
<td>Mean</td>
<td>Mean</td>
<td>Mean</td>
</tr>
<tr>
<td>Dining out</td>
<td>1,912</td>
<td>1,808</td>
<td>1,513</td>
<td>1,598</td>
</tr>
<tr>
<td>Housekeeping services</td>
<td>414</td>
<td>386</td>
<td>331</td>
<td>349</td>
</tr>
<tr>
<td>Gardening services</td>
<td>381</td>
<td>355</td>
<td>314</td>
<td>296</td>
</tr>
<tr>
<td>Homerepair services</td>
<td>1,347</td>
<td>1,465</td>
<td>1,068</td>
<td>1,006</td>
</tr>
<tr>
<td>Vehicle maintenance</td>
<td>649</td>
<td>614</td>
<td>618</td>
<td>598</td>
</tr>
<tr>
<td>Dishwasher</td>
<td>23</td>
<td>27</td>
<td>19</td>
<td>15</td>
</tr>
<tr>
<td>Washing/Drying machine</td>
<td>63</td>
<td>76</td>
<td>68</td>
<td>53</td>
</tr>
<tr>
<td>Substitutable consumption</td>
<td>4,788</td>
<td>4,730</td>
<td>3,931</td>
<td>3,915</td>
</tr>
<tr>
<td>Substitutable consumption excl. durables</td>
<td>4,703</td>
<td>4,627</td>
<td>3,844</td>
<td>3,847</td>
</tr>
<tr>
<td>Substitutable consumption incl. suppl. mat.</td>
<td>6,487</td>
<td>6,387</td>
<td>5,342</td>
<td>5,382</td>
</tr>
<tr>
<td>Total consumption</td>
<td>40,558</td>
<td>39,904</td>
<td>37,515</td>
<td>36,359</td>
</tr>
</tbody>
</table>
Home Production across Time (h/w)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>Mean</td>
<td>Mean</td>
<td>Mean</td>
<td>Mean</td>
</tr>
<tr>
<td>House cleaning</td>
<td>4.7</td>
<td>4.8</td>
<td>4.7</td>
<td>4.8</td>
</tr>
<tr>
<td>Laundry</td>
<td>2.6</td>
<td>2.7</td>
<td>2.6</td>
<td>2.6</td>
</tr>
<tr>
<td>Gardening</td>
<td>2.2</td>
<td>2.2</td>
<td>2.3</td>
<td>2.2</td>
</tr>
<tr>
<td>Shopping</td>
<td>3.9</td>
<td>3.8</td>
<td>3.8</td>
<td>3.8</td>
</tr>
<tr>
<td>Cooking</td>
<td>6.4</td>
<td>6.3</td>
<td>6.3</td>
<td>6.2</td>
</tr>
<tr>
<td>Financial management</td>
<td>1.0</td>
<td>1.0</td>
<td>0.8</td>
<td>0.9</td>
</tr>
<tr>
<td>Home maintenance</td>
<td>1.0</td>
<td>0.8</td>
<td>0.7</td>
<td>0.7</td>
</tr>
<tr>
<td>Vehicle maintenance</td>
<td>0.4</td>
<td>0.3</td>
<td>0.3</td>
<td>0.4</td>
</tr>
<tr>
<td>Home production</td>
<td>22.2</td>
<td>21.8</td>
<td>21.5</td>
<td>21.6</td>
</tr>
</tbody>
</table>
Life-Cycle Model with Home Production and Wealth Shocks

\[U_{\tau} = \max E_{\tau} \left[\sum_{t=\tau}^{T} (1+\delta)^{\tau-t} u(c_{mt}, c_{nt}(h_{nt}), l_{t})\psi(v_{t}) \right] \quad (1) \]

with

\[c_{nt}(h_{nt}) = g_{t}(h_{nt}) \quad (2) \]

subject to

\[h_{nt} = H - h_{mt} - l_{t} \quad (3) \]

\[A_{t+1} = (1+r)(E_{t}[A_{t}] + (w_{t} \cdot (H - l_{t} - h_{nt})) + b_{t} - c_{mt}) \quad (4) \]

\[E_{t}[A_{t}] = A_{t} + \xi_{t} \quad (5) \]
Euler Equations

Market consumption (e.g. Consumption spending):

$$u_{cmt}(c_{mt+1}, c_{nt+1}(h_{nt+1}), l_{t+1})\psi(v_{t+1}) =$$

$$\left(\frac{1 + \delta}{1 + r}\right) u_{cmt}(c_{mt}, c_{nt}(h_{nt}), l_{t})\psi(v_{t}) + \epsilon_{t+1} \quad (6)$$

Market work (e.g. Labor supply):

$$u_{hmt}(c_{mt+1}, c_{nt+1}(h_{nt+1}), l_{t+1})\psi(v_{t+1}) =$$

$$-w_{t} \left(\frac{1 + \delta}{1 + r}\right) u_{hmt}(c_{mt}, c_{nt}(h_{nt}), l_{t})\psi(v_{t}) + \epsilon_{t+1} \quad (7)$$

Home work (e.g. Home production):

$$u_{hnt}(c_{mt+1}, c_{nt+1}(h_{nt+1}), l_{t+1})\psi(v_{t+1}) =$$

$$w_{t} \left(\frac{1 + \delta}{1 + r}\right) u_{hnt}(c_{mt}, c_{nt}(h_{nt}), l_{t})\psi(v_{t}) + \epsilon_{t+1} \quad (8)$$
Parametric assumptions

Functional form:

\[u(c_{mt}, c_{nt}(h_{nt}), l_t) = c^{\theta_{mt}}_{mt} + c_{nt}(h_{nt})^{\theta_{nt}} + l^\theta_{lt} \]

(9)

\[c_{nt}(h_{nt}) = g_t(h_{nt}) = \gamma_t h_{nt} \]

(10)

Assumptions first-order approximation of Euler Equations:

▶ Time-constant \(r\) and \(\delta\) reduce to a constant \(\alpha\).

\[\theta_{jt+1} = X_{t+1} + \eta_j \]

(11)

\[\psi_{t+1} = X_{t+1} + \eta_j \]

(12)

\[\gamma_{t+1} = X_{t+1} + \eta_j \]

(13)

\[w_t = X_{t+1} + \eta_j, j = m, n \]

(14)
Empirical Euler Equations

Market consumption (e.g. Consumption spending):

\[
\Delta \ln(c_{imt+1}) = \Delta X_{it+1}\beta_c + \varepsilon_{ict+1}
\]

(15)

Market work (e.g. Labor supply):

\[
\Delta \ln(h_{imt+1}) = \Delta X_{it+1}\beta_m + \varepsilon_{imt+1}
\]

(16)

Home work (e.g. Home production):

\[
\Delta \ln(h_{int+1}) = \Delta X_{it+1}\beta_n + \varepsilon_{int+1}
\]

(17)

\(\varepsilon_{ijt+1}\) are distributed iid \(N(0, \sigma_j)\) and capture random error of:

- Recursive process of the marginal utility of wealth (including shocks).
- Equations (11)-(14).
- Equations (15)-(17).
Estimating the Elasticity

Interested in \(\frac{\Delta \ln(h_{int+1})}{\Delta \ln(c_{imt+1})} \):

- \(c_{imt+1} \), \(h_{int+1} \), (and \(h_{imt+1} \)) simultaneously determined.
- **Second-stage:**
 \[
 \Delta \ln(h_{int+1}) = \Delta X_{it+1}\beta_{n1} + \Delta \ln(c_{imt+1})\beta_{n2} + \varepsilon_{int+1} \quad (18)
 \]
- **First-stage:**
 \[
 \Delta \ln(c_{imt+1}) = \Delta X_{it+1}\beta_{c1} + D_{GR}\Delta \ln(W_{it})\beta_{c2} + \varepsilon_{ict+1} \quad (19)
 \]
- \(D_{GR}\Delta \ln(W_{it}) \) shock to monetary-budget, not to time-budget.
- Keep \((w_t \cdot (H - l_t - h_{nt})) + b_t \) constant in Equation (4).
Identification: Houseprice changes

![Graph showing mean reported house price change (1,000's of U.S. dollars) from 2003 to 2011. The graph shows a peak in 2007 and a decline in 2009.]

Jim Been, Susann Rohwedder, Michael Hurd

Home production as a substitute to market consumption
Estimation results

<table>
<thead>
<tr>
<th>Second-stage</th>
<th>$\Delta \ln(h_{int+1})$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coeff.</td>
<td>S.E.</td>
</tr>
<tr>
<td>Elasticity</td>
<td></td>
</tr>
<tr>
<td>$\Delta \ln(c_{int+1})$</td>
<td>-0.65* 0.37</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>First-stage</th>
<th>$\Delta \ln(c_{int+1})$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coeff.</td>
<td>S.E.</td>
</tr>
<tr>
<td>Instrument</td>
<td></td>
</tr>
<tr>
<td>$D_{GR}\Delta \ln(W_{it})$</td>
<td>0.14** 0.06</td>
</tr>
</tbody>
</table>

- Observations ($N \times T$): 2,500
- Hansens J statistic (p-value reported): 0.00
Interpretation

- $\beta_{n2} = \frac{\Delta \ln(h_{int+1})}{\Delta \ln(c_{imt+1})} = -0.65$.
- Less than perfect substitute.
- Bigger than elasticity between food preparation and dining out found by Hicks (2015): -0.031 (endogeneity/food/25-80).
- Average effect: drop in consumption of 40 dollars (p/y) increases home production by about 7.6 hours (p/y): shadow wage 5.30.
- Reasonably lower than minimum wage in retirement (Ghez & Becker 1975).
Robustness

- Definitions of "home production substitutable consumption":
 - Excluding durables.
 - Including supplementary material.
- Equivalence scales of market consumption:
 - Full sharing.
 - Oxford equivalence scale.
 - OECD equivalence scale.
 - Square root equivalence scale.
- Single/couple household.
- Male/female respondents.
Heterogeneous elasticities

Elasticity primarily determined by:

- Drop in houseprice value.
- Relatively low houseprice value (absolute).
- Mortgage-free.
- Relatively high substitutable spending.
- Medium household income

Not by:

- Financial wealth.
Conclusion

- Decrease in market consumption after ‘shocks’.
- Increase in home production after ‘shocks’.
- Wealth shocks in the Great Recession avoid endogeneity problems.
- Small substitution effects \(\frac{\Delta \ln(h_{int+1})}{\Delta \ln(c_{imt+1})} = -0.65 \).
- Small scope for substituting market consumption (\(\approx 12\% \)).
- Increases in home production primarily due to ‘time-endowment’.
- Contrast to the high substitutability assumed in theoretical (macro) models (Campbell & Ludvigson 2001).