Monetary Policy According to HANK

Greg Kaplan
Princeton University

Ben Moll
Princeton University

Gianluca Violante
New York University

ECB Conference on Household Finance and Consumption
HANK: Heterogeneous Agent New Keynesian models

• Framework for quantitative analysis of aggregate fluctuations and macroeconomic policy

Kaplan-Moll-Violante, "Monetary Policy According to HANK"
HANK: Heterogeneous Agent New Keynesian models

- Framework for quantitative analysis of aggregate fluctuations and macroeconomic policy

- Two building blocks
 1. Rich representation of *hh finances and consumption* behavior
 2. Nominal price rigidities

Kaplan-Moll-Violante, "Monetary Policy According to HANK"
HANK: Heterogeneous Agent New Keynesian models

- Framework for quantitative analysis of aggregate fluctuations and macroeconomic policy

- Two building blocks
 1. Rich representation of hh finances and consumption behavior
 2. Nominal price rigidities

- Today: Transmission mechanism for conventional monetary policy

- Main result: Stark difference between HANK and \(\text{RANK} \)
Monetary transmission in RANK and HANK

\[dC = \frac{\partial C}{\partial r} dr + \frac{\partial C}{\partial Y} dY \]

direct response to \(r \) \hspace{1cm} indirect GE response due to \(Y \)
Monetary transmission in RANK and HANK

\[dC = \frac{\partial C}{\partial r} dr + \frac{\partial C}{\partial Y} dY \]

direct response to \(r \) \hspace{2cm} indirect response due to \(Y \)

RANK: >95% \hspace{2cm} **RANK:** <5%

HANK: <25% \hspace{2cm} **HANK:** >75%

Kaplan-Moll-Violante, "Monetary Policy According to HANK"
Monetary transmission in RANK and HANK

\[dC' = \frac{\partial C'}{\partial r} dr + \frac{\partial C'}{\partial Y} dY \]

direct response to \(r \) indirect response due to \(Y \)

- **RANK**: >95% - **RANK**: <5%
- **HANK**: <25% - **HANK**: >75%

RANK view:

- MPC out of \(r \) strong b/c of intertemporal substitution
- MPC out of \(Y \) weak b/c the RA is a PIH consumer
Monetary transmission in RANK and HANK

\[dC = \left(\frac{\partial C}{\partial r} \right) dr + \left(\frac{\partial C}{\partial Y} \right) dY \]

- Direct response to \(r \)
- Indirect response due to \(Y \)

RANK:
- >95%
- <5%

HANK:
- <25%
- >75%

- **RANK view:**
 - MPC out of \(r \) strong b/c of intertemporal substitution
 - MPC out of \(Y \) weak b/c the RA is a PIH consumer

- **HANK view:**
 - MPC out of \(r \) weak b/c several effects offset int. substitution
 - MPC out of \(Y \) strong b/c of sizable share of HtM households
Why does this difference matter?

- Suppose Fed wants to stimulate C

- RANK view:
 - sufficient to influence the real rate $\{r_t\}$
 - household intertemporal substitution does the rest
Why does this difference matter?

- Suppose Fed wants to stimulate C

- RANK view:
 - sufficient to influence the real rate $\{r_t\}$
 - household intertemporal substitution does the rest

- HANK view:
 - must rely heavily on GE transmission to aggr. labor demand
 - through fiscal policy reaction or an investment boom
Why does this difference matter?

• Suppose Fed wants to stimulate C

• RANK view:
 ▶ sufficient to influence the real rate $\{r_t\}$
 ▶ household intertemporal substitution does the rest

• HANK view:
 ▶ must rely heavily on GE transmission to aggr. labor demand
 ▶ through fiscal policy reaction or an investment boom
 ▶ Responsiveness of C_t to i_t may be largely out of Fed’s control
Kaplan-Moll-Violante, "Monetary Policy According to HANK"
Building blocks

Households
• Face uninsured idiosyncratic labor income risk
• Save in two assets (liquid and illiquid), consume and supply labor

Firms
• Monopolistic competition for intermediate-good producers
• Quadratic price adjustment costs à la Rotemberg (1982)

Investment fund
• Intermediates illiquid assets/capital to producers

Government
• Issues liquid debt, spends, taxes, and transfers lump-sum

Monetary authority
• Sets nominal rate on liquid assets based on a Taylor rule

Kaplan-Moll-Violante, "Monetary Policy According to HANK"
Households

\[
\max_{\{c_t, \ell_t, \} \geq 0} \mathbb{E}_0 \int_0^\infty e^{-(\rho+\lambda) t} u(c_t, \ell_t, \) dt \quad \text{s.t.}
\]

\[
\dot{b}_t = r_t^b(b_t)b_t + w_t z_t \ell_t - c_t
\]

\[z_t = \text{some Markov process}\]

\[b_t \geq -b\]

- \(c_t\): non-durable consumption
- \(b_t\): liquid assets
- \(z_t\): individual productivity
- \(\ell_t\): hours worked
Households

\[
\max_{\{c_t, l_t, d_t\}_{t \geq 0}} \mathbb{E}_0 \int_0^\infty e^{-(\rho+\lambda)t} u(c_t, l_t) \ dt \quad \text{s.t.}
\]

\[
\dot{b}_t = r_t^b b_t + w_t z_t l_t \quad -d_t - \chi(d_t, a_t) - c_t
\]

\[
\dot{a}_t = r_t^a a_t + d_t
\]

\[z_t = \text{some Markov process}\]

\[b_t \geq -b, \quad a_t \geq 0\]

- \(c_t\): non-durable consumption
- \(b_t\): liquid assets
- \(z_t\): individual productivity
- \(l_t\): hours worked
- \(a_t\): illiquid assets

- \(d_t\): illiquid deposits (\(\geq 0\))
- \(\chi\): transaction cost function

Kaplan-Moll-Violante, "Monetary Policy According to HANK"
Households

\[
\max_{\{c_t, \ell_t, d_t\}_{t \geq 0}} \mathbb{E}_0 \int_0^\infty e^{-(\rho+\lambda)t} u(c_t, \ell_t) \, dt \quad \text{s.t.}
\]
\[
\dot{b}_t = r^b_t(b_t)b_t + w_t z_t \ell_t - d_t - \chi(d_t, a_t) - c_t
\]
\[
\dot{a}_t = r^a_t a_t + d_t
\]
\[
z_t = \text{some Markov process}
\]
\[
b_t \geq -b, \quad a_t \geq 0
\]

- **Adjustment cost function**

\[
\chi(d, a) = \chi_0 |d| + \chi_1 \left| \frac{d}{a} \right|^{\chi_2} a
\]

- Linear component: inaction region
- Convex component: finite deposit rates

Kaplan-Moll-Violante, "Monetary Policy According to HANK"
Households

\[
\max_{\{c_t, \ell_t, d_t\}_{t \geq 0}} \mathbb{E}_0 \int_0^\infty e^{-(\rho + \lambda)t} u(c_t, \ell_t, h_t) dt \quad \text{s.t.}
\]

\[
\dot{b}_t = r^b_t(b_t)b_t + (1 - \xi)w_t z_t \ell_t - \tilde{T}(w_t z_t \ell_t) - d_t - \chi(d_t, a_t) - c_t
\]

\[
\dot{a}_t = r^a_t(1 - \omega)a_t + \xi w_t z_t \ell_t + d_t
\]

\[
h_t = \omega a_t
\]

\[
z_t = \text{some Markov process}
\]

\[
b_t \geq -b, \quad a_t \geq 0
\]

- \(c_t\): non-durable consumption
- \(b_t\): liquid assets
- \(z_t\): individual productivity
- \(\ell_t\): hours worked
- \(a_t\): illiquid assets
- \(d_t\): illiquid deposits (\(\geq 0\))
- \(\chi\): transaction cost function
- \(\tilde{T}\): labor income tax/transfer
- \(\xi\): direct deposits
- \(h_t\): housing services
Households

$$\max_{\{c_t, \ell_t, d_t\} \geq 0} \mathbb{E}_0 \int_0^\infty e^{-(\rho+\lambda)t} u(c_t, \ell_t, h_t) dt \quad \text{s.t.}$$

$$\begin{align*}
\dot{b}_t &= r^b_t(b_t) b_t + (1 - \xi) w_t z_t \ell_t - \tilde{T}(w_t z_t \ell_t) - d_t - \chi(d_t, a_t) - c_t \\
\dot{a}_t &= r^a_t (1 - \omega) a_t + \xi w_t z_t \ell_t d_t \\
h_t &= \omega a_t \\
z_t &= \text{some Markov process} \\
b_t \geq -\underline{b}, \quad a_t \geq 0
\end{align*}$$

- Households are price-takers wrt: $$\{\Psi_t\}_{t \geq 0} = \{w_t, r^a_t, r^b_t, \tilde{T}_t\}_{t \geq 0}$$

- The stationary recursive solution of hh problem:
 1. decision rules: $$c(a, b, z; \Psi), d(a, b, z; \Psi), \ell(a, b, z; \Psi)$$
 2. stationary distribution: $$\mu(da, db, dz; \Psi)$$
Firms

• Representative competitive final goods producer:

\[Y = \left(\int_{0}^{1} y_j^{\frac{\varepsilon-1}{\varepsilon}} d\varepsilon \right)^{\frac{\varepsilon}{\varepsilon-1}} \Rightarrow y_j = \left(\frac{p_j}{P} \right)^{-\varepsilon} Y \]
Firms

• Representative competitive final goods producer:

\[Y = \left(\int_0^1 y_j \frac{\varepsilon - 1}{\varepsilon} \ d\xi \right)^{\frac{\varepsilon}{\varepsilon - 1}} \Rightarrow y_j = \left(\frac{p_j}{P} \right)^{-\varepsilon} Y \]

• Monopolistically competitive intermediate goods producers:

 ▶ Technology: \(y_j = Z k_j^{\alpha} n_j^{1-\alpha} \Rightarrow m = \frac{1}{Z} \left(\frac{r}{\alpha} \right)^{\alpha} \left(\frac{w}{1-\alpha} \right)^{1-\alpha} \)

 ▶ Set prices subject to quadratic adjustment costs:

\[\Theta \left(\frac{\dot{p}}{p} \right) = \frac{\theta}{2} \left(\frac{\dot{p}}{p} \right)^2 Y \]
Firms

• Representative competitive final goods producer:

\[Y = \left(\int_0^1 y_j^{\varepsilon} d\varepsilon \right)^{\frac{\varepsilon}{\varepsilon-1}} \Rightarrow y_j = \left(\frac{p_j}{P} \right)^{-\varepsilon} Y \]

• Monopolistically competitive intermediate goods producers:

 ▶ Technology: \(y_j = Z k_j^\alpha n_j^{1-\alpha} \) \Rightarrow \(m = \frac{1}{Z} \left(\frac{r}{\alpha} \right)^\alpha \left(\frac{w}{1-\alpha} \right)^{1-\alpha} \)

 ▶ Set prices subject to quadratic adjustment costs:

\[\Theta \left(\frac{\dot{p}}{p} \right) = \frac{\theta}{2} \left(\frac{\dot{p}}{p} \right)^2 Y \]

Exact NK Phillips curve: \(\left(r^\alpha - \frac{\dot{Y}}{Y} \right) \pi = \frac{\varepsilon}{\theta} (m - \bar{m}) + \pi \), \(\bar{m} = \frac{\varepsilon-1}{\varepsilon} \)
Competitive investment fund sector

• Own intermediate firms and issue one-period security w/ return r^a

• Hh productive assets $(1 - \omega) A$ are savings into this security
Competitive investment fund sector

- Own intermediate firms and issue one-period security w/ return r^a

- Hh productive assets $(1 - \omega) A$ are savings into this security

- Two sources of income into the fund:
 1. Rent illiquid asset as productive capital

$$ (r^k - \delta) K $$

Kaplan-Moll-Violante, "Monetary Policy According to HANK"
Competitive investment fund sector

- Own intermediate firms and issue one-period security w/ return r^α

- Hh productive assets $(1 - \omega) A$ are savings into this security

- Two sources of income into the fund:
 1. Rent illiquid asset as productive capital

\[
(r^k - \delta) \ K
\]

 2. Receive dividends proportional to the K owned

\[
q = \left[(1 - m)Y \right] / K
\]
Competitive investment fund sector

- Own intermediate firms and issue one-period security w/ return r^a

- Hh productive assets $(1 - \omega) A$ are savings into this security

- Two sources of income into the fund:
 1. Rent illiquid asset as productive capital
 \[(r^k - \delta) K\]
 2. Receive dividends proportional to the K owned
 \[q = [(1 - m)Y] / K\]

- Competition among funds implies illiquid asset return
 \[r^a = (r^k - \delta) + q\]
Monetary authority and government

- Taylor rule

\[i = \bar{r}^b + \phi \pi + \epsilon, \quad \phi > 1 \]

with \(\bar{r}^b \equiv i - \pi \) (Fisher equation)
Monetary authority and government

- **Taylor rule**
 \[i = \bar{r}^b + \phi \pi + \epsilon, \quad \phi > 1 \]
 with \(r^b \equiv i - \pi \) (Fisher equation)

- **Progressive tax on labor income:**
 \[\bar{T} (wz\ell) = -T + \tau wz\ell \]

- **Government budget constraint (in steady-state)**
 \[G + T + r^b B^g = \tau \int [wz\ell (a, b, z)] \, d\mu \]
Monetary authority and government

- **Taylor rule**

 \[i = \bar{r}^b + \phi \pi + \epsilon, \quad \phi > 1 \]

 with \(r^b \equiv i - \pi \) (Fisher equation)

- **Progressive tax on labor income:**

 \[\tilde{T}(wz\ell) = -T + \tau wz\ell \]

- **Government budget constraint (in steady-state)**

 \[G + T + r^b B^g = \tau \int [wz\ell(a, b, z)] \, d\mu \]

- **Ricardian equivalence fails \(\Rightarrow \) this matters!**
PARAMETERIZATION
Some aspects of parameterization

- **Preferences**: GHH
Some aspects of parameterization

• **Preferences**: GHH

• Measurement and partition of asset categories into:

 - *liquid* (cash, bank accounts + government/corporate bonds)

 - *illiquid productive* (equity) vs *non-productive* (housing)
Some aspects of parameterization

- **Preferences**: GHH

- Measurement and partition of **asset categories** into:
 - liquid (cash, bank accounts + government/corporate bonds)
 - illiquid productive (equity) vs non-productive (housing)

- Continuous time **household earnings dynamics**
 - Match variance and **kurtosis** of 1- and 5-yr earnings changes
 - Nature of earnings risk affects household portfolio

Kaplan-Moll-Violante, "Monetary Policy According to HANK"
Some aspects of parameterization

- **Preferences**: GHH

- Measurement and partition of asset categories into:
 - liquid (cash, bank accounts + government/corporate bonds)
 - illiquid productive (equity) vs non-productive (housing)

- Continuous time household earnings dynamics
 - Match variance and kurtosis of 1- and 5-yr earnings changes
 - Nature of earnings risk affects household portfolio

- Adjustment cost function $\chi (d, a)$ and discount factor ρ
 - Match mean/median liquid/illiquid wealth and fraction HtM
Some aspects of parameterization

• **Preferences**: GHH

• Measurement and partition of **asset categories** into:
 - liquid (cash, bank accounts + government/corporate bonds)
 - illiquid productive (equity) vs non-productive (housing)

• Continuous time **household earnings dynamics**
 - Match variance and kurtosis of 1- and 5-yr earnings changes
 - Nature of earnings risk affects household portfolio

• Adjustment cost function $\chi(d, a)$ and discount factor ρ
 - Match mean/median liquid/illiquid wealth and fraction HtM

• Production side: **standard calibration** of NK models

Kaplan-Moll-Violante, "Monetary Policy According to HANK"
Wealth distributions: Liquid wealth

Liquid wealth distribution

Liquid wealth Lorenz curve

- Top 10% share: **Model**: 87%, **SCF 2004**: 89%
- Top 1% share: **Model**: 36%, **SCF 2004**: 51%
- Gini coefficient: **Model**: 0.87, **SCF 2004**: 0.98
Wealth distributions: Illiquid wealth

- **Top 10% share:** Model: 59%, SCF 2004: 61%
- **Top 1% share:** Model: 19%, SCF 2004: 25%
- **Gini coefficient:** Model: 0.66, SCF 2004: 0.81

Kaplan-Moll-Violante, "Monetary Policy According to HANK"
MPC heterogeneity

- Realistic representation of micro consumption behavior

Kaplan-Moll-Violante, "Monetary Policy According to HANK"
RESULTS
Total effect of monetary policy shock

• Innovation $\epsilon < 0$ to the Taylor rule: $i = \bar{r}^b + \phi \pi + \epsilon$

• All experiments: $\epsilon_0 = -0.0025$, i.e. -1% annualized
Total effect of monetary policy shock

- Innovation $\epsilon < 0$ to the Taylor rule: $i = \tilde{r}^b + \phi \pi + \epsilon$

- All experiments: $\epsilon_0 = -0.0025$, i.e. -1% annualized
Transmission of monetary policy shock to C

\[dC = \left(\frac{\partial C}{\partial r^b} dr^b \right)_{\text{direct}} + \left(\frac{\partial C}{\partial w} dw \right)_{\text{indirect}} + \left(\frac{\partial C}{\partial r^a} dr^a \right)_{\text{indirect}} \]
Transmission of monetary policy shock to C

\[dC = \frac{\partial C}{\partial r^b} dr^b + \frac{\partial C}{\partial w} dw + \frac{\partial C}{\partial r^a} dr^a \]

Graph:
- Liquid return: r^b (pp annual)
- Illiquid return: r^a (pp annual)
- Real wage: w (%)

Quarters

Kaplan-Moll-Violante, "Monetary Policy According to HANK"
Transmission of monetary policy shock to C

\[dC = \left(\frac{\partial C}{\partial r^b} + \frac{\partial C}{\partial T} \frac{\partial T}{\partial r^b} \right) dr^b + \left(\frac{\partial C}{\partial w} + \frac{\partial C}{\partial T} \frac{\partial T}{\partial w} \right) dw + \frac{\partial C}{\partial r^a} dr^a \]

Transfers adjusts: **direct effect from** $r^b \downarrow$ on government debt
indirect effect of $w \uparrow$ on tax revenues

Kaplan-Moll-Violante, "Monetary Policy According to HANK"
Transmission of monetary policy shock to C

$$dC = \left(\frac{\partial C}{\partial r^b} + \frac{\partial C}{\partial T} \frac{\partial T}{\partial r^b} \right) dr^b + \left(\frac{\partial C}{\partial w} + \frac{\partial C}{\partial T} \frac{\partial T}{\partial w} \right) dw + \frac{\partial C}{\partial r^a} dr^a$$

24% and 76%
Transmission of monetary policy shock to C

$$dC = \left(\frac{\partial C}{\partial r^b} + \frac{\partial C}{\partial T} \frac{\partial T}{\partial r^b} \right) dr^b + \left(\frac{\partial C}{\partial w} + \frac{\partial C}{\partial T} \frac{\partial T}{\partial w} \right) dw + \frac{\partial C}{\partial r^a} dr^a$$

24% 76%

Kaplan-Moll-Violante, "Monetary Policy According to HANK"
Transmission across the distribution: direct effects

- **Intertemporal substitution**: (+) for non-HtM
- **Income effect**: (-) for rich savers and (+) for borrowers
- **Portfolio reallocation**: (-) for those with near-zero income effect
Transmission across the distribution: indirect effects

- c response to (w_T) income: (+) and strong for HtM
- $c - \ell$ complementarity: (+) for non-HtM
Role of fiscal response in monetary transmission

<table>
<thead>
<tr>
<th></th>
<th>T adjusts</th>
<th>G adjusts</th>
<th>B^g adjusts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Change in r^b (pp)</td>
<td>-0.23%</td>
<td>-0.21%</td>
<td>-0.25%</td>
</tr>
<tr>
<td>Change in C_0 (%)</td>
<td>0.47%</td>
<td>0.63%</td>
<td>0.09%</td>
</tr>
<tr>
<td>Elasticity of C_0 to r^b</td>
<td>-2.10</td>
<td>-3.01</td>
<td>-0.36</td>
</tr>
</tbody>
</table>

- **G adjusts**: G translates 1-1 into aggregate demand
- **B^g adjusts**: no direct stimulus to aggregate demand

Kaplan-Moll-Violante, "Monetary Policy According to HANK"
Concluding remarks

• Main finding
 ▶ Monetary policy transmission in HANK \neq RANK
 ▶ Intertemporal subst. weak, indirect GE channels strong
 ▶ Accurate representation of hh portfolios, wealth distribution, and consumption behavior matters for monetary policy
Concluding remarks

• Main finding
 ▶ Monetary policy transmission in HANK ≠ RANK
 ▶ Intertemporal subst. weak, indirect GE channels strong
 ▶ Accurate representation of hh portfolios, wealth distribution, and consumption behavior matters for monetary policy

• Implications for conduct of monetary policy
 ▶ Key: fiscal response and functioning of markets
Concluding remarks

• Main finding
 ▶ Monetary policy transmission in HANK ≠ RANK
 ▶ Intertemporal subst. weak, indirect GE channels strong
 ▶ Accurate representation of hh portfolios, wealth distribution, and consumption behavior **matters for monetary policy**

• Implications for conduct of monetary policy
 ▶ Key: fiscal response and **functioning of markets**

• Road ahead
 ▶ Forward guidance and unconventional monetary policy
 ▶ Fiscal stimulus according to HANK

Kaplan-Moll-Violante, "Monetary Policy According to HANK"
THANKS!
Earnings dynamics

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Component $j = 1$</th>
<th>Component $j = 2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arrival rate λ_j</td>
<td>0.080</td>
<td>0.007</td>
</tr>
<tr>
<td>Mean reversion β_j</td>
<td>0.761</td>
<td>0.009</td>
</tr>
<tr>
<td>St. Deviation of innovations σ_j</td>
<td>1.74</td>
<td>1.53</td>
</tr>
</tbody>
</table>

- A career shock perturbed by periodic temporary shocks

Kaplan-Moll-Violante, "Monetary Policy According to HANK"
Summary of market clearing conditions

- **Liquid asset market**
 \[B^h = B^g \]

- **Illiquid asset/capital market** → \(r^a \)
 \[K = (1 - \omega)A \]

- **Labor market** → \(w \)
 \[N = \int z\ell(a, b, z)d\mu \]

- **Goods market** → \(\pi \)
 \[Y = C + H + I + G + \chi + \text{borrowing costs} + \Theta \]