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Abstract

We study how compositional effects in the financial sector drive the dynamics of aggregate risk-
taking and lead to novel effects of financial policy interventions. When financial market participants
differ in their risk-taking, good shock realizations increase the capital of high risk-takers more than
that of low risk-takers. This raises the fraction of wealth controlled by high risk-takers and, under
incomplete markets, increases aggregate risk-taking. The opposite conclusions apply for bad shocks.
As a result, aggregate risk-taking is pro-cyclical, capturing Minsky’s financial instability hypothesis
that "booms sow the seeds of the next crisis." Public policy interventions work primarily by affecting
the composition of the financial sector, in contrast to the static restriction on choice sets that is the
focus of most conventional economic frameworks. For example, bailouts have deleterious effects not
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1 Introduction

Seven years after the Great Financial Crisis of 2008/09, the world economy has yet to recover
from the damage created by excessive risk-taking in the financial sector. An important part
of the economics profession has spent the time since trying to understand how phenomena
such as exuberance, distorted incentives and market imperfections combined to trigger the
crisis and —with even greater urgency —what lessons we can derive to make our financial
system more stable for the future. These phenomena generally affect the financial sector as
a whole and can be studied by focusing on a representative financial institution.

Our paper, by contrast, focuses on how dynamic changes in the composition of the
financial sector drive aggregate outcomes. If most of the net worth in the financial sector
is controlled by high risk-takers, the sector as a whole becomes riskier, and vice versa.
The dynamics of how net worth is distributed across heterogeneous agents thus determine
aggregate risk-taking in the economy. During booms, i.e. when the economy experiences
a number of high aggregate shocks, high risk-takers earn higher returns and their wealth
grows at a faster pace. During busts, i.e. when the economy experiences low aggregate
shocks, high risk-takers incur larger losses; therefore the relative wealth of low risk-takers
increases.

Changes in the composition of the financial sector typically play a large role in booms and
busts, both in advanced and emerging economies. For example, in the US mortgage market,
both the boom of the first half of the 2000s and the subsequent bust were driven in large
part by risky players such as Countrywide Financial and Washington Mutual: Countrywide
grew to become the largest US mortgage lender, capturing more than 20% of the market and
originating loans amounting to 3.5% of US GDP in 2006; in January 2008, it was rescued
in an emergency take-over by Bank of America. Its spin-off Indymac followed a similar
trajectory and was taken into conservatorship by the FDIC in July 2008. Washington
Mutual followed an aggressive expansion strategy in the early 2000s and grew to be the
largest savings and loan association and the sixth-largest bank in the US, only to end in the
largest bank failure in US history in September 2008. AIG became the largest player in the
market for credit default swaps by aggressively selling credit insurance against close to half a
trillion dollar of securities; in September 2008, it experienced a run and received the largest
government bailout in US history. Conversely, institutions that followed a safer strategy
experienced the opposite dynamics: JP Morgan Chase, for example, underperformed its
peers in the first half of the 2000s but came to be the largest US financial institution in the
aftermath of the financial crisis.

Similarly, in emerging economies, credit booms are commonly driven by a small set of
financial institutions that specialize in channeling dollar credit into the domestic economy
that comes with low interest rates but high currency risk. These institutions grow fast
during boom times but often collapse when the tide reverses.
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We study these phenomena in a framework of heterogeneous financial market partici-
pants that are subject to aggregate shocks but differ in the set of investment opportunities
to which they have access. Some institutions engage in a relatively low-risk business model
—they can be interpreted e.g. as conservative savings banks. Other institutions have a busi-
ness model that produces higher risk but higher potential rewards, e.g. investment banking
or subprime lending. An important condition for compositional changes to matter in such
an environment is that risk-sharing in the economy is imperfect —otherwise each institution
would only invest into the market portfolio. We assume that risk-sharing is limited because
of agency problems that require that each institution to have a suffi ciently large equity stake
in its own business.

The first result of our paper is to show that the described compositional effects produces
financial market dynamics that correspond closely to the financial instability hypothesis
postulated by Minsky (1986) — good times sow the seeds of the next financial crisis. A
series of high shocks increases the fraction of net worth controlled by high risk-takers —
in the language of evolutionary theory, the financial sector adapts to a benign economic
environment and becomes riskier. This leads to greater risk-taking in aggregate and makes
the economy more vulnerable to low shocks. Through the lens of evolutionary theory,
Minsky’s financial instability hypothesis is simply an instance of temporary mal-adaptation
—of a financial sector that has adapted to a benign risk environment and is unprepared for
bad returns. The converse happens in response to a series of low shocks.

Secondly, we show that it is socially desirable to lean against the fluctuations in net
worth and in aggregate risk-taking in the laissez-faire economy, i.e. to stabilize aggregate
risk-taking at an intermediate level. This replicates the allocation that would prevail if risk
markets were complete: it maximizes the expected growth rate of aggregate capital and
results in a more stable financial system, preventing the instability dynamics described by
Minsky. It also reflects a broader theme in evolutionary theory, that preserving diversity
enhances the robustness of a population and allows it to better deal with aggregate shocks.

Our third insight is to identify a novel channel through which public policy interventions
shape risk-taking dynamics: public policy affects the dynamic composition of the financial
sector, not only the static choice set of agents in the period it is conducted, as in traditional
models of financial sector policy. A one-time intervention influences the distribution of net
worth of agents going forward, which can have long-lasting dynamic effects on aggregate
risk-taking. For example, financial regulation that limits risk-taking during booms reduces
the profits of high risk-takers and slows down the reallocation of net worth towards them,
which limits the fall-out during the next bust. There is no rationale for policies such as
limits on credit growth on specific sub-sectors in traditional economic models, but in our
setting, regulators are responding to the justified risk of mal-adaptation of the financial
sector.

Fourth, we show how the nature of idiosyncratic shocks to risk types affects aggregate
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dynamics. We assume that idiosyncratic shocks are described by a transition matrix that
captures the probabilities with which risk types change. In evolutionary terms, such idio-
syncratic shocks correspond to mutation in risk types. In the financial sector, by contrast,
the idiosyncratic dynamics of risk types can be interpreted as arising from three concep-
tually distinct phenomena: (i) idiosyncratic shocks to the set of investment opportunties
of bankers, (ii) changes in the set of financial institutions that are operative or (iii) re-
allocations of funds by external investors. All these phenomena are also affected by the
regulatory environment, for example by how much the environment encourages dynamism
and experimentation in the financial sector. Symmetric idiosyncratic shocks are generally
desirable because they introduce a form of mean reversion in risk types that brings the econ-
omy closer to the optimal capital allocation. Idiosyncratic shocks that are state-dependent,
i.e. correlated with the aggregate shock, introduce the potential for momentum or contrar-
ian dynamics of risk types. Momentum-based dynamics in risk types generally exacerbate
the financial instability dynamics; contrarian reallocations generally lead to mean reversion
and reduce volatility. In fact, if the economy starts out at the optimal capital allocation,
the right magnitude of contrarian reallocation will preserve the optimal capital ratio at all
times.

Finally, we analyze the spillovers of the described financial sector dynamics on the real
economy. We assume that the financial sector intermediates capital to the real economy
and creates jobs for households. The fate of the household sector is thus intricately linked
to levels of wealth and risk-taking in the financial sector: during boom times, the household
sector benefits from ample capital investment. During busts, losses in the financial system
spill over into the real economy. Our earlier lessons on boom-bust dynamics and on how
desirable it is to hold capital shares constant carry over to this extension: Households
collectively prefer a stable supply of capital. Their welfare is maximized when the fraction
of net worth allocated to the different risk types is held constant. Furthermore, spillovers
to the real economy may justify rescue packages and bailouts when the financial sector
is under-capitalized. We show that bailouts interfere in a major way with the natural
selection process of capitalist economies. Traditional economic theories emphasizes the
incentive effects of bailouts. By contrast, in our evolutionary setting, the adverse effects of
bailouts come from selection not incentives: a bailout allows high risk-takers to continue to
operate at the expense of low risk-takers. In the language of evolutionary theory, it allows
mal-adapted agents to continue to operate at the expense of better-adapted agents.

Literature Our work is related to a large strand of literature that studies the impor-
tance of net worth in the financial sector for the real economy. When financial markets are
imperfect, Jensen and Meckling (1976) and Stiglitz and Weiss (1981) emphasize that net
worth matters for economic activity. Bernanke and Gertler (1988) and Kiyotaki and Moore
(1997) emphasize furthermore that the distribution of net worth between more and less pro-
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ductive agents drives aggregate economic activity. In the aftermath of the Great Financial
Crisis, a flourishing literature including Gertler and Karadi (2011), He and Krishnamurthy
(2013) and Brunnermeier and Sannikov (2014), among others, have emphasized that low
net worth in the financial sector reduces financial intermediation to the rest of the economy
and depresses economic activity. Our work focuses, in addition, on how dynamic changes
in the composition of net worth within the financial sector drive aggregate volatility.

A closely related strand of literature aims to understand incentives for risk-taking in the
financial sector and uses the resulting insights to motivate financial regulation. Geanakop-
los and Polemarchakis (1986) as well as Greenwald and Stiglitz (1986) show that financial
market imperfections commonly give rise lead to pecuniary externalities that call for policy
intervention. This is of particular importance for risk-taking when there are fire sales, as
studied e.g. by Lorenzoni (2008), Korinek (2010) and Dávila (2013). Our paper is closely
related to this literature in that it also exhibits incomplete markets that give rise to pecu-
niary externalities. However, it focuses on how compositional effects within the financial
sector give rise to risk-taking dynamics that are ineffi cient in both directions —during booms
and busts. Alternative explanations for excessive risk-taking in the financial sector inlcude
Farhi and Werning (2016) and Korinek and Simsek (2016) who focus on aggregate demand
externalities. Admati et al. (2010) propose moral hazard as the leading explanation for
risk-taking in the financial sector. A growing branch of literature also analyzes how devi-
ations from perfect rationality may have led to the observed risk-taking behavior. For an
example in the context of the financial crisis see Barberis (2013). Daniel and Hirshleifer
(2015) survey the implications of overconfidence in financial markets.

A third strand of literature to which our work is related analyzes the effects of het-
ereogeneity among financial market participants. A common form of heterogeneity in this
literature is that financial market participants differ in their beliefes. Friedman (1953) hy-
pohtesized that the market always selects the investors with the most accurate beliefs, but
Blume and Easley (2006) demonstrated that this no longer holds when financilal markets
are incomplete. In a similar vein, Geanakoplos (2009) describes a leverage cycle that is
driven by wealth reallocations between optimists and pessimists. Burnside et al. (2015)
analyze how booms and busts may arise from social dynamics when agents have hetero-
geneous beliefs about long-run fundamentals and when beliefs are subject to contagion
dynamics. Both papers share with our paper that there is heterogeneity among financial
market participants– they assume that different agents arrive at different actions because
of heterogeneous beliefs; in our work, by contrast, agents have identical beliefs but differ
in their technology. The main benefit is that this enables us to conduct a detailed welfare
analysis and arrive at a number of interesting policy implications. As in the literature on
heterogeneous firms (see e.g. Hopenhayn, 1992), heterogeneous agents in our setup do not
have access to complete risk markets.

Finally, a number of papers study how evolutionary dynamics shape the preferences and
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by implication the behavior of economic agents. See e.g. Robson and Samuelson (2011) for
a survey and Brennan and Lo (2011) for an application to financial markets. Our work is
similar in methodology but focuses on the implications of the dynamics of net worth among
heterogeneous actors in financial markets for aggregate risk-taking.

2 Baseline Model

Population We consider a population of financial market participants called “bankers”
who are of different types i ∈ I ={1, ...N} and live in discrete time t = 0, 1, 2, ...T where T
is a large number. All bankers in the population have the same utility function over their
final wealth kT ,

U(kT ) = ln(kT )

Each type i consists of a continuum of agents in the unit interval z ∈ [0, 1] who are endowed
with total initial capital ki0 =

∫ 1
0 ki0(z)dz, which we assume positive ki0 > 0 for all types.

Throughout our analysis, it is suffi cient to keep track of the total capital kit =
∫ 1
0 kit(z)dz

managed by bankers of type i —how this capital is distributed across individual bankers of
type i is irrelevant since they all behave in the same way. In the following, we will call kit
the “type i capital.”

Investments We denote by Si the set of investment strategies to which bankers of type
i have access. An investment strategy S ∈ Si delivers a stochastic one-period return de-
scribed by the distribution function FS(R̃S) that is independent across periods and satisfies
FS(0) = 0. The law-of-motion for capital of type i invested in strategy S is

kit+1 = R̃Skit

The assumption that different bankers have access to different investment opportunities
reflects heterogeneity in their technologies. For example, some bankers may be specialized
in lending whereas others are specialized in trading; some may be better at evaluating safe
investments whereas others may be specialists in risky opportunities. Such heterogeneity
in technologies are amply documented across firms of all types (see e.g. Bernard et al.,
2003). Adrian and Shin (2010) provide empirical evidence of heterogeneity in the return
characteristics of different firms in the financial sector.

An assumption implicit in all models of firm heterogeneity is that firms cannot perfectly
insure their idiosyncratic shocks (see e.g. Hopenhayn, 1992). If they could, then hetero-
geneity would not matter and we could focus on the behavior of a single representative firm.
In our baseline model we assume that risk markets are completely absent. In Section 5.1
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we will consider the case that individual bankers can share up to a fraction 1 − φ of their
business risk. .

This assumption deserves further discussion since economists generally believe that the
financial sector is extremely effi cient at allocating and sharing risk. However, the risk that
is shared effi ciently is portfolio risk and is distinct from the business risk of individual
bankers: the portfolio risk of the financial assets that a financial institution holds on its
balance sheet (e.g. mortgages, business loans, or even equities) can be shared relatively
easily via re-trading, syndication, securitization, or credit default swaps. By contrast, the
risk inherent in the franchise of a financial institution is much more diffi cult to share: for
example, it is diffi cult for an investment bank to insure against the risk of primary markets
drying up which deprives them of much of their business, or for a mortgage lender to insure
against the risk of mortgage markets drying up, which inhibits their main business activity.
This is the incompleteness in risk markets that we consider here.

In a first step, we narrow down the set of investment strategies that will be considered
by bankers of a given type.

Bankers rank investment opportunities according to their geometric mean return. The
optimal investment opportunity for type i is

Si = arg max
S∈Si

E
[
ln R̃S

]
(1)

The result follows from maximizing expected utility E[ln kiT ] and observing that returns
across time periods are i.i.d.

The optimal strategy for each type i maximizes the geometric mean return, i.e. the
growth rate of its capital. This criterion follows in a straightforward manner from the utility
function of bankers. It is well-known in the literature on optimal investment strategies, in
which it is frequently referred to as the “Kelly Criterion”after Kelly (1956) or the capital
growth criterion since it maximizes the average growth rate of the bankers’portfolio. Given
the law-of-motion for capital, the log of type i capital ln kit follows a martingale with drift
E[ln R̃Si ].

For compactness of notation, let us denote by R̃i = R̃Si the random variable that
describes the return process of the optimal strategy Si chosen by type i bankers, and by
R̃it the period t realization of that random variable.

Aggregate Implications We collect in the diagonal matrix R̃t = diag[R̃1t, R̃2t, ...R̃Nt]

the stochastic returns of the strategies chosen by all bankers. Then the vector of capital
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positions kt = (k1t, k2t, ...knt)
′ follows the law-of-motion

kt+1 = R̃tkt = ki0

t∏
u=0

R̃u

We denote the aggregate capital stock in the economy by the capital letter Kt =
∑

i∈I kit =

ιNkt where ιN = (1, ...1)N is a row vector of ones. Given a vector kt, the aggregate capital
stock in the following period will be

Kt+1 =
∑

R̃itkit = ιN R̃tkt

Only bankers who earn the maximum geometric mean return in the economy will survive
over time. Conversely, those who earn a geometric mean return below the maximum will be
excluded over time by natural selection. We denote the maximum geometric mean return
across all types of bankers i ∈ I by

ln R̄ = max
i∈I

E
[
ln R̃Si

]
Then we find:

Lemma 1 (Exclusion of Inferior Strategies) Bankers who earn a geometric mean re-
turn below the maximum E[lnRSj ] < ln R̄ will see the fraction of their capital in the economy
converge to zero,

lim
T→∞

kjT /KT = 0 a.s.

Proof. The proof follows from the weak law of large numbers applied to the logged variables.

Order by Increasing Riskiness We assume w.l.o.g. that the set of bankers I is ordered
by increasing variance of the investment strategy V ar(R̃i), i.e. if i > j then V ar(R̃i) >
V ar(R̃j). Accordingly, we call i the risk type of bankers. This proves useful since the
bankers that survive over time will not significantly differ in their geometric mean return
according to Lemma 1 —types with geometric mean return that is significantly below R̄ will
be rapidly excluded from the population —but may differ greatly in riskiness. This makes
the riskiness of each type its main distinguishing feature.

Let us define an ordinal measure of the riskiness of different capital allocations:

Definition 1 (Riskiness of Capital Allocation) For two capital allocations kt and k′t
with aggregate capital Kt and K ′t respectively, we call allocation kt riskier than k′t if∑
0≤i≤n kit/Kt ≤

∑
0≤i≤n k

′
it/K

′
t∀n ∈ {1, ...N} with strict inequality for some n.
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Intuitively, an allocation kt is riskier than another allocation k′t if for any risk level n,
there is a smaller fraction of capital allocated to strategies safer than n under allocation kt
than under allocation k′t.

Let us also define a measure of the volatility of the aggregate capital stock:

Definition 2 (Volatility) The n-period-ahead volatility of the aggregate capital stock is

Vt+n =
Std (Kt+n)

Kt

Our measure Vt+n consists of the average standard deviation of returns of the different
investment strategies weighted by the fraction kit/Kt of each risk type. If n = 1, we will
simply speak of the period-ahead volatility.

2.1 A Two-by-Two Example

Let us now consider an economy in which there are two states of nature in every period
(low or high) and two types of bankers (safe and risky). Following the logic of Lemma 1, we
limit our attention to the case in which both types of bankers earn the same geometric mean
return R̄. Technically speaking, the logs of the different types of capital are martingales
with equal drift ln R̄ but increasing variance. This implies that different types exhibit zero
selective difference in the long run and, in expectation, all survive with a positive share of
capital.

In the short run, however, different types of bankers have different exposure to the
aggregate shock. In each period, selection favors those types that are better adapted to
the realized shock: in response to a high aggregate shock, risky types earn higher returns
than safe types, and the relative fraction of risky capital in the economy rises. Conversely,
in response to a negative shock, risky types suffers greater losses than safe types, and the
relative fraction of risky capital declines.

The aggregate state that is realized in each period is “low”with probability p and “high”
with probability 1− p. When there are only two states of nature, all random variables with
geometric mean return R̄ are of the form

R̃s =

{
R̄(1 + s)

− 1
p in the low state L (with prob. p)

R̄(1 + s)
1

1−p in the high state H (with prob. 1− p)

for some return dispersion s ≥ 0. For the resulting family of random variables, both the
expected return E[R̃s] and the variance V ar(R̃s) are increasing functions of s. Intuitively,
higher variance is compensated by higher return so that the expected log utility of the
different options is the same. In the described class of random variables, each risk type
i ∈ I is thus fully described by a return dispersion si. Since we ordered risk types by
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increasing riskiness, the return dispersion si is increasing in i. Furthermore, Condition ??
is satisfied, i.e. that all higher moments are an increasing function of i.

Volatility and Pro-cyclicality We now use the described setup to analyze the dynamics
of aggregate risk-taking and capital in the economy. A few immediate results follow:

Proposition 1 (Volatility) For any horizon n, the n-period ahead volatility of the aggre-
gate capital stock Vt+n increases the riskier the period t capital allocation kt of the banking
sector.

(Pro-Cyclicality) Risk-taking in the economy is pro-cyclical, i.e. starting from an ini-
tial allocation of capital kt, the more positive shocks the economy has experienced,

(i) the greater the absolute and relative loss of aggregate capital from a negative shock
(and the greater the gain from a positive shock) in the following period,

(ii) the greater the n-period ahead volatility Vt+n of the aggregate capital stock for any
horizon n.

Proof. We observe that the n-period-ahead volatility of the aggregate capital stock is given
by

Vt+n =
Std (Kt+n)

Kt
=

∑
i∈I Std

(
R̃nit

)
kit

Kt
=
ιNStd

(
R̃nt

)
kt

Kt
(2)

where Std(R̃nt ) is taken element-by-element. The additivity of standard deviations in the
second equality follows since all returns are perfectly correlated with the aggregate shock.
The variance of the n-th power of R̃s is

V ar
(
R̃ns

)
= p (1− p) R̄2n

[
(1 + s)

−n
p − (1 + s)

n
1−p
]2

and is strictly increasing in s. This observation together with equation (2) and the definition
of riskiness implies the result on volatility.

For the results on pro-cyclicality, observe that a positive shock in a given period t

increases Kt+1 and renders the capital distribution kt+1 riskier than kt. The riskier the
capital allocation, the greater the relative loss from a low shock and, since Kt+1 is higher,
the greater the absolute loss from a low shock, proving point (i). Furthermore, equation (2)
implies that the n-period-ahead volatility is greater.

Minsky’s Financial Instability Hypothesis It is straightforward to interpret Min-
sky’s financial instability through the lens of our framework: Minsky’s observation was that
“booms sow the seeds of the next crisis;” in our framework, booms reallocate capital into
the hands of riskier bankers who accordingly invest the economy’s capital stock in riskier
investments. When the next adverse shock hits the economy, the economy is highly exposed
to aggregate risk and there is a large correction.
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In evolutionary terms, the phenomenon can be interpreted as an instance of temporary
maladaptation — after a series of good shocks, the risk profile of the capital stock has
adapted to a safer environment than what is appropriate as high risk types own an ever
larger fraction of the aggregate capital stock. When a negative shock hits, it turns out that
the sector is maladapted to a low return environment.

Simulation 1 (Volatility and Pro-Cyclicality) Let us illustrate the pro-cyclicality in
a simple example: assume N = 2 risk types i = 1, 2 with si = ir for r = 5% and with initial
capital distributed equally so ki0 = 1

N . We may call the capital invested under two types
risky capital and safe capital. We assume that the probability of the low state is π = 10%.
For simplicity we set R̄ = 1 so there is no trend growth in our illustration. Figure 1 shows
a typical path of the two types of capital kit as well as the aggregate capital position of the
economy Kt and the relative fraction κt = k2t/Kt of the risky type.
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Figure 1: Simulation of Risk-Taking Dynamics

The results of Proposition 1 can be seen clearly: at first, a series of good shocks favors
riskier bankers and causes aggregate capital to quadruple —at the height of the boom, the
capital of risky bankers has increased more than five-fold and makes up 70% of the total,
as displayed in the bottom panel, whereas the capital of safe bankers declines to 30% of
the total. As the economy experiences a number of negative shocks around period 30, the
fortunes reverse —risky bankers loose 96% of their capital, contributing heavily to an 89%
decline in the aggregate capital stock. Towards the end of the simulation period, the risky
type catches up again due to a series of positive shocks.
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2.2 Optimal Capital Allocation

This raises the question of what the optimal allocation of capital among the different types
of bankers would be in order to maximize the growth of the aggregate capital stock. We
solve the optimization problem of a planner who allocates capital every period to maximize
the geometric mean return on the aggregate capital stock,

max
kit,Kt

E [lnKT ] where
∑

kit = Kt =
∑

R̃it−1kit−1∀t (3)

Proposition 2 (Optimal Capital Allocation) (i) The solution to the planner’s dy-
namic optimization problem (3) features constant capital shares kit/Kt = κ∗i ∀t that solve
the static optimization problem

max
κi∈[0,1]

E

[
ln
∑
i

R̃iκi

]
(4)

(ii) The planner’s allocation leads to faster growth, i.e. denoting by Kt and K∗t the path
of aggregate capital under the planner’s optimum and the decentralized equilibrium, we find
limT→∞KT /K

∗
T = 0 a.s.

Proof. For part (i), defining the capital shares κit = kit/Kt, the argument of the planner’s
dynamic optimization problem (3) can be re-written as

E [lnKT ] = E

[
ln
∑
i

R̃iκiT−1

]
+ E [lnKT−1] =

=
T−1∑
s=0

E

[
ln
∑
i

R̃iκis

]
+ lnK0

The terms E[log
∑

i R̃iκis] enter the dynamic optimization problem additively without any
interactions. Therefore setting the portfolio weights in each period κit = κ∗i to the solution
of the static problem (4) also maximizes the dynamic optimization problem.

For part (ii), denote by κit the capital shares in the decentralized equilibrium and observe
that E[log R̃iκit] ≤ E[log R̃iκ

∗
i ]∀t with strict inequality except when κit = κ∗i . The result

then follows from the weak law of large numbers.

The proposition implies that the planner solves a standard static portfolio allocation
problem every period and finds it desirable to keep the weights attached to each investment
strategy constant over time. This contrasts markedly with the booms and busts under the
free market allocation described in Proposition 1. The difference arises because the planner
can reassign the economy’s capital across to different investment opportunities every period
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to optimize the risk/return trade-off of the aggregate capital stock. By contrast, individual
bankers in the laissez faire equilibrium can only invest in their own techologies. As a result,
part (ii) of the proposition shows that the planner’s allocation will, in the long run, always
outperform the decentralized boom-and-bust dynamics.

Simulation 2 (Optimal Capital Allocation) We include an illustration of the optimal
capital allocation in our earlier Simulation 1 of decentralized capital dynamics. For N = 2

risk types, we denote by κ = k1/K the capital share in strategy 1 and express the portfolio
allocation problem of the planner as

max
κ∈[0,1]

E
[
u
(
R̃
)]

where R̃ = κR̃1 + (1− κ) R̃2

If the optimum is interior, then it equates the risk-adjusted returns of the two investment
opportunities,

E
[
u′
(
R̃
)(

R̃1 − R̃2
)]

= 0

which can be solved for

κ∗ =
pRH2

RH2 −RH1
+

(1− p)RL2
RL2 −RL1

(5)
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Figure 2: Decentralized risk-taking dynamics versus optimal capital allocation

Given our earlier parameters, we find that the optimal share of capital allocated to
investment opportunity 1 is κ∗ = 46.6%. Figure 2 compares the decentralized dynamics
from Simulation 1 (in solid lines) to the socially optimal capital allocation (dashed lines),
using the same realizations of the stochastic process as in the original figure. The aggregate
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capital stock grows faster under the socially optimal allocation. Furthermore, it leads to
constant volatility whereas the volatility in the decentralized allocation fluctuates greatly.

3 Decreasing Returns and Spillovers to the Real Economy

Our baseline model assumed that investment opportunities did not require any inputs other
than capital and delivered constant returns to scale. This section extends the baseline by
assuming that production requires not only capital but also complementary factors such as
labor and land, which cannot easily be reproduced. As the capital stock in the economy
grows, the limited supply of these complementary factors reduces the returns to capital.
Conversely, declines in the aggregate capital stock imply that complementary factors are
more abundant and capital earns higher returns. The resulting decreasing returns to capital
lead to selection dynamics that imply that the aggregate capital stock in the economy is
bounded and fluctuates around an ergodic steady state, no matter how productive (or
unproductive) the economy’s investment opportunities are.

A second important insight from this section is that the net worth of the financial sector
is an important driver of output and labor income in the real economy. The boom and
bust dynamics in the financial sector that we analyzed before generate spillovers to the
real economy. This implies that the policies to smooth booms and busts in the financial
sector also stabilize the real economy —financial policy is a key element of macroeconomic
stabilization policy.

Let us introduce a unit mass of households h ∈ [0, 1] who each supply one unit of labor
every period. We assume that households themselves do not have access to financial markets
and live hand-to-mouth —they derive period utility u(wt) = lnwt from their wage income.1

Bankers invest capital in their desired investment opportunity, and after the returns R̃t are
realized, they lend all capital K ′t =

∑
i R̃iki to competitive firms in the real economy who

have access to a Cobb-Douglas production technology y = Akα`1−α that combines capital
and labor to produce output. Capital fully depreciates, and the output from production is
consumed or invested as future capital. Given this setup, we find:

Lemma 2 (Bank Capital and Wages) Wages and the return on capital in the economy
are given by

wt = w
(
K ′t
)

= (1− α)A(K ′t)
α (6)

rt = r
(
K ′t
)

= αA(K ′t)
α−1

1This is a reasonable characterization for a majority of households worldwide. In the US, for example,
76% of households are living paycheck-to-paycheck as defined by having liquid savings of less than three
months worth of income (CNN Money, 2013). Only 18% participated in markets for aggregate risk as
defined by holding liquid equity investments (see Kennickel, 2013).
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Proof. The result follows since firms competitively maximize profit and markets for capital
and labor have to clear at the available quantities ` = 1 and K

′
t.

The lemma shows that both wages and the return to capital depend crucially on the
capital of the banking sector. Higher capital leads to greater wages but decreasing returns
on capital. Both wages and the return on capital are taken as given by individual agents
—the effects of aggregate capital in the banking sector on the two variables thus represent
pecuniary externalities.

The law-of-motion for net worth of sector i bankers is now

kit+1 = rtR̃itkit

The optimal behavior of bankers as well as that of a social planner in our extended setting
is unchanged from the baseline model:

Lemma 3 (i) The optimal strategy of type i bankers continues to be given by the maximum
geometric mean criterion described in Lemma 2.
(ii) The optimal strategy of a social planner who maximizes either banker welfare, worker
welfare, or aggregate welfare is given by the constant capital shares described in Proposition
2.

Proof. (i) The optimization problem of a type i banker is described by the period-by-period
problem

max
S∈Si

E
[
ln rtR̃S

]
= E [ln rt] + max

S∈Si
E
[
ln R̃S

]
Since individual bankers take rt as given and the term enters the optimization problem
additively, the solution to the problem is the same as in Lemma 2.

(ii) The optimal strategy of a planner who maximizes banker welfare U = E[lnKT ] is
given by the period-by-period problem

max
κi∈[0,1]

E
[
ln rtK

′
t

]
= max

κi∈[0,1]
E
[
lnαA(K ′t)

α
]

= max
κi∈[0,1]

αE

[
ln
∑
i

R̃iκi

]
+ E [lnαA]

The solution to this problem is given by Proposition 2.
The optimal strategy of a planner who maximizes worker welfare Uw =

∑
βt lnwt is

given by

arg max
κit∈[0,1]

∑
t

βtE
[
ln (1− α)A

(
K ′t
)α]

= arg max
κit∈[0,1]

∑
t

βtE
[
lnK ′t

]
where K ′t =

∑
i

R̃iκi

where we drop constant additive and multiplicative terms. For t = 0, the solution is given
by the optimal capital shares described in Proposition 2. To maximize the term E[lnK ′t] in
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the sum above for any given t, we observe that

max
κit∈[0,1]

E
[
lnK ′t

]
= max

κit∈[0,1]
E

[
lnKt

∑
i

R̃itκit

]
= max

κit∈[0,1]
E

[
lnαA(K ′t−1)

α
∑
i

R̃iκi

]

= αE
[
lnK ′t−1

]
+ E [lnαA] + max

κit∈[0,1]
E

[
ln
∑
i

R̃iκi

]
(7)

where the second step employs the relationship Kt = rt−1K ′t−1 = αA(K ′t−1)
α. Following

the logic of induction, if the strategy of Proposition 2 solves the maximization problem for
all terms up to period t− 1, then equation (7) shows that the same strategy also solves the
maximization problem in period t.

A planner who maximizes aggregate welfare maximizes a weighted sum of banker and
worker welfare U +γUw. The proof follows along the same lines as for bankers and workers
separately.

Let us now investigate the effects of the strategies of decentralized bankers and of the
social planner on the dynamics in the real economy. We find the following:

Proposition 3 (Smoothing Spillovers to the Real Economy) The social planner’s
allocation exhibits (i) a smaller range of fluctuations for capital, output and wages and
(ii) higher geometric mean levels for the three variables compared to the decentralized equi-
librium.

Proof. In the decentralized equilibrium, the lower bound K (upper bound K̄) on capital
is reached asymptotically if all capital is held by the type with the lowest (highest) possible
shock realization R̃ (or R̃) and a large number of the lowest (highest) shocks materialize.
The capital level then coverges towards a level defined by the fixed point K = r(K)R̃K (or
K̄ = r(K̄)R̃K̄) or, equivalently,

K =
[
αA
(
R̃
)α] 1

1−α
and K̄ =

[
αA
(
R̃
)α] 1

1−α

In the planner’s allocation, capital is always allocated in constant fractions, resulting in
stochastic returns R̃∗ that satisfy R̃

∗
= min{R̃∗} > R̃ and R̃

∗
= max{R̃∗} < R̃ and

corresponding bounds on capital that satisfy K < K∗ < K̄∗ < K̄. Output and wages
are strictly monotonic transformations of the aggregate capital stock, so this proves point
(i). Next observe that the planner’s strategy in any period t amounts to maximizing the
E[logK ′t]. Given the Cobb-Douglas production function, this also maximizes the geometric
mean of output and wages, proving point (ii).
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Simulation 4 (Decreasing Returns and Spillovers to the Real Economy) We
simulate the described dynamics building on the parameterization and shock process in
Simulation 1 and setting the capital share α = 1/3 and productivity A such that αA = 1.
The result is depicted in Figure 3. Compared to our earlier Figures 1 and 2, the decreasing
returns introduce two novel considerations: first, as illustrated in the top panel, growth in
the capital of one type comes at the expense of the other type, i.e. due to the decreasing
returns, the sector that experiences the relatively lower return shock R̃it shrinks (even if
the return shock R̃it is positive). For example, during the initial boom, the capital of
safe bankers declines both in relative and absolute terms. Secondly, there is strong mean
reversion —as a result, aggregate capital never exceeds an upper threshold K̄ that satisfies
αA(RH2 K̄)α = K̄ or a lower threshold K that satisfies αA(RL2K)α = K, as illustrated in
the second panel of the figure (the two thresholds are indicated by dotted lines).
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Figure 3: Simulation with Decreasing Returns and Spillovers to the Real Economy

The third panel shows the dynamics of the wage wt (top line) and the rental rate of
capital rt (bottom line), which follow the dynamics of the aggregate capital stock. Finally,
the bottom panel shows that the relative fraction of capital held by the risky versus the
safe type is unchanged from our baseline simulation.
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3.1 Bailouts

The welfare of workers in the real economy depends critically on a well-capitalized financial
sector since wages are a function w(K ′t). When the financial sector is under-capitalized,
workers may thus find it collectively desirable to provide transfers (or “bailouts”) to the
bankers. In particular, we observe the following:

Lemma 4 (Bailout Threshold) If K ′t < K̂ then the welfare of workers increases if they
provide a transfer of T (K ′t) = K̂−K ′t to bankers where the threshold K̂ is given by w′(K̂) = 1

or, equivalently,
K̂ = [α (1− α)A]

1
1−α

Proof. As long as K ′t < K̂, we find w′(K ′t) > 1, i.e. a marginal unit of additional capital
transferred to the banking sector raises wages by more than a marginal unit and raises the
consumption of workers by w′(K ′t) − 1 > 0. Their period t consumption thus increases to
ct = w(K̂)− (K̂ −K ′t) > w(K ′t).

The lemma thus provides a simple theory of endogenous bailouts that are voluntarily
provided from workers to bankers. The role of bailouts is simply to mitigate the financial
market imperfection that makes a shortage of capital in the banking sector so costly.

One of the most hotly debated questions after the recent financial crisis was how bailouts
may introduce distortions into the financial sector. A unifying theme in the related literature
was that bailouts distort incentives. By contrast, we identify a novel channel through which
bailouts introduce distortions into the financial sector — borrowing from the language of
evolutionary theory, bailouts interfere with the natural selection mechanism in capitalist
economies. To isolate this novel mechanism from the traditional argument about distorted
incentives, let us assume that the set of investment opportunities Si of each risk type is a
singleton, i.e. the optimal strategy Si of each risk type with returns R̃i is pre-determined.

The effects of bailouts generally depend on the manner in which they are allocated
to individual bankers. We generally believe that the least distortive manner of providing
bailouts is if they are given in a lump-sum fashion. This implies in particular that they are
provided independently of any endogenous variables that are affected by the choices of the
banker. In the following, we make the following assumption:

Assumption 1 (Uniform lump-sum transfers) Bailouts are provided as uniform
lump-sum transfers across bankers, i.e. each type i banker receives an exogenous transfer

T it =
T (K ′t)

N

We then observe the following effects:
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Proposition 4 (Interfering with the Capitalist Natural Selection Process) (i)
Bailouts allow for the survival of high risk types with inferior geometric mean return that
would go extinct in the decentralized equilibrium.

(ii) They may instead cause safer risk types with superior geometric mean return to go
extinct.

(iii) In the extreme, only high risk types to which a planner would assign zero weight
will survive.

Proof. Let us define the (multiplicative) bailout return factor that is earned by each type
as RBit = 1 + T it /k

′
it = 1 + T (K ′t)/(Nk

′
it) which is decreasing in k

′
it, i.e. for a given bailout

T (K ′t) > 0, risk types with higher k′it have a lower bailout return factor. In the presence of
bailouts, the long-run survival of each risk type depends on the expected geometric mean
return E[log R̃i + logRBit ]. (The return rt affects all types equally and can thus be left out
of the comparison.)

Critically, bailouts are given when aggregate capital K ′t is low, which occurs after low
shock realizations. However, after low shock realizations, high risk types have on average lost
more than low risk types so k′it < k′jt for i > j. This implies that high risk types experience
a higher bailout return factor, which raises their geometric mean return compared to low
risk types and allows for their long-run survival, proving part (i). If the comparison of
expected geometric mean returns results in a strict inequality in favor of a high risk type,
lower risk types with superior geometric mean return may go extinct, proving part (ii).

Intuitively, bailouts that are distributed uniformly to all risk types benefit risky bankers
most since these suffer from the largest capital shortfalls precisely in those states of nature
in which bailouts are provided. This interferes with the capitalist natural selection process
and allows for the survival of ineffi cient risk types that would otherwise become extinct.2

The channel through which bailouts affect aggregate risk-taking is in marked contrast
to much of the existing literature on the topic: we find that bailouts increase risk-taking
via their effects on the capitalist natural selection process, whereas much of the existing
literature emphasizes how bailouts adversely affect the incentives of individual bankers.
The existing view on the adverse incentive effects of bailouts has been put in question in
recent years since there is little evidence to support the hypothesis that bankers knowingly
exposed their firms to existential risk (see e.g. Cheng et al, 2014). Our setup explains how
bailouts can have deleterious effects on risk-taking even though the incentives of bankers
are unaffected.

2The Proof of Proposition 4 also hints at how bailouts would have to be provided to be neutral for the
selection process —they would have to deliver equal RBit to all types. In practice, this is unfortunately very
diffi cult to implement since it would imply smaller bailouts to those who need them most in the sense that
they have recently suffered the highest losses.
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4 Idiosyncratic Dynamics of Risk Types

One of the main themes in studying heterogeneous firms is that there is a large amount of
technological churning, i.e. the production possibilities frontier of a given firm changes over
time. In our setting, we are interested in how idiosyncratic shocks affect not only expected
returns but also the riskiness of investment returns. We return to our baseline setup of
Section 2 but, following the practice in the literature on heterogeneous firms, we assume
that the set I encompasses all possible types of bankers. Shocks to the set of investment
opportunities of a given banker are described by a Markov process with transition matrix
M = (mij), where element mij captures the probability that a banker of risk type i turns
into risk type j in a given time period. The diagonal elements mii capture the probability
that a banker remains of type i. We assume that the matrix M satisfies the standard
properties of a transition matrix and is irreducible. The resulting law of motion of the
vector of capital positions is

kt+1 = MR̃tkt

There are several complementary economic interpretations for this law of motion: First,
as we observed in the preceding paragraph, it may capture idiosyncratic shocks to the
set of investment opportunties of bankers. For a given bank, such shocks may arise from
stochastic changes in the exogenous environment in which it is operating, or from shifts in
decisionmaking power to agents with different expertise, e.g. a shift of managerial power
from traditional lending to the trading desk. Secondly, the law of motion may also capture
changes in the set of financial institutions that are operative. For example, bankers may
exit the market and may be replaced by new bankers of different types, or they may be
subject to mergers and take-overs. Third, in a somewhat broader interpretation of our
setup, the law of motion may capture reallocations of funds by external investors.

In the following, we will use the expression idiosyncratic dynamics of risk types to
describe all three phenomena. We observe that all three of them are wide-spread in financial
markets. The reason why they are all captured by the same law of motion is that investment
returns are homogenous of degree 1 in our setup. However, they naturally give rise to
somewhat different interpretations of the elements in the transition matrixM . Furthermore,
all three phenomena are influenced by the regulatory environment in financial markets. For
example, regulatory restrictions that limit banks to specific business areas may reduce
idiosyncratic shocks to the set of investment opportunities; entry restrictions and limits on
take-overs (such as Glass-Steagall) may slow down changes in the set of financial institutions.
The matrix M is thus endogenous to the regulatory environment, which adds a normative
dimension to our analysis.

For ease of exposition, and since we are mainly interested in aggregate implications, we
will describe the idiosyncratic dynamics of risk types in the following as if they captured
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flows of capital between different risk types. In this interpretation, the element mij in the
transition matrix captures the probability that a dollar of risk type i moves under risk type
j in a given time period.

If we leave the transition matrix M unrestricted and ask what optimal capital realloca-
tions would maximize long-run capital growth in the economy, we find a familiar result:

Proposition 5 (Optimal Idiosyncratic Dynamics of Risk Types) The optimal
transition matrix is time-invariant and has identical columns

M∗ =

 κ∗1 · · · κ∗1
· · · · · · · · ·
κ∗N · · · κ∗N

 (8)

where (κ∗1, ..., κ
∗
N ) are the optimal fractions of aggregate capital to be invested in opportunities

1 to N that we characterized in Proposition 2.

Proof. Proposition 2 showed that it is optimal to allocate constant fractions (κ∗1, ..., κ
∗
N ) to

the different investment opportunities. The matrix M∗ simply implements this allocation
for any initial vector of capital holdings kt.

Proposition 5 hints at what kind of dynamics policy should aim to encourage: since it is
desirable for capital to be allocated in constant proportions, policy should aim to encourage
dynamics that undo the ineffi cient boom-bust dynamics that arise in the decentralized
equilibrium.

However, it is unlikely that the three phenomena described above will give rise to these
optimal dynamics in practice. Let us thus investigate two alternative scenarios that cap-
ture risk type dynamics that are likely to be encountered in the real world: symmetric
idiosyncratic shocks and state-dependent idiosyncratic shocks that capture momentum and
contrarian dynamics of risk types. We limit our attention to two risk types I = {1, 2} to
obtain simple analytic results.

4.1 Symmetric Idiosyncratic Shocks

Symmetric shocks can be interpreted in the three ways listed in the beginning of the section
if the idiosyncratic dynamics of risk types are independent from the realization of aggregate
shocks, i.e. if idiosyncratic shocks to the set of investment opportunities, changes in the
set of financial institutions, and reallocations of funds by external investors are driven by
factors unrelated to aggregate shocks.

For two risk types, symmetric idiosyncratic shocks are described by a transition proba-
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bility µ ∈ (0, 1] and a transition matrix

M sym =

(
1− µ µ

µ 1− µ

)

This matrix is no longer able to implement the optimal capital allocation that we de-
scribed above. However, under random reallocation, we can make two interesting observa-
tions:

Proposition 6 (Symmetric Idiosyncratic Shocks, Two Risk Types) (i) Introduc-
ing a small transition probability µ > 0 is desirable if κt < min {κ∗, 1/2} or κt >

max {κ∗, 1/2} and undesirable for κt ∈ (κ∗, 1/2);
(ii) The optimal transition probability µ is a function µ(κt) of the relative capital allo-

cation κt at time t; for κt 6= 1/2 it is given by

µ∗ (κt) = min {max {0, µ (κt)} , 1} where µ (κt) =
κt − κ∗
1− 2κt

(9)

For κt = 1/2, any µ is optimal since random symmetric reallocation does not affect the
allocation of capital and is irrelevant.

Proof. We drop the time subscript and observe that for a given capital allocation κ, the
transition probability µ that maximizes geometric mean growth in the following period
solves

max
µ∈[0,1]

E
[
ln K̃

]
where K̃ = [(1− µ)κ+ µ (1− κ)] R̃1 + [µκ+ (1− µ) (1− κ)] R̃2

The optimality condition to this problem is

dE
[
ln K̃

]
dµ

=
p (1− 2κ)

(
RL1 −RL2

)
KL

+
(1− p) (1− 2κ)

(
RH1 −RH2

)
KH

= 0

Evaluating the derivative at µ = 0, we obtain

dE
[
ln K̃

]
dµ

∣∣∣∣∣∣
µ=0

= Θ (1− 2κ) (κ− κ∗) where Θ < 0

This immediately delivers point (i).
For point (ii), the optimality condition is satisfied for any µ if κ = 1/2. Otherwise,

substituting for KL and KH delivers an optimality condition for µ that depends on κ and
that be solved for the expression µ(κt) in (9). If µ(κt) is outside the unit interval, then
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the corner of the interval [0, 1] that is closest to µ(κt) represents the constrained optimum
transition probability, since the objective function is monotonic in µ in the relevant range.
This is captured by the min-max expression in equation (9).

0 k* 1/2 1

0

Figure 4: Benefit of random symmetric reallocation dE[ln K̃]/dµ at µ = 0

To further illustrate the results of the Proposition, the effect of introducing a small prob-
ability of symmetric reallocation is depicted in Figure 4. The figure evaluates dE[ln K̃]/dµ

at µ = 0 over the domain κ ∈ [0, 1] for the case κ∗ < 1/2. If the capital allocation is close
to the corners of the interval [0, 1] then it is far from the effi cient value κ∗ and symmetric
reallocation is desirable. By contrast, if the capital allocation is in the interval (κ∗, 1/2),
symmetric reallocation moves the capital allocation away from κ∗ towards 1/2, which is
undesirable. Intuitively, symmetric reallocation leads to mean regression in risk types that
pushes the capital shares towards 1/2. This is desirable if it brings the capital shares closer
to the optimum κ∗.

Simulation 3 (Effects of Symmetric Idiosyncratic Shocks) We incorporating sym-
metric idiosyncratic risk dynamics into the example of Simulation 1. Figure 5 compares
the wealth dynamics without idiosyncratic shocks (solid lines) to those with idiosyncratic
shocks (dashed lines) for the two risk types for µ = 5%. It can be seen that the dynam-
ics with symmetric idiosyncratic shocks are generally less extreme (top panel) and exhibit
smaller variation in relative capital shares (bottom panel). In the simulation, the aggregate
capital stock also ends up growing at a slightly higher rate since the allocation of capital to
the risky type is, on average, closer to its optimum κ∗.

4.2 State-Dependent Idiosyncratic Shocks

In financial markets, idiosyncratic shocks that affect risk types are frequently correlated
with the aggregate state of nature. For example, aggregate shocks may lead to systematic
changes in management that affect the set of investment opportunities of banks, or to
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Figure 5: Simulation of Risk-Taking Dynamics with Random Reallocation
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mergers, take-overs, exit decisions that systematically affect the set of financial institutions
that continues operation, or to systematic reallocations of funds by external investors who
either chase momentum or act as contrarians. We capture such effects by assuming a
stochastic transition matrix M̃t that is a function of the aggregate state of nature. The law
of motion for the vector of capital positions is then

kt+1 = M̃tR̃tkt

By imposing further structure on the transition matrices, state-dependent capital realloca-
tion allows us to capture the following interesting phenomena that are of particular interest
in financial markets. Let us denote by ML and MH the transition matrices in the low and
high state.

Definition 3 (Momentum) We call a state-dependent idiosyncratic shock process
momentum-based if the matrix ML is upper-triangular and MH is lower-triangular.

(Contrarian) Conversely, we call it contrarian if the matrix ML is lower-triangular
and MH is upper-triangular.

A momentum-based shock process implies that capital is, on average, reallocated from
risk types that have just performed relatively poorly to risk types that have just per-
formed relatively well. In practice, momentum-based reallocations of capital can occur
because traders or managers who have performed well are promoted whereas those who
under-perform are replaced, because firm exit and corporate take-overs are often concen-
trated on underperforming firms, or because funds are moved by external investors who
chase momentum. A contrarian shock process implies the opposite: capital is reallocated
from well-performing strategies to recently under-performing strategies. This type of shock
process is somewhat rarer in financial markets.

Two Risk Types We introduce momentum-based and contrarian idiosyncratic shock
processes in our example with two risk types by considering the two matrices

M+ =

(
1− ν+ 0

ν+ 1

)
and M− =

(
1 ν−

0 1− ν−

)
(10)

The transition matrix M+ moves a fraction ν+ ∈ [0, 1] of capital from risk type 1 to type
2 and therefore increases the average riskiness of the economy. The matrix M− reallocates
a fraction ν− ∈ [0, 1] from type 2 to type 1 and decreases the aggregate riskiness of the
economy. A momentum-based idiosyncratic shock process implies that ML = M− and
MH = M+; conversely, a contrarian shock process implies thatML = M+ andMH = M−.
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Optimal Capital Allocation There is one particular configuration of triangular state-
contingent transition matrices that preserves optimal capital allocations:

Proposition 7 (Optimal Contrarian Capital Reallocation) Starting from an opti-
mal capital allocation kt = (κ∗, 1 − κ∗)Kt, the contrarian reallocation matrices M+ and
M− with

ν+ = (1− κ∗)
(

1− RL2
RL1

)
and ν− = κ∗

(
1− RH1

RH2

)
preserve the optimal capital ratio (κ∗, 1− κ∗) at all times.

Proof. Starting from a capital allocation kt, the capital positions after a low shock real-
ization is

kt+1 = M+RLkt =

(
1− ν+ 0

ν+ 1

)(
RL1 0

0 RL2

)(
κ∗

1− κ∗

)
Kt

=
[
κ∗RL1 + (1− κ∗)RL2

]( κ∗

1− κ∗

)
Kt

which is an optimal allocation. A similar result can be verified for M−RHkt.

The role of the transition matricesM+ andM− defined in the Proposition is to precisely
undo the differential capital growth of the two sectors: a low shock realization increases the
fraction of capital allocated to the low risk strategy, but the transition matrix M+ undoes
the increase by reallocating capital from the low-risk strategy to the high-risk strategy. Con-
versely, a high shock realization leads to disproportionate growth of the high risk strategy,
but the transition matrix M− restores the optimal ratio (κ∗, 1− κ∗).

Momentum and Contrarian Capital Reallocation For allocations that differ from
the optimal ratio κ∗, it is useful to denote the capital ratio after the period t shock is realized
but before reallocation has taken place by prime variables,

k′t = R̃tkt and κ′t = k′t1/(k
′
t1 + k′t2)

This allows us to establish the following result:

Lemma 5 The optimal triangular reallocation matrix for given κ′t satisfies

if κ′t ∈ [0, κ∗) then M = M− with ν− =
κ∗−κ′t
1−κ′t

if κ′t = κ∗ then M = IN

if κ′t ∈ (κ∗, 1) then M = M+ with ν+ =
κ′t−κ∗
κ′t
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Proof. The proof for the first case follows readily from observing that 1
κ∗−κ′t
1−κ′t

0 1− κ∗−κ′t
1−κ′t

( κ′t
1− κ′t

)
=

(
κ∗

1− κ∗

)

The proof of the other two cases is analogous.

In the first case of the lemma, κ′t is suboptimally low and it is desirable to increase it,
making it optimal to apply the reallocation matrix M+ with the given value of ν+. The
third case reflects the opposite situation. Naturally, at κ′t = κ∗, no reallocation is indicated.

C:/Anton/Dropbox/Research/Evolution/EvolvingBankers/Matlab/dEdmu.pdf

Figure 6: Thresholds for optimal triangular mutation matrices

Next let us observe that there are two thresholds κL < κ∗ < κH such that κ′t < κ∗ for
St = L and κ′t > κ∗ for St = H for any κt ∈

[
κL, κH

]
. An example of the two thresholds is

illustrated in Figure 6. This observation has the following straightforward implication for
the desirability of momentum-based vs. contrarian idiosyncratic shock processes:

Proposition 8 (Contrarian Shock Processes and Volatility) (i) For κt ∈
[
κL, κH

]
,

the optimal idiosyncratic shock process is contrarian. For κt < κL, it is desirable to apply
the transition matrix M+; conversely, for κt > κH it is desirable to apply the transition
matrix M−, with the optimal transition rates ν+ and ν− given by Lemma 5.

(ii) For κt ∈
[
κL, κH

]
, contrarian idiosyncratic shocks reduce period-ahead volatility

Vt+1 whereas momentum-based shocks increases period-ahead volatility.

Proof. The proofs follow directly from the lemma and the discussion above.

The proposition captures that it is generally desirable to have contrarian idiosyncratic
shock processes for intermediate capital ratios κt ∈

[
κL, κH

]
and that this reduces volatiltiy.

By contrast, momentum-based reallocation generally increases volatility. However, these
results no longer apply if the capital ratio has veered towards one of the two corners of the
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unit interval as a result of consecutive shocks that go in the same direction —in that case,
it becomes desirable to move back towards κ∗ no matter what the prior shock.

The general desirability of contrarian forces for intermediate capital ratios poses a
dilemma, since many of the drivers of idiosyncratic shocks that we described have an inher-
ent tendency to introduce momentum. Sometimes, the best that policy can do is to aim to
stem against the momentum-based shocks inherent in the financial system.

Simulation 3 (Effects of Momentum-Based Idiosyncratic Shocks) Given the
prevalence of forces that lead to momentum-based idiosyncratic shocks on risk types, we il-
lustrate their effects in a variant of our earlier Simulation 1 that includes the state-dependent
transition matrices MH = M+ and ML = M− as defined in equation (10) where we set
ν+ = 5% and ν− such that (1− ν−)

π
= (1− ν+)

(1−π). Intuitively, momentum reinforces
the tendency of our economy to exhibit boom-bust patterns since the idiosyncratic shocks
favor recent high performers and penalize recent poor performers.

Panel 1 of Figure 7 shows that fluctuations of the high and low risk types are accentuated
by the momentum-based idiosyncratic shocks, increasing risk-taking in booms and reducing
it in busts. As a result, panel 2 shows that aggregate capital is more volatile than it would
be in the absence of momentum-based idiosyncratic shocks. In the given example, a long
series of positive shocks raises the capital stock that is allocated to high risk types to close
to 100% towards the end of the simulation period as indicated in panel 3. However, the
momentum-based shocks also imply that a fraction ν− of capital is returned to the low risk
type after a bad shock strikes at the end of the simulation period, which prevents the low
type from going extinct in the long run.

5 Extensions

5.1 Improvements in Risk-Sharing / Financial Development

• assume each banker needs to invest a minimum fraction φ of its net worth in his own
set of investment opportunities to guarantee proper effort

• for φ = 1 this nests our baseline; for φ ≤ κi∀i the optimum capital allocation is
feasible
the interesting case is φ ∈ [min{κi}, 1)

• improvements in risk-sharing, i.e. reductions in φ, bring the economy closer to the
optimum allocation
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6 Policy Interventions

Our evolutionary framework creates a novel role for public policy interventions that is quite
distinct from the way policy is traditionally evaluated —policy affects the economy through
dynamic changes in the composition of the financial sector rather than by constraining the
static choice set of agents. Risk-taking dynamics are driven primarily by such compositional
effects, i.e. by changes in the relative wealth of different types of bankers. In the simple
framework described so far, the first welfare theorem holds —private agents engage in opti-
mizing behavior and do not affect each other —so there is no role for policy intervention to
improve welfare. However, it is useful to analyze the effects of different policy interventions
in our baseline model to provide lessons for more general versions of the model, for example
the ones in which the financial sector creates spillovers to the real economy.

The first category of policy intervention to affect risk-taking dynamics that we consider
are restrictions on the set S∗ of investment strategies, for example in the form of limits on
risk-taking. Formally, this corresponds to imposing a ceiling V̄ on the set of investment
opportunities of bankers. We denote the remaining set of investment opportunities by
S∗ = {S ∈ Si : Std(RS) ≤ V̄ } and assume that it is non-empty.

We can then decompose the effects of limits on risk-taking in the following manner:

Corollary 2 (Limits on risk-taking) Imposing a ceiling V̄ on risk-taking for a given
period t leads to
(i) the static effect of reducing period t risk-taking, which lowers one period-ahead volatility
to

Vt+1 = k′t ·min
{
V̄ , ln R̃,

}
(ii) the dynamic effect of changing the composition of capital in the following period,

(ii.a) which lowers future volatilities Vt+2, Vt+3 etc. if the period t shock is high;
(ii.b) which raises future volatilities Vt+2, Vt+3 etc. if the period t shock is low.

Proof. The proof of part (i) is immediate. For the proof of part (ii.a), observe that a high
shock increases the riskiness of the capital stock distribution. It follows from Proposition 1
that future volatilities are higher. For part (ii.b), a low shock reduces the riskiness of the
distribution of the capital stock, and the opposite conclusions apply.

The static effect in part (i) of the corollary corresponds to the usual model of financial
regulation as restricting the choice set of economic agents. By contrast, the effects in part
(ii) of the corollary represent dynamic effects that are not present in traditional models of
homogenous agents and that are introduced by dynamic changes in the composition of the
financial sector, i.e. in how capital is allocated across different risk types. As illustrated by
the corollary, these dynamic effects of regulation have a long-lasting impact on the volatility
of the sector.
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Furthermore, as described in points (ii.a) and (ii.b), the impact of the dynamic effects
on future volatility is counter-cyclical — they reduce volatility following high shocks and
increase it following low shocks. In other words, they counteract the natural pro-cyclical
tendencies of the financial system that are described in Proposition 1.

In practice, such changes in the composition of the financial sector play a major role dur-
ing booms and busts in the financial sector. For example, most of the financial institutions
that went bust during the Financial Crisis of 2008/09, such as Countrywide, Washington
Mutual, etc. were among the fastest-growing players in the financial sector —in large part
due ot their aggressive risk-taking practices during the upswing.

Given the importance of the dynamic effects in Corollary 2, it is natural that regulators
in some jurisdictions have directly imposed limits on the growth of financial institutions.
Limits on asset growth are often viewed as an archaic intstrument since they are diffi cult to
motivate in standard models of regulation. In an evolutionary framework, by contrast, their
role is straightforward: they ensure that the financial sector does not come to be dominated
by the riskiest types. This has a stabilizing effect on the economy, again without reducing
the utility of bankers.

Let us return to our example with two types of bankers only. Formally, we assume
a restriction on the capital growth of bankers to a factor G over any n time periods, or∏t
k=t−n+1Rst < G. This implications of such regulation are as follows:

Corollary 3 (Limits on Asset Growth) A restriction to grow at most by a factor G
over n time periods,

(i) will never affect low risk types with s s.t.
(
RHs
)n ≤ G,

(ii) but will restrict the risk-taking of high risk types s if their cumulative return over
the previous m periods satisfies

t∏
k=t−m+1

Rsk > G/(R̄n−m−1RHs ) for some m < n, (11)

(iii) and lowers the volatility of the capital stock Vt+1 if condition (11) is satisfied for
any risk type.

Proof. Part (i) holds since a banker satisfying the condition will meet the growth restriction
even after n positive aggregate shocks. For part (ii), observe that if condition (11) holds,
then the return of type s over the preceding m periods is suffi ciently high that another high
return realization of strategy s would violate the growth limit, even if the banker’s funds
are parked in the risk-free strategy for the remaining n−m−1 periods. In that case, type s
bankers are forced to switch to a safer strategy s′ < s, which reduces the one-period ahead
volatility of the capital stock Vt+1, proving point (iii).
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Aside from the two policy measures discussed in Corollaries 2 and 3 that directly affect
the set of permissible investment strategies of bankers, the risk composition of the financial
sector is affected by many other public policy measures. For example, it has been argued
that low interest rates may favor high-risk investment strategies and shift bankers in that
direction, with long-lasting effects on the composition of the financial sector.

Capital Reallocations: Policy can also be aimed at affecting the capital reallocation
process. Examples include:

• Competition policy that favors take-overs and management changes accelerates
momentum-based selection and thus tends to increase aggregate financial sector
volatility. This effect is absent in traditional economic models.

—conservative, boring banks are desirable

• Arranged take-overs, e.g. during financial crises

The commonality of the described policy interventions is that they all work primarily
by affecting the dynamic composition of the financial sector, not the static incentives. This
effect has not been systematically studied in the existing literature.

7 Conclusion

In short, our paper embeds evolutionary dynamics in a traditional economic model based
on individual optimization in order to leverage the benefits of both approaches and develop
more robust models of financial markets and financial policies.
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