

BANK FOR INTERNATIONAL SETTLEMENTS

Discussion of

Characterising the financial cycle: a multivariate and time-varying approach

by Y Schüler, P Hiebert and T Peltonen

Mathias Drehmann, Bank for international Settlements

The views presented are those of the author and do not necessarily represent those of the Bank for International Settlements

The paper in a nutshell

- Propose new methodology to estimate the financial cycle
 - Select financial cycle frequencies through power cohesion
 - Aggregate individual cycle variables with time-varying weights
- Apply methodology to 13 European countries from 1970 until now
- Results
 - Financial cycle is longer than the business cycle
 - High degree of cross country heterogeneity

The variables

- Financial cycle:
 - Total credit
 - Residential property prices
 - Equity prices
 - 10y government bond yield
 - Wish list: commercial property prices, credit spreads
- Business cycle
 - GDP
 - Unemployment
 - CPI inflation
 - In paper 10y bond yield, now slope of the yield curve

Select financial cycle frequencies through power cohesion

- Identify peak in co-movement and span window around it
- Use this frequency to apply standard filter
 - Individual series
 - Financial cycle index

Build financial cycle index

- Pre-multiply variables with -1 so that rise indicates upswing in financial cycle
- Normalise each variable with historical EDF
- Weight by time-varying correlation with

financial index =
$$\frac{1}{i'C'_t}i'C_tY'_t$$

• and
$$c_{ij,t} = \rho_{ij,t} = \frac{\sigma_{ij,t}}{\sqrt{\sigma_{ii,t}\sigma_{jj,t}}}$$
 and
 $\sigma_{ij,t} = \frac{\lambda\sigma_{ij,t-1} + (1-\lambda)(y_{i,t} - 0.5)(y_{j,t} - 0.5) if > 0}{0 \quad if \leq 0}$

Where $\lambda = 0.89$

Key question: financial cycle dynamics are not intuitive

- Dominant cycle frequency: 15 years
 - In line with other papers in the literature
- Average length of the financial cycle: 7 ¹/₂ years
- Business cycle has odd dynamics

Figure 6: Euro area financial (black) versus business (red) cycle Nove: The n-axis measures the data and the y-axis the relative historic position, where 6/1 mpments the min/max and 0.5 is the historic median. The gray shalled area indicates a systemic banking crisis as identified by Lawen and Valencia (2012).

Key question: financial cycle dynamics are not intuitive (II)

- Idea 1: Variable selection
 - Why do you include equity prices and yields ?
 - Have high weight but different spectral densities and not clear peak in cross-spectrum (eg credit and yields)
 - They can go in offsetting direction to credit and house prices such as now
- Idea 2: Use of normalisation with historical EDF
 - Unclear how this works in real time?
- Idea 3: Forecasting endpoints
 - Does this generate the odd business cycle

7

Key question: financial cycle dynamics are not intuitive (III)

- Idea 4: Aggregation
 - Why aggregate first and then take the filter?
 - Can short term fluctuation swamp medium term frequencies?
 - How about phase shifts?
 - What happens if cycles of individual series are aggregated?
- Idea 5: Time-varying correlations
 - How do the results look with fixed correlations
- Would be great to explore step by step different drivers

Theory

- Main problem of the literature
 - Cycles are purely statistical
- Link to theory welcome
- Main frictions
 - Credit-in-advance
 - Leverage constraints
 - Time-varying risk aversion
- Unlikely to be the key frictions

Decomposing the financial cycle Juselius and Drehmann (2015)

- Leverage gap: Deviations of credit-to-GDP ratio from real asset prices
- Debt service gap: Deviation of credit-to-GDP ratio from lending rates

BANK FOR INTERNATIONAL SETTLEMENTS

Effects on growth

Effect on:	Δcredit _t	Δ(consumption +investment) _t	Δasset prices _t
from steady-state deviations			
Leverage gap _{t-1}	Negative	-	-
DSR gap _{t-1}	Negative	Negative	Negative
from short-run dynamics			
∆credit _{t-k}	Positive	Positive	Positive

• Interaction between gaps lead to *endogenous cycles*

(Pseudo) real-time prediction of the Great Recession

