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Abstract

This paper analyzes the role of state-dependent pricing in shaping cost-push infla-

tion in a multi-sector new-Keynesian model with input-output linkages and the sector-

specific degree of state-dependent price flexibility. Empirically, I estimate sector-specific

price flexibility and the degree of its state dependence by fitting the model to sectoral

price and quantity series for the US. I find a significant degree of state dependence

in most sectors of the US economy. Theoretically, I show that state-dependent pric-

ing can change the size and reverse the sign of cost-push inflation compared to the

non-state-dependent pricing model. Based on the empirical estimates of sector-specific

state dependence, I evaluate the quantitative importance of state-dependent pricing

for the cost-push inflation in the US over time. State dependence substantially affects

model-implied cost-push inflation during particular historical episodes - after the Great

Recession and the COVID crises.
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*I am incredibly grateful to my adviser, Céline Poilly, for her outstanding guidance and invaluable

support at every stage of work on this project. I want to thank Isaak Baley, Kenza Benhima, Sebastian

Bervoets, Frederic Dufourt, Francesco Furlanetto, Laura Gati, Mishel Ghassibe, Ralph Luetticke, Tomaso

Monaselli, Gernot Mueller, Stephen Niemann, Ivan Petrella, David López Salido, Emiliano Santoro for their
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1 Introduction

Quantifying the role of cost-push factors in the observed inflation is vital for effective mon-

etary policy. The multi-sector New Keynesian literature establishes that cost-push inflation

may result from sector-specific shocks. The magnitude of the cost-push effect depends on

the input-output structure of the economy and the price rigidity distribution across sectors

(Erceg et al., 2000; Aoki, 2001; La’O and Tahbaz-Salehi, 2020; Rubbo, 2020). This litera-

ture, however, pays little attention to the importance of the price rigidity framework and

largely relies on non-state-dependent pricing approximation (e.g. Calvo). The limitation

of non-state-dependent pricing is that the degree of price rigidity in each sector is constant

over time. Realistically, however, the degree of price rigidity is likely to depend on the

size of the shock1. For this reason, state-dependent pricing models may provide a better

approximation of pricing behavior. In particular, if state dependence is a quantitatively

important feature of price adjustment, a model with constant degree of price rigidity could

yield an incorrect assessment of the size and sign of the cost-push effect.

This project analyzes how sector-level state-dependent pricing shapes cost-push inflation

in a multi-sector New-Keynesian model. Specifically, it shows that the empirically plausible

degree of sector-specific state dependence can change the size and the sign of cost-push

inflation compared to the case of non-state-dependent pricing.

The analysis of this paper relies on the New-Keynesian Input-Output framework in

the spirit of La’O and Tahbaz-Salehi (2020); Rubbo (2020). The distinctive feature of my

model is the presence of sector-specific information friction resulting in state-dependent

price adjustment. While the conventional state-dependent pricing frameworks, such as

the menu-cost model, do not generally allow an analytical solution, state-dependent pricing

based on the information friction allows me to solve the model analytically and make a direct

comparison with the non-state-dependent pricing model. I model information friction as a

combination of a sticky information model (Mankiw and Reis, 2002) with a heterogeneous

inattention framework. This approach yields the degree of price flexibility corresponding to

the share of firms updating their information, which in turn depends on the sector-specific

state of the economy through a heterogeneous inattention mechanism.

The inattention framework requires establishing a set of variables tracked by inattentive

firms as a signal to update their information set. To keep the model tractable, I assume

that firms in each sector track only one variable, which I call the sector-relevant state. The

sector-relevant state is a sector-specific linear combination of exogenous shocks affecting

marginal cost in a given sector directly or through the input-output network. The change

in the sector-relevant state triggers a subset of firms to update their information about the

economy, and those who update receive the full information.

1Empirical evidence of state-dependent pricing Nakamura and Steinsson (2008); Eichenbaum et al. (2011);
Campbell and Eden (2014); Cavallo and Rigobon (2016); Carvalho and Kryvtsov (2021).
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The analysis of the role of state-dependent pricing in a multi-sector economy requires

a realistic parameterization of the state-dependent price rigidity framework in each sec-

tor. In the empirical section, I estimate sector-specific price flexibility and its degree of

state dependence by fitting the model to a set of sector-specific price and quantity series. I

parameterize price flexibility in each sector to depend on two parameters: average price flex-

ibility capturing the time-invariant (non-state-dependent) component of price adjustment,

and state-dependence parameter capturing the sensitivity of price flexibility to changes in

sector-relevant state. To estimate these two groups of parameters, I construct the model

response of sectoral prices to sector-relevant state innovations. This response captures the

effect of exogenous shocks on marginal cost in a given sector. Intuitively, the contemporane-

ous price response to sector-relevant shocks contains information about price flexibility. If

prices respond strongly to shocks, then price flexibility is high. Moreover, if the sensitivity

of prices to shocks depends on the shock size - price flexibility is state-dependent.

Estimating the price response to sector-relevant shocks requires a time series of sector-

relevant state measures for every sector. The model offers a mapping from the observed

sector-specific prices, wages, hours worked, and consumption to the corresponding sector-

relevant state measures, conditional on the calibration of sector-specific production, con-

sumption, and labor shares. Notably, this mapping does not involve the price-setting block

of the model and, hence, is unrelated to the details of the price rigidity framework. I cal-

ibrate the sector-specific shares in the model from the US input-output tables. Then, I

construct a set of sector-relevant state measures using the observed monthly sector-specific

series for 370 sectors of the US economy.

The estimation results yield sector-specific estimates of the average price flexibility and

state-dependence parameters, which vary substantially across sectors. Statistically signifi-

cant evidence of state-dependent pricing is found in about 70% sectors of the US economy

(weighted by consumption share). Moreover, the average price flexibility parameter posi-

tively correlates with the sector-relevant state volatility, meaning the sectors with volatile

marginal costs have more flexible prices on average. In contrast, the degree of state depen-

dence negatively correlates with the sector-relevant state volatility, meaning that sectors

with low marginal cost volatility exhibit a higher degree of state dependence.

In the theoretical section, I analyze the conceptual role played by state-dependent pricing

in shaping cost-push inflation. To this end, I derive the aggregate Phillips curve for which the

residual measures the cost-push effect. The Phillips curve residual is a function of sectoral

price flexibilities, production network, and sectoral price gaps between the efficient and the

observed sector-specific prices. To facilitate the subsequent analysis of the effect of the

state-dependent pricing framework compared to non-state-dependent pricing, I decompose

this Phillips curve residual into a main component and an input-output component.

The main component captures the cost-push inflation in a counterfactual economy where
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prices set by those who update their information (reset prices) equal the efficient prices. The

input-output component captures the effect of the real rigidity that arises in equilibrium due

to the propagation of nominal rigidity through the input-output network. The real rigidity

makes reset prices differ from their efficient counterparts. I show that the main component

of the Phillips curve residual is affected by the state dependence of price adjustment in a

significant way. In particular, state-dependent pricing may reverse the sign of the main

component of the cost-push effect compared to non-state-dependent pricing, notably when

an unexpectedly large shock happens in a sector with relatively low average price flexibility

and a relatively high degree of state dependence.

In the quantitative section, I evaluate the importance of state dependence in shaping the

cost-push effect in the US over time. To this end, I compute the monthly cost-push effect

using the expression derived in a theoretical section. I calibrate the price sector-specific price

flexibility framework using the estimates of price flexibility and state dependence from the

empirical section. For sectoral price gaps computation, I employ the previously constructed

monthly series for monthly sector-relevant states and the observed sectoral prices. To

evaluate the role of state-dependence, I compute the counterfactual effect without a state-

dependent pricing component of price flexibility. Overall, the state-dependent pricing model

produces a more volatile cost-push effect over time than the non-state-dependent model.

State dependence plays a drastically different role during different historical periods. In

2009, just after the Great Recession, the cost-push effect was positive according to both the

state-dependent and non-state-dependent pricing models, with state-dependence serving

as an amplifying mechanism that strengthened the cost-push effect. In contrast, for the

period after the COVID crisis, the state-dependent pricing model generates a cost-push

effect, often having a different sign, compared to the non-state-dependent pricing model.

I also document that the model-implied cost-push effect has significant explanatory power

when added to a standard Phillips curve regression and outperforms the oil prices and the

non-state-dependent counterpart in explaining aggregate inflation fluctuations. Finally, I

show that state dependence in a subgroup of service-related sectors constituting less than

25% of consumption accounts for the bulk of the difference between state-dependent and

non-state-dependent cost-push effects.

2 Related literature

This paper relates to the literature on monetary policy trade-offs in multi-sector economies.

Aoki (2001) study a two-sector horizontal economy and show that with one sticky and one

flexible sector, cost-push inflation appears in response to sector shocks. Erceg et al. (2000)

show that upstream rigidity (sticky wages) results in a monetary policy trade-off in a two-

sector vertical economy. More recently, La’O and Tahbaz-Salehi (2020) and Rubbo (2020)
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showed that monetary policy trade-off arises in a more general production network economy

under information-related price rigidity and Calvo-type price rigidity. The common feature

of all these studies is the time-constant degree of price rigidity in each sector. However,

Ball and Mankiw (1995) argue that what contributes to cost inflation is a combination of

state-dependent price rigidity with asymmetric distribution of desired relative price changes.

Building on Ball and Mankiw (1995) conceptual insight, I aim to understand the importance

of state dependence for cost-push inflation in a production network economy.

The paper relates the macroeconomic literature on production networks. Seminal con-

tributions include Long Jr and Plosser (1983) and Acemoglu et al. (2012) who develop the

framework for efficient production network economy and Baqaee and Farhi (2020), Bigio

and La’o (2020) who contribute to the analysis of inefficient network economy with ex-

ogenous markups. Similarly to monetary models of La’O and Tahbaz-Salehi (2020) and

Rubbo (2020), I endogenize markups by introducing a price rigidity framework. However,

in contrast to these papers, I use a price rigidity mechanism based on ad hoc heterogeneous

inattention, which allows modeling state-dependent price rigidity at a sectoral level.

The empirical evidence of state-dependent pricing is extensive. Nakamura and Steinsson

(2008) show that the frequency of price increases positively depends on inflation in the

micro-data underlying the U.S. CPI index. Eichenbaum et al. (2011) and Campbell and

Eden (2014) report evidence of the state-dependent frequency of price changes in the U.S.

scanner data. Cavallo and Rigobon (2016) report a bi-modal distribution of price changes in

online price data, consistent with state-dependent models. Carvalho and Kryvtsov (2021)

find evidence of strong selection effect into price adjustment in the micro-data underlying

CPI of the U.K., Canada, and the U.S. I contribute to the current stock of evidence of state-

dependent price adjustment by providing sector-specific (at the BEA code level) measures of

state-dependence. While existing evidence largely relies on micro-level data, my estimation

method relies on a production network model combined with sectoral price and wage data.

In terms of approach towards modeling state-dependent price rigidity, my paper belongs

to sticky information literature (Mankiw and Reis (2002)) and behavioral inattention lit-

erature (Gabaix (2019)) as my state-dependent price rigidity combines these two features.

Compared to the two conventional rationality-based frameworks, that is menu-cost approach

(Dotsey et al. (1999), Caballero and Engel (2007)) and rational inattention approach (Sims

(2003), Reis (2006)) my model remains analytically tractable.

Finally, this paper relates to the literature on money non-neutrality. Nakamura and

Steinsson (2010) show that intermediate inputs can fix the weak money non-neutrality

feature of menu-cost models brought up by Caplin and Spulber (1987), Golosov and Lucas Jr

(2007)). The ability of intermediate inputs to increase money non-neutrality has also been

documented for production network models with a heterogeneous but time-invariant degree

of price rigidity by Shamloo (2010), Bouakez et al. (2014) and Pasten et al. (2020). The
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money non-neutrality literature deals with the real effects of monetary policy. In contrast,

I focus on the effect of state-dependent pricing on cost-push inflation.

3 Model description

The model is a multi-sector general equilibrium model with prodution network and state-

dependent sectoral price rigidity. Two features are specific to the present model 1) sector-

sepcific labor, allowing sector-specific wages, 2) custom price rigidity framework based on

behavioral inattention and sticky information, allowing for a relatively simple treatment of

state-dependent sectoral price rigidity. Next, I describe the model setup.

3.1 Firms

There are N production sectors. In each sector, there is a continuous number of monopo-

listically competitive firms indexed by k ∈ [0, 1]. Sectoral output and price indices are the

CES sums across all firms within a sector. Sectoral output index is Yt,i =

(∫ 1
0 Y

ϵ−1
ϵ

t,i,k di

) ϵ
ϵ−1

and sectoral price index is Pt,i =
(∫ 1

0 P 1−ϵ
t,i,kdi

) 1
1−ϵ

. The firm-specific demand is

Yt,i,k =

(
Pt,i,k

Pt,i

)−ϵ

Yt,i (1)

Production technology is constant returns to scale and is given by

Yt,i,k = At,iL
αi
t,i,k

∏
j

X
ωij(1−αi)
t,ij,k

where At,i is sector-specific productivity, Lt,i,k is labor used by firm k of sector i, Xt,ij,k is

input of sector j used by firm k in sector i; αi corresponds to the labor share in production

costs and ωij corresponds to the share of input j in the intermediate input costs.

The combination of inputs is chosen to minimize the unit cost of production, given input

prices. Let MCt,i be the marginal cost in sector i, which is the same for all firms within

sector i. Cost-minimizing resource allocation yields sectoral labor demand and intermediate

input demand

Wt,iLt,i = αiMCt,iYt,i (2)

Pt,jXt,ij = (1− αi)ωijMCt,iYt,i (3)

5



Then, marginal cost of production in sector i is

MCt,i =
1

ααi
i

∏
j
(ωij(1− αi))ωij(1−αi)

· 1

At,i
·Wαi

t,i

∏
j

P
ωij(1−αi)
t,j (4)

Input-output matrix Ω is such that Ωij is a share of input j in total cost of product j,

Ωij = (1−αi)ωij . L = (I−Ω)−1 is the corresponding Leontief inverse matrix capturing the

total effect of shocks (see Baqaee and Farhi (2020)). The total effect consists of the direct

effect and the effect arising through the production network.

Firms have imperfect information (to be precised below) such that firm k in sector i has

sectoral marginal cost belief M̃Ct,i,k. Firm k sets the price Pt,i,k to maximize its perceived

profits

Pt,i,kYt,i,k − (1− τ̄)M̃Ct,i,k

subject to demand constraint (1); τ̄ = 1
ϵ is a subsidy correcting the inefficiency stemming

from monopoly power. The price set by firm k is

Pt,i,k = M̃Ct,i,k

Firm price can be expressed as Pt,i,k =
M̃Ct,i,k

MCt,i
MCt,i. Undesired firm-specific markup

resulting from information rigidity is
M̃Ct,i,k

MCt,i
. I define Mt,i to be the average markup in

sector i as

Pt,i = Mt,i ·MCt,i (5)

3.2 Information structure

Information updating by firms relies on a sticky information framework (Mankiw and Reis

(2002)) extended by an ad-hoc heterogeneous inattention across firms to allow for state-

dependence in the intensity of information updating.

3.2.1 Sticky information

Let Ft,i be the share of firms in sector i updating their information in the period t. Those

firms who update observe the true sectoral marginal costs MCt,i and set their prices to

Pt,i|t = MCt,i. The share of firms who last updated their information 1 period ago is

Ft−1,i · (1−Ft,i). The share who has updated h periods ago is Ft−h,i ·
h−1∏
s=0

(1−Ft−s,i). Those

who updated their information h periods ago set their price to the perceived marginal costs

according to the h-periods outdated information Pt,i|t−h = Et−hMCt,i. The average price
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in sector i consists of individual prices of firms with different information sets

P 1−ϵ
t,i = Ft,i · (MCt,i)

1−ϵ +
∞∑
h=1

{[
h−1∏
s=0

(1− Ft−s,i)

]
· Ft−h,i · (Et−hMCt,i)

1−ϵ

}
(6)

3.2.2 Inattention

In a conventional sticky information model the share of firms updating their information at

any given period is constant over time. In contrast, I assume that this share is affected by

the fluctuations in the underlying sector-relevant state si,t. Fluctuations in sector-relevant

state lead to the time-varying the intensity of information acquisition. I choose a suitable

state variable for each sector based on log-linear characterization of the model equilibrium.

Hence, I postpone the precise definition of st,i to the next section. Next, I describe the

inattention framework.

Let firms in sector i have heterogeneous degree of inattention. That is, every period the

degree of inattention of firm k in sector i is drawn from a sector-specific distribution x ∼ Fi.

Firms in sector i track absolute size of fluctuations in the sector-relevant state |∆st,i| where
∆st,i = st,i − st−1,i. Only firms with low enough degree of inattention x < |∆st,i| update
their information set. As a result, the share of firms updating their information set in sector

i is

Ft,i = Pr{x < |∆st,i|} = Fi(|∆st,i|) (7)

The large changes in the sector-relevant state push more firms to update their information

set2. The time-varying share of firms updating their information in each sector corresponds

to the state-dependent price flexibility, allowing to address the role of state-dependent

pricing without losing the tractability of the model.

3.3 Households

Representative household chooses final consumption good Yt and hours worked Lt,i in each

sector to maximize utility subject to budget constraint. Household utility is

u(Yt)−
∑
i

eχt,i · v(Lt,i)

where final consumption Yt good is a combination of sectoral consumption goods Ct,i

Yt =
∏
i

C
βt,i

t,i (8)

2Similar technique for modeling partial adjustment within a group has been applied in generalized menu-
cost models. In these models, the cost of price adjustment is heterogeneous across firms, which results in
partial price adjustment (Caballero and Engel (2007)).
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with
∑
i
βt,i = 1. The sectoral labor and consumption preference parameters χt,i and βt,i

can be potentially time-varying as indicated by the subscript t. This variation introduces

additional sources of fluctuations into the model otherwise driven solely by sectoral pro-

ductivity shocks. Additional sources of fluctuations allow me to employ more data in the

model-based empirical analysis laid out in the next section and check the robustness of my

baseline results

The household’s budget constraint is PtYt =
∑
i
Pt,iCt,i =

∑
i
Wt,iLt,i + Tt, where Pt

is the consumer price index, Wt,i are sectoral wage rates, Tt are net transfers (including

lump sum taxes and subsidies as well as profits from firm ownership). Optimal allocation

of consumption across sectors yields sectoral consumption demand

Pt,iCt,i = βt,i · PtYt (9)

The corresponding consumer price index is Pt =
∏
i

(
Pt,i

βt,i

)βt,i

.

Let the functional form of utility is u(Y ) = log(Y ) and v(Li) =
L1+γ
i
1+γ . Then, optimal

consumption-leisure trade-off yields sectoral labor supply

Wt,i = χt,i · Lγ
t,iPtYt (10)

3.4 Monetary policy

Monetary policy controls money supply which equals nominal spending, that is

Pt · Yt = Mt (11)

3.5 Equilibrium

In a competitive equilibrium, all markets clear given the described behavior of firms and

households. Product market clearing in sector i implies that product of sector i is either

consumed or used as intermediate input.

Yt,i = Ct,i +
∑
j

Xt,ji (12)

4 Log-linear model

The model is given by equations (1)-(12). I log-linearize the model around the efficient

steady state. Efficient steady state is a time-invariant equilibrium in which markups are

Mi = 1 for every sector i.
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Throughout the paper, I denote column vectors [X1, ..., XN ]′ with corresponding bold

letters X. Log-deviation of X is denoted by small x, so that x = log(X)− log(X̄). Next, I

list the key log-linear equations which are used in the further analysis. All derivations are

available in Appendix A.

The model has two conceptual blocks: the demand block and the supply block. The

demand block does not depend on the price setting framework and on price flexibility while

the supply block is shaped by the price-setting framework.

4.1 Sectoral demand system

Log-lienar sectoral consumption demand and sectoral labor supply from (9) and (10) are

pt + ct = bt + (pt + yt) · 1 (13)

wt = χt + γ · lt + (pt + yt) · 1 (14)

where the aggregate nominal spending is mt = pt + yt is controlled by monetary policy;

bt = log(βt)− log(β̄t) captures sectoral consumption demand shifts and χt - sectoral labor

supply shifts; 1 is the vector of ones.

Sectoral wages. Log-linear equilibrium link between wages and markups is obtained by

combining the product market clearing condition (12) with the conditions for optimal input

allocation (2)-(3), the link between sectoral prices and marginal costs (5), and the log-linear

equations (13)-(14). The resulting system of wage equations is

wt = (pt + yt) · 1+
1

1 + γ
· χt +

γ

1 + γ
I−1
ξ L′Iβ · bt −

γ

1 + γ
I−1
ξ L′Iξ · µt (15)

where µt is vector of log-deviations of markups; L = (I − Ω)−1 is Leontief inverse, Ω is

input output matrix; Iξ = diag{ξ} is diagonal matrix with sectoral Domar weights ξi =
PiYi
PC

(computed at the steady-state) on the diagonal.

Sectoral prices. Sectoral prices expressed through sectoral markups are obtained by

combining sectoral marginal cost equations (4), log-linear wage equations (15) and the the

definition of sectoral markups (5). The resulting system of price equations is

pt = (pt + yt) · 1+ L̃µt +

[
−Lat +

1

1 + γ
LIα · χt +

γ

1 + γ
LIαI

−1
ξ L′Iβ · bt

]
(16)

where L̃ = L(I − γ
1+γ IαI

−1
ξ L′Iξ), Iα = diag{α} is diagonal matrix with labor shares in

sectoral costs αi on the diagonal. Aggregating the above system using the steady state

9



consumption weights β, I obtain aggregate final output

yt = ξ′ · at +
1

1 + γ
ξ′Iα · χt −

1

1 + γ
ξ′ · µt (17)

where the first two terms yet = ξ′ · at +
1

1+γ ξ
′Iα ·χt constitute the efficient output and the

last term ỹt = − 1
1+γ ξ

′ ·µt is the output gap arising due to non-zero markups and capturing

aggregate demand.

4.2 Sector-relevant state definition

From sectoral price system (16), the sectoral marginal cost obtains as mc = p− µ, that is

mct = (pt+ yt) ·1+(L̃− I) ·µ+

[
−Lat +

1

1 + γ
LIα · χt +

γ

1 + γ
LIαI

−1
ξ L′Iβ · bt

]
(18)

the first two terms are endogenous, while the term in square brackets is exogenous. I use

the term in square brackets to define the sector-relevant state st,i for every sector. The

corresponding sector-relevant state vector is

st = −Lat +
1

1 + γ
LIα · χt +

γ

1 + γ
LIαI

−1
ξ L′Iβ · bt (19)

Definition 1 (Sector-relevant state). Sector-relevant state for sector i, denoted as st,i, is

a linear combination of sectoral productivities, as well as consumption demand and labor

supply sifters such that each sector enters this combination with the weight corresponding

to the strength of its effect on the marginal costs in sector i.

Note that for productivities the corresponding weights Lij are the elements of the Leon-

tief inverse matrix. For consumption demand and labor supply sifters the corresponding

weights are also related to the Leontief inverse. Intuitively, if sector i is strongly connected

to sector j by either upward or downward links of the input-output network, then the

changes in sector j affect marginal cost in sector i, making sector j shocks relevant for

sector i marginal cost.

Finally, the change in relevant state over time is

∆st = st − st−1 (20)

and the sectoral price flexibility depends on this sector-specific change, that is Ft,i =

Fi(|∆st,i|), as described in the previous section.

I assume that exogenous forces in the model follow random walks, that is, at = at−1+ϵat ,

bt = bt−1+ϵbt , and χt = χt−1+ϵχt . Then, the change in the sector-relevant state constitutes

an innovation, that is Cov(∆st,i, st−1,i) = 0.
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4.3 Sectoral supply system

The price-setting behavior subject to information friction yields the log-linear supply-side

link between prices and markups from Equations (6)-(5). I use the partial log-linearization,

that is, I treat all Ft−s,i as time-varying coefficients, since they depend only on exogenous

sector-relevant states

(I − Ft) · (pt − pt−1) = −Ft · µt + (I − Ft) · et−1 (21)

where Ft is a diagonal matrix with sectoral flexibililities Ft,i on diagonal (the parameters

governing Ft,i are estimated in the next section); et−1 is vector collecting past expec-

tations about the present marginal cost growth, such that et−1,i = Ft−1,iEt−1∆mct,i +
∞∑
h=1

{
Ft−1−h,i ·

[
h−1∏
s=0

(1− Ft−1−s,i)

]
· Et−1−h∆mct,i

}
is predetermined in period t; ∆mct,i =

mct,i − mct−1,i. Note, that log-linearization is partial for this equation. That is, the se-

quence {Fh,i}th=−∞ of past and present shares of information updating firms is treated as

given. Note that in the sticky information framework, prices depend not on current ex-

pectations about the future, but on the past expectations about the present. This means

that the sequence of past price flexibility, rather than the expected sequence of future price

flexibility, influences the equilibrium prices.

The system of equations (21) has time-varying coefficients Ft,i. The time-average of each

Ft,i determines the average degree of price flexibility in a given sector over time, encoun-

tered in non-state-dependent pricing models. The variability of Ft,i over time determines

the strength of the state-dependent pricing mechanism in sector i. In the next section, I

parameterize Ft,i to capture these characteristics and estimate the corresponding sectoral

price flexibility and state dependence by fitting the model to the disaggregated sectoral data

of the US economy.

5 Empirical evidence of state-dependent pricing

In this section, I estimate sector-specific price flexibility Fi(|∆st,i|) for the disaggregated

sectors of the US economy. To this end, I construct the model response of sectoral prices to

the contemporaneous sector-relevant state changes. This response is informative about price

flexibility - the more sensitive are prices to shocks, the higher the degree of price flexibility

is. Moreover, the dependence of price sensitivity to shocks on the size of these shocks

captures the state dependence in price adjustment. I construct a monthly time series of

sector-relevant state changes ∆st,i for each sector from the observed monthly sectoral data

using equations from the demand block of the model. Then fit the model response yielding

state-dependent price price flexibility estimates for every sector. Next, I lay out the details

of the methodology, data construction, and estimation.

11



5.1 Methodology

Imagine for a moment that we observe a vector of sector-relevant states st. From (16), the

sectoral prices are related to st as

pt = mt · 1+ L̃ · µt + st

The above equation implies that the contemporaneous price response to change in st consists

of a direct effect as well as the effect that the sector-relevant state change has on markups

and monetary policy.

From (15), (16), and (20), sectoral markups µt and sector-relevant state changes ∆st

are linked as

(L̃+ (I − Ft)
−1 · Ft) · µt = −∆st + ṽt (22)

where ṽt = pt−1+et−1−mt ·1−st−1. Note, that the term ṽt contains only predetermined

variables pt−1, st−1, et−1 and monetary policy variable mt, and, hence, is independent

from ∆st as long as monetary policy does not react to ∆st within one month period (I use

monthly data for estimation).

The matrix Ft = diag{Ft,i} is diagonal with sectoral price flexibilities Ft,i = Fi(|∆st,i|)
on the main diagonal. I impose a linear functional form on on Fi such that

Fi(|∆st,i|) = F̄i + fi · log
|∆st,i|
E|∆st,i|

(23)

where E|∆st,i| is the average absolute size of the relevant productivity state fluctuations

(relevant state volatility). With this functional form, the parameter F̄i corresponds to the

average price flexibility over time in sector i, that is, the degree of price flexibility under

the average size of sector-relevant state fluctuations in sector i. The parameter fi measures

the degree of state dependence in price adjustment. This parameter shows how much price

flexibility varies with the size of the absolute changes in the sector-relevant state.

The goal of the empirical exercise is to estimate the average price flexibility F̄i and the

degree of state dependence fi for each sector of the US economy. For an economy with N

sectors there are 2×N parameters to be estimated. As long as we observe sector-relevant

states st and sectoral markups µt, we can evaluate the price flexibility parameters from the

system (22) of N interlinked equations. However, this task is computationally non-trivial.

To make the estimation possible, I rearrange the terms in (22) to make individual equations

independent from each other with respect to the estimated parameters across sectors. The

rearranged system is

∆st + L̃µt = Ft ·
[
∆st + (L̃− I)µt

]
+ (I − Ft) · ṽt

12



Since matrix of sectoral price flexibilities Ft is diagonal, i-th equation in the above system

contains only sector i price flexibility parameters, meaning that this system can be estimated

equation-by-equation, with one equation per sector. Denoting yt = ∆st + L̃µt, xt =

∆st + (L̃ − I)µt and vt = (I − Ft) · ṽt and using the parameterized function Fi, I get N

equations of the form

yt,i = F̄i · xt,i + fi · log
|∆st,i|
E|∆st,i|

xt,i + vt,i (24)

These equations can be estimated independently from each other. The only complication

is that xt,i is endogenous as it contains (endogenous) markups. At the same time, the

sector-relevant state changes ∆st,i are exogenous and can serve as an instrument for xt,i.

In Appendix C, I formally show that ∆st,i is not correlated with the residual vt,i and hence

is a valid instrument for xt,i.

Estimating equations (24) using IV approach yields a set of average sectoral flexibilities

{F̄i}Ni=1 measuring non-state-dependent price flexibility, and a set of sensitivities to sector-

relevant state changes {fi}Ni=1 measuring the degree of state-dependence of price flexibility

in each sector. Since vt,i is heteroskedastic and autocorrelated I use consistent standard

errors to determine estimate statistical significance.

5.2 Constructing sector-relevant states

The empirical method described above requires observing sector-relevant state changes ∆st

and markups µt. I construct these objects from the demand block of the model using the

observed data.

First, let us assume that sectoral productivity changes are the only driving force in

the economy, that is bt,i = 0 and χt,i = 0 for all sectors. In what follows I refer to such

specification of the model as “baseline”. In the “baseline” model, we can compute sectoral

markups µt and sector-relevant states st from (15) and (16), as long as we observe sectoral

wages wt, sectoral prices pt, as well as aggregate consumer price pt and final consumption

yt. This is a minimal possible set of shocks and data needed for estimation.

Accounting for the possible additional presence of sectoral consumption demand shocks

and sectoral labor supply shocks (bt,i and χt,i) requires more data, notably, on sectoral

quantities. Sectoral demand shifts bt can be computed from sectoral consumption demand

equations 13, as long as we additionally observe sectoral consumption ct. Sectoral labor

supply shifts χt can be computed from sectoral labor supply equations 14, as long as we

additionally observe sectoral hours worked lt. I employ this extended specification to test

the robustness of the “baseline” results.

The caveat is that some sectors are missing in the data and the number of missing

sectors changes over time. Hence for any t, I compute sectoral markups µt and sector-
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relevant states st only for those sectors for which wages and prices are observed. The

details of these computations are provided in Appendix C.

5.3 Data

There are two categories of data used in the present analysis: the data used for calibration

of the model, and the sectoral/aggregate time-series data.

Model calibration. To compute the intermediate goods, labor, and consumption shares

in each sector, I employ the 2007 “Use table” from the BEA (US Bureau of Economic

Analysis) inputs-outputs account data . In this table, sectors are classified using BEA

codes. I assume that each sector produces only one commodity and remove commodities

that do not have a sector correspondence and vice-versa. Further, I remove sectors related

to government spending, non-comparable imports, and the rest of the world adjustment. I

also remove sectors for which the sum of intermediate and labor costs is zero. I compute

labor shares in each sector as a ratio of labor costs to total costs. I compute intermediate

input share as a ratio of a given intermediate input cost to the total cost. Finally, I compute

consumption shares as the ratio of consumption expenditure on a given sector to the total

consumption expenditure. I set the Frisch labor supply elasticity to 1.

Sectoral/aggregate time series. To compute model-implied sector-relevant state and

markup series in the “baseline” model, I employ monthly time series for sectoral wages and

prices, and the aggregate prices and consumption indices. Monthly wages by sector are

available from the “Current Employment Statistics” (CES) from the US BLS and classified

with a specific CES classification. Monthly sectoral producer price indices are from the

US BLS and classified according to the NAICS classification. Since the BEA input-output

matrix uses BEA sector classification codes, I convert the wage and price data to the BEA

classification to match the sectors of the input-output matrix. The details are provided

in Appendix C. The aggregate consumer spending and price index are from BEA. The

extended specification of the model also requires sectoral consumption and hours worked

data. I obtain the former from the BEA database and the latter from the CES database.

Figure 1 plots the number of sectors for which both prices and wages are available in

a given year and month (left Panel) and the consumption share coverage (right Panel) for

each year and month. The data availability improves over time and starts covering the

majority of sectors by 2007.
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Figure 1: Availablility of sectoral price and wage data
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Left Panel: number of sectors for which price and wage observations are available in a given month. Right
Panel: share of consumption covered by the available sectors in a given month. Vertical dotted lines mark
the period for which the large and stable number of sectors is available (2007-2023).

5.4 Estimation results

The estimation procedure yields two sets of sectoral parameters: sectoral average price

flexibility measures F̄i and sectoral state dependence of price flexibility fi. These parameters

determine sectoral price flexibility Ft,i at time t according to Equation (23). Table 1 shows

the share of sectors with statistically significant parameter estimates. Around 85% of sectors

have a statistically significant degree of price flexibility, suggesting that even within a short

one-month period most sectoral prices react to shocks to a certain extent. Around 70%

sectors have a statistically significant degree of state dependence, meaning that many sectors

in the US economy feature state dependence in price adjustment.

Table 1: Share of statistically significant estimates

signif. at 90% level signif. at 95% level

Average flex. (F̄i) 0.85 0.84
State-dep. param. (fi) 0.70 0.64

Note: Sectors are weighted by their corresponding consumption shares βi

Table 2 plots a summary of the cross-sectoral distribution of estimated parameters. The

estimates of average price flexibility vary between 0 and 1 with a median of around 0.27,

which means that in the median sector around 27% of firms reset their information within

one month period; in other words, in the median sector, prices remain unchanged at least

for four months, which corresponds to the evidence of Bils and Klenow (2004) who report

median price duration of 4.3 months. However, the range of the average price flexibility

estimates across sectors is quite broad. Figure 2 Panel (a) plots the histogram of the average

price flexibility estimates in each sector. The pattern of average price flexibility suggests
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that commodity-related and upstream sectors such as oil and metals have more flexible

prices, while various manufacturing sectors have less flexible prices.

The distribution of state dependence parameters in Table 2 suggests the median degree

of state dependence of 0.17, which means that the sector-relevant state change of 1 percent-

age point above its average leads to an increase in sectoral price flexibility by 0.0017 price

flexibility units. Figure 2 Panel (b) plots the histogram of the cross-sectoral distribution of

state dependence estimates. Sectors with both low and high degree of state dependence in-

clude manufacturing and services, hence this histogram does not reveal any obvious pattern

for the link between state dependence and the broad type of sector.

Table 2: Distribution of statistically significant estimates

Min. 1st Qu. Median Mean 3rd Qu. Max.

Average flex. (F̄i) 0.052 0.177 0.277 0.349 0.473 0.989
State-dep. param. (fi) 0.013 0.092 0.189 0.203 0.293 0.663

Note: Only sectors with statistically significant estimates at 90% level

Figure 2: Price flexibility estimates

(a) Average price flexibility
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 Most flexible: 
 - Copper, nickel, lead, and zinc mining 
 - Alumina refining 
 - Soybean and other oilseed processing 
 - Petroleum refineries 
 - Oil and gas extraction
 Least flexible: 
 - Concrete pipe, brick manufacturing 
 - Construction machinery manufacturing 
 - Lighting fixture manufacturing 
 - Sign manufacturing  
 - Other plastics product manufacturing

(b) State-dependence of price flexibility
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 Most state-dep.: 
 - Boat building 
 - Doll, toy, and game manufacturing 
 - Motorcycle, bicycle, and parts manufacturing 
 - Offices of physicians 
 - All other transportation equipment manufacturing 
 - Home health care services
 Least state-dep.: 
 - Insurance agencies, brokerages 
 - Valve and fittings other than plumbing 
 - Industrial process furnace and oven manufacturing 
 - Material handling equipment manufacturing 
 - Printing

Histogram of average price flexibility estimates F̄i (a) and state-dependence parameter estimates fi (b) across
364 sectors; sectors are weighted by consumption shares βi; variation is plotted only for 90%-level significant
estimates; estimates insignificant at 90% level are forced to zero; interpretation of state-dependence
parameter fi: 1.p.p. increase in |∆st,i| above its time average leads to price flexibility increase of 0.01 · fi.

Next, I analyze how the average price flexibility and the state dependence parameters

relate to the volatility of the sector-relevant state. Figure 3 plots the parameter estimates

and the corresponding relevant state volatilities. Figure 3 Panel (a) plots the sector-relevant

state volatilities against average price flexibility estimates. The higher average volatility in

a sector is associated with higher average price flexibility. This suggests that sectors with

more volatile conditions have higher price flexibility on average. Panel (b) plots sector-
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relevant state volatilities against the corresponding state dependence parameters. The

higher volatility in a sector is associated with a lower degree of state dependence, suggesting

that more volatile sectors have less state dependence in their pricing. This result implies

that the less volatile (and hence less flexible) sectors on average tend to adjust their price

flexibility more to shocks, meaning that sectors with overall rigid prices may temporarily

have larger price flexibility in the face of exceptionally large shocks.

Figure 3: Relevant state volatility and price flexibility

(a) Average price flexibility
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(b) State-dependence of price flexibility
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Average price flexibility estimates F̄i and state-dependence parameter estimates fi are plotted against the
time average volatility of sector-relevant productivity state E|∆si|; sectors are weighted by consumption
shares βi; estimates insignificant at 90% level are forced to zero; red lines correspond to linear regressions
within the group of significant estimates; correlation coefficient for Panel (a) is 0.43 and correlation
coefficient for Panel (b) is -0.24.

I also estimate the the parameters of price flexibility using the model with more shocks

(and employiing sectoral consumption and labor data). In Appendix C I plot the corre-

sponding price flexibility estimates as well as sector-relevant state volatility. The baseline

estimates are considerably correlated with the alternative estimates obtained in the model

with more shocks. In the subsequent numerical analysis, I check the robustness of the

baseline results against the results obtained using these alternative sector-relevant state

measures and price flexibility estimates.

The estimates of sector-specific average price flexibility have a conceptual counterpart of

Calvo parameters in the literature. In Appendix C I compare my estimates to the model-free

estimates by Pasten et al. (2020) and obtain a reasonable degree of correlation3.

3I am thankful to the authors for providing me their estimates for comparison.
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6 Phillips curve and cost-push inflation

In this section, I establish the theoretical role of state-dependent pricing in shaping the

cost-push inflation. To this end, I derive the consumer price inflation in terms of aggregate

demand and cost-push factors, the relationship known as the Phillips curve. The Phillips

curve residual captures the aggregate cost-push effect in the model. Then I provide a

Phillips curve residual decomposition which is particularly useful for analyzing the role of

state-dependent pricing.

6.1 Phillips curve

The Phillips curve residual captures the cost-push effect in consumer price inflation. I

derive this residual in terms of production network parameters, sectoral price flexibilities,

and relative price gaps. Next I define sectoral price gaps in the spirit of menu-cost literature

Definition 2 (Sectoral price gaps). Vector of sectoral price gaps π⋆
t is the difference of the

current efficient prices p⋆
t and the previous period true prices pt−1, that is π

⋆
t = p⋆

t −pt−1.

The efficient price in sector i, p̂⋆t,i is a counterfactual price that is obtained under zero

markups (all µt,i = 0). From (16), the efficient prices are related to the sector-relevant

states as p⋆
t = mt · 1+ st.

Sectoral price gaps indicate the difference between the true prices and the efficient prices

and reflect the desirable price adjustment towards efficiency. Note, that sectoral price gaps

do not depend on the true prices in period t but only on the lagged true prices.

The relative price gaps are denoted as π̂⋆
t and represent price gaps measured relatively

to the aggregate consumer price index price gap π̂⋆
t =

∑
i
βiπ̂

⋆
t,i. The next proposition

establishes the Phillips curve in terms of price gaps.

Proposition 1. (Consumer price inflation Phillips curve). The Phillips curve for consumer

price inflation is

πt = κt · ỹt︸ ︷︷ ︸
demand inflaton

+(1− κt) · β′MtFt · π̂⋆
t︸ ︷︷ ︸

cost inflation

+ (1− κt) · β′MtFt · ẽt−1︸ ︷︷ ︸
predetermined in period t factors

(25)

where π̂⋆
t = p̂⋆

t − p̂t−1 is a vector of relative sectoral price gaps, the slope of Phillips curve

is κt =
β′MtFt1

1−β′MtFt1
with Mt = (I + L̃F−1

t (I − Ft))
−1F−1

t and expectation-related terms are

ẽt−1 = L̃F−1
t (I − Ft)et−1.

See proof in Appendix B.

The first term in the Phillips curve (25) relates inflation to the output gap and corre-

sponds to a demand component of inflation. The second term is the Phillips curve residual
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ut = β′MtFtπ̂
⋆
t and measures the cost-push component of inflation. The third term con-

tains predetermined past expectations about the marginal cost growth rate. Next, I focus

the properties of the Phillips curve residual term ut, which depends on the network, price

flexibilities, and sectoral price gaps.

6.2 Cost-push effect: main and input-output components

Presence of price rigidity prevents prices from adjustment to their efficient level for two

reasons. First reason is that price rigidity does not allow prices to adjust to match the

marginal cost. Second reason is that marginal cost itself differs from the efficient level due

to input-output links. This means that even those firms who adjust their prices do not

set them to the efficient level. To separate these two effects I decompose the cost-push

inflation ut into two components, which I label “main” and “input-output” components.

The main component captures the effect of heterogeneous price rigidity across final goods

sectors given that marginal cost are at their efficient level. The input-output component

captures the effect of price rigidity propagation through input-output links which leads to

the deviation of marginal cost (and hence reset price) from its efficient level.

Proposition 2. (Phillips curve residual decomposition). Cost-push effect ut = β′MtFtπ̂
⋆
t

can be decomposed to the sum of the man component and the input-output component

ut = β′Ft · π̂⋆
t︸ ︷︷ ︸

main component = um
t

−β′(I −Mt)Ft · π̂⋆
t︸ ︷︷ ︸

i-o component = ui
t

(26)

See proof in Appendix B.

To understand the nature of the above decomposition consider a vector of sectoral reset

prices (prices set by those who reset their price)

preset
t = mct = (pt + yt) · 1+ st + (L̃− I)µt =

= mt · 1+ st︸ ︷︷ ︸
efficient price

+ (L− I)µt︸ ︷︷ ︸
interm. cost effect

− γ

1 + γ
LIαI

−1
ξ L′Iξµt︸ ︷︷ ︸

labor. cost effect

(27)

The reset price equals marginal cost and consists of the efficient price and the effect of

markups. In multi-sectoral model reset prices differ from efficient prices because inefficiency

caused by price stickiness propagates through production links leading to real rigidities, that

is a situation when marginal costs of production deviate from efficient (flexible price) level.

The main component of the decomposition given in Proposition 2 describes the residual

arising when all reset prices are at their efficient levels. The input-output component gives

the effect of propagation of inefficiency through input-output links.

Further, from Equation 27 we see that the effect of markups on reset price consists of
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the effect markups have on the intermediate input cost and on sector-specific labor costs.

While higher markups lead to higher intermediate good cost, they lead to lower labor costs.

6.3 Main component

Now I focus on the properties of the main component. In the quantitative section, I show

that main component is quantitatively more important in shaping cost-push effect than the

input-output component. Next I discuss the role of state-dependent pricing in shaping the

size and sign on the main component.

The main component of the cost-push effect can be interpreted as a covariance between

sectoral price flexibilites and price gaps, taken over the consumption weights

umt = β′Ft · π̂⋆
t = covβ(Ft,i, π⋆

t,i)

which follows form the covariance definition and the fact that β′π̂⋆
t .

Let price flexibility in each sector consist of the non-state-dependent and state-dependent

parts: Ft,i = F̄i + ∆Ft,i the non-state-dependent part is different across sectors but does

not change over time. The state-dependent part fluctuates depending on the shocks that

hit the economy. Then, the main component can be written as a sum of two covariances

umt = covβ(F̄i, π⋆
t,i)︸ ︷︷ ︸

Non-st.-dep. pricing

+ covβ(∆Ft,i, π⋆
t,i)︸ ︷︷ ︸

St.-dep. pricing

The first term captures the cost-push effect created by non-state-dependent price rigidity

through the heterogeneous degree of price rigidity across sectors. The second term captures

the cost-push effect created by the state-dependent pricing.

Under state-dependent pricing, price flexibility depends on the absolute size of the de-

sired price adjustment. To build intuition, let this dependence take te simplest possible

form ∆Ft,i = k · |π⋆
t |, k > 0. Then, the main component of cost-push effect is

umt = covβ(F̄i, π⋆
t,i)︸ ︷︷ ︸

Non-st.-dep. pricing

+ k · covβ(|π⋆
t,i|, π⋆

t,i)︸ ︷︷ ︸
St.-dep. pricing

The non-state-dependent and state-dependent components of the above expression may

have opposite signs. The sign of the non-state-dependent component depends on whether

the largest desired price change occurs in the unconditionally flexible price sector or not.

The sign on the sate-dependent component depends on whether the largest desired price

change is positive or negative. When the largest positive desired price change occurs in an

unconditionally sticky price sector, the non-state-dependent pricing might produce a neg-

ative cost-push effect due to a negative correlation of non-state-dependent price flexibility
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with price gaps. At the same time, if this sector becomes more flexible through the state-

dependent pricing mechanism, the state-dependent pricing produces a positive cost-push

effect. As a result, the presence of state-dependent pricing may change the sign of the

cost-push effect.

Figure 4 provides an example illustrating the possible implications of state-dependent

pricing for inflation in a three-sector economy. Solid bars represent the desirable price

adjustment in each sector such that the aggregate desired inflation is zero. If pricing is

non-state-dependent, the degree of price flexibility in each sector is fixed in advance: Sector

1 has fully flexible prices, while Sectors 2 and 3 have fully rigid prices. In this case, Sector 1

is the only sector adjusting its price, and the aggregate inflation is negative. In contrast, if

pricing is state-dependent, the degree of price flexibility depends on the size of the desired

price change. In this case, only Sector 3 adjusts since its desired price change is sufficiently

large, and the resulting aggregate inflation is positive. In this example, non-state-dependent

pricing yields cost-push deflation driven by Sector 1 while state-dependent pricing yields

cost-push inflation driven by Sector 3.

Figure 4: Three-sector economy: price adjustment with non-state-dependent and state-
dependent pricing

Sector 1 Sector 2 Sector 3

Non-state-dep. pricing

State-dep. pricing

flexible

rigid! rigid

rigid rigid

flexible!

deflation!

inflation!

Hashed bars and πn cross-hashed bars and πs show price adjustment under state-dependent pricing; aggre-
gate inflation is a sum of price changes in each sector.

6.4 I-O structures with a single effect

Next, I provide the properties of production structures featuring only one of the two com-

ponent of the cost-push effect decomposition. These results follow from the decomposition

provided in Proposition ??. First, I describe an economy featuring only input-output com-

ponent.
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Corollary 1. (Single final good economy (only I-O component)). Consider an economy

with only one final good such that consumption shares are β1 = 1 and βi = 0 for all i ̸= 1.

1) In such economy only input-output component is present, that is uht = 0. 2) If the only

rigid price sector is the final good sector the cost-push effect is zero, ut = 0.

See proof in Appendix B.

In an economy with a single final good the only possible source of cost-push effect is

distortion in marginal cost of this good caused by upstream price rigidity. For this reason

productivity hocks in one-sector textbook NK model with flexible wages do not create any

cost push effect while in a one-sector sticky wage economy (rigidity in marginal costs)

cost-push effect emerges (see (Gaĺı, 2015)).

The presence of multiple consumption goods is necessary for having the main component.

The main component captures the fact that for a given marginal cost distribution the “cost”

of the final consumption basket may be inefficiently high or low due to the fact that prices

of different consumption goods have different degree of price flexibility. Indeed, if price

rigidities are the same Fi,t = F in all sectors, main component disappears since te sum of

the relative price gaps weighted by consumption shares is zero by construction.

Next, I describe an economy featuring only main component. From Equation 27 we see

that in order to exclude the effect of markups on reset prices we need to have an economy

in which the effect of markups on intermediate goods exactly offsets the effect of markups

on labor costs. Next, I describe properties of such economy.

Corollary 2. (Quasi-horizontal economy (only main component)). Consider an economy

with multiple final sectors and no vertical links except the roundabout production in each

sector (meaning that each sector uses part of its own output as its intermediate input) such

that Ω = I − Iα and αi =
1

1+γ for all i. Such economy features only the main component

of cost push effect, that is uv = 0.

See proof in Appendix B.

The particular degree of roundabout production is needed so that the change in marginal

cost due to change in intermediate good price is exactly offset by the change in labor cost.

Note that in purely horizontal economy with no roundabout production such that Leontief

inverse is L = I input-output component still exists because labor input gets distorted by

the presence of price rigidity.

6.5 Commodity shock examples

The cost-push effect is often attributed to commodity shocks such as oil or grain industry

shocks. Next, I discuss the consequences of a commodity shock in various I-O structures
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and the role of state-dependent pricing in shaping the cost-push effect of such shocks4. I

show that in vertical chain economies, state-dependent may lead to amplification of the

cost-push effect but does not lead to any sign reversal. At the same time, in an economy

with multiple final goods, the sign reversal of the cost-push effect by the presence of state-

dependent pricing is possible.

Figure 5: Example economies with commodity sectors
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Example 1. Two-sector vertical chain Consider a two-sector vertical chain economy.

Let the upstream sector be the Oil sector and the downstream sector be Final good sector

(Figure 5a). Oil sector has fully flexible prices FO = 1 (in line with empirical evidence)

while final good sector has partially rigid prices FF ≤ 1. The economy is initially at the

steady state and that the productivity shock in oil sector ϵOil occurs. In this case cost-push

effect is

ut =
1 + γ

D
· 1− FO

FO
· (1− αF )αF · ϵOil = 0

where D = (1+ γ+ fO) · (1+ γ+ fF )− (1−αF )γfO · fF > 0 and fF = 1−FF

FF , fO = 1−FO

FO ;

for derivation see Appendix B.3. Cost-push inflation ut = 0 as long as Oil sector has fully

flexible prices FO = 1. The Oil shock does not cause cost-push effect since there is no

4In the examples of this section I make a technical assumption that (1−αF )γ < 1 where αF is labor share
in final production. This assumption ensures that intermediate input is an important factor of production.
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distortion in the marginal cost of production. This result is a consequence of Corollary ??.

Example 2. Intermediate good

Consider a vertical chain with intermediate good sector (Figure 5b). Oil sector has fully

flexible prices FOil = 1 but the intermediate sector has partially rigid prices F I ≤ 1. Price

distortion in intermediate good sector creates cost distortion in final good sector. The

cost-push effect of Oil productivity shock is

ut =
1 + γ

D
· 1− F I

F I
· (1− αF )αF · ϵOil

where D = (1 + γ + f I) · (1 + γ + fF )− (1− αF )γf I · fF > 0 and fF = 1−FF

FF , f I = 1−F I

F I ;

for derivation see Appendix B.3.

When productivity in Oil sector goes down we have cost-push deflation and state-

dependent pricing (the fact that F I and FF change with shock size) changes the size of the

cost-push effect of the shock. The negative cost push effect of a negative oil productivity

shock goes against the basic intuition that negative shocks in oil industry lead to a positive

cost push inflation. Nevertheless, this example illustrates the mechanism of why cost-push

effect emerges. After a negative productivity shock prices of Oil go up. Intermediate sec-

tor uses Oil as input meaning that optimal price of intermediate good should also go up.

But since prices in the intermediate good sector are sticky, they increase by less then they

should. As a result, marginal cost in final good sector are smaller than they should be

resulting in a negative cost-push effect.

Example 3. “Sticky wages” economy Consider a vertical chain economy in which the

most upstream sector has partially rigid prices while intermediate sector has fully flexible

prices. The upstream sector may be viewed as the sticky wages sector, intermediate sector

be the Oil sector and the final sector be the consumption good sector. This is the case

of a so-called “sticky wage” economy (Figure 5c). The corresponding price flexibilities are

FO = 1, FW ≤ 1 and FF ≤ 1. The cost-push effect of Oil productivity shock is

ut = −1 + γ

D
· 1− FW

FW
· (1− αF ) · ϵOil

where D = (1+γ+fW ) · (1+γ+fF )− (1−αF )γfW ·fF > 0 and fF = 1−FF

FF , fW = 1−FW

FW ;

for derivation see Appendix B.3.

When oil productivity goes down we have cost-push inflation in line with the intuition

that the negative productivity shock in the oil industry should create cost-push effect.

Upon negative Oil productivity shock, the level of production decreases and less labor is

demanded. As a result, wages should optimally go down. But since wages are sticky they

remain too high and the marginal cost of producing Oil and ultimately final goods remains
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higher than it should be. The inefficiently high marginal cost leads to a positive cost-push

inflation. Again, the fact that the price flexibility changes with the shock size may influence

the size of the cost-push effect.

Example 4. Multiple inputs

Consider an economy in which a single final good is produces using two material inputs: Oil

and Intermediate good (Figure 5d). Oil sector has fully flexible prices FOil = 1 while price

flexibility in intermediate good sector is partial F I ≤ 1. Also, for the exposition purposes, I

assume that final good sector also has fully flexible prices FF = 1. After the oil shock ϵOil,

the cost-push inflation is

ut = −αI(1− αI) · (1− F I) · ϵOil

where αI share of input I in F; for derivation see Appendix B.3.

Negative oil productivity shock leads to a positive cost-push inflation and the state-

dependence of price flexibility may affect the size of cost-push effect by changing F I .

The mechanism behind the cost-push effect of oil shock in this example somewhat differs

from the previous examples. In this economy when a negative oil productivity shock occurs

the marginal cost of producing the final good goes up and the demand for intermediate

input goes down as long as substitutability between oil and intermediate good is not too

high. Hence prices in the intermediate goods sector should optimally go down which they

do not do because of price rigidity in this sector. As a result, the price of intermediate

goods is inefficiently high and the resulting marginal cost of producing the final good is also

inefficiently high, which creates cost-push inflation.

In the four above examples, changes in price flexibility under state-dependent pricing

may lead to a different size of a cost-push effect but never change its sign. Next, let me

consider an example, in which the same shock can lead to the opposite sign of the cost-push

effect if pricing is state-dependent.

Example 5. Two-commodity economy Consider an economy consisting of two up-

stream goods (Oil and Grain) and two final goods (Oil-intensive and Grain-intensive) with

equal shares in consumption. Oil-intensive final good uses oil as input while grain-intensive

final good uses grain as input (Figure 5e). Upstream commodity sectors have fully flexible

prices FOil = FGrain = 1 and final good sectors have partially rigid prices FFO ≤ 1 and

FFG ≤ 1. As before, the economy is initially at the steady state and is perturbed by one of

the two commodity shocks - oil and grain shocks ϵOil, ϵGrain. The corresponding cost-push

effect is

ut = −1

4
· (FFO − FFG) · (ϵOil − ϵGrain)
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Assume first that price rigidity is non-state-dependent such that FFO > FFG, that

is oil intensive final good has always more flexible prices. Then negative oil shock leads

to a positive cost push effect. However, a negative grain shock leads to a negative cost-

push effect. This behavior is not plausible as there are no obvious reasons why shock in

one commodity sector should lead to cost-push inflation while similar shock in another

commodity sector should lead to cost-push deflation.

But what happens if price flexibility is state-dependent? In this case, we have larger

price flexibility in oil-intensive sector FFO > FFG under oil shock and larger price flexibility

in grain-intensive sector FFG > FFO under grain shock. Hence, under state-dependent

pricing, a negative shock in any of these two commodity sectors leads to a positive cost-

push effect. The presence of state dependence reverses the sign of the cost-push effect of

grain shock compared to the non-state-dependent pricing case.

The mechanism of the cost-push effect in this economy is as follows. When a negative

oil shock hits, oil price goes up, and the production of oil and oil-intensive goods drops

which leads to a lower level of household income. With the lower level of income, house-

holds decrease their demand for grain-intensive goods as well (as long as this good is not

an “inferior” good) which should cause prices of grain-intensive goods to optimally drop.

However, price rigidity in the grain-intensive industry prevents the grain-intensive good

price from dropping meaning that the relative price of grain-intensive good is higher than

it should optimally be, leading to cost-push inflation.

7 Quantitative analysis

In this section, I compute the monthly cost-push effect in the US implied by the model

and analyze the role of the state-dependent component of price flexibility in shaping the

cost-push effect. The calibration of the model is described in the empirical section above.

7.1 Cost-push effect and state-dependence

In this section, I compute the monthly cost-push effect using the expression (25) derived in a

theoretical section. I calibrate the price sector-specific price flexibility framework using the

estimates of price flexibility and state dependence from the empirical section. For sectoral

price gaps computation, I employ the previously constructed monthly series for monthly

sector-relevant states and the observed sectoral prices. To evaluate the quantitative role

of state dependence over time, I also compute counterfactual residual without the state-

dependent component of price flexibility. Figure 6 shows the result.

Overall, an empirically plausible degree of state dependence in each sector yields a more

volatile cost-push effect than the non-state-dependent pricing model. Two episodes are

worth investigating to analyze the role of state dependence: after the Great Recession, and
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after the Covid crisis. For 2009, both state-dependent and non-state-dependent pricing

models produced a positive spike in the cost-push effect, and state dependence plays an

amplification role. For 2019, starting from the COVID crisis, the state-dependent model

yields a negative cost-push effect at the start of the COVID crisis, followed by a positive

cost-push effect just after the crisis when the supply chain disruption issue emerged. For

2022, when the full-scale Russia-Ukraine war broke out, the state-dependent pricing model

yields a positive and growing cost-push effect. In contrast, the non-state-dependent pricing

model gives quite different predictions: positive cost-push effect during the COVID crisis,

and negative cost-push inflation in 2022. Hence, state-dependent pricing often leads to a

sign reversal of the cost-push effect compared to non-state-dependent pricing in the post-

Covid period.

Note that none of the models predict a long-lasting positive cost-push effect during the

post-Covid period, suggesting that the persistent post-Covid inflation cannot be entirely

characterized as cost-push but instead has demand or expectation-driven features, which

justifies a strong monetary response undertaken by the FED.

Figure 6: Cost-push inflation and state-dependent pricing
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Grey line plots observed CPI inflation; blue line plots the Phillips curve residual implied by the model
under estimated degree of price flexibility; dashed green line plots the Phillips curve residual when the
effect of state-dependent pricing is absent (all fi = 0).

In Appendix D, I compute the same state-dependent and non-state dependent resid-

ual based on the model specification with more shocks and using the corresponding price

flexibility and state estimates. The specification with more shock produces qualitatively

reasonably similar results to the baseline specification.
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7.2 Cost-push effect decomposition

Now, I look into the quantitative importance of the main and input-output components

in the US cost-push inflation by applying the decomposition form Proposition 2. Figure

(7) shows that the main component largely shapes the fluctuations of the cost-push effect

and that the I-O component merely plays an amplifying/dampening role during different

episodes. Hence, the theoretical results importance of the state-dependence in shaping the

main component of the cost-push effect appy to the large share of the cost-push inflation.

Figure 7: Cost-push inflation and main component
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Grey line plots CPI inflation; blue line plots the Phillips curve residual implied by the model under
estimated degree of price flexibility; dashed black line plots the main component of Phillips curve residual.
CPI inflation and residual series are smoothed with a 3-month moving average.

7.3 Slope of the Phillips curve

State-dependent pricing implies potentially time-varying slope of the Phillips curve. Hence,

I compute the the slope implied by my state-dependent pricing estimates over time. On

Figure 8, the slope of the Phillips curve is for the most part is constant except for the COVID

period, where it has two subsequent peaks in 2020 and 2021 respectively. The spike in slope

is driven mostly by the 2-digit sectoral group representing Finance and Insurance sectors

(see sectoral analysis below). The model-free evidence of an increase and a subsequent

decrease of the Phillips curve slope around the COVID period were also found by Cerrato

and Gitti (2022) for the period corresponding to the second peak on Figure 8.
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Figure 8: Slope of the Phillips curve
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7.4 Phillips curve fit

Now, I investigate if the Phillips curve residual implied by the state-dependent model outper-

forms its non-state-dependent counterpart in explaining inflation in a conventional Phillips

curve regression. For this, I regress CPI inflation on the standard Phillips curve variables:

unemployment, expected and lagged inflation, and oil prices. Then, I sequentially add the

non-state-dependent and state-dependent residual computed from the model. Table 3 shows

the regression results. The regression with a non-state-dependent residual outperforms the

regression with only oil price inflation, but adding a state-dependent residual improves

the fit. Moreover, a state-dependent residual effect is statistically significant even when a

non-state-dependent residual is already accounted for.
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Table 3: Phillips curve estimation with model implied residual

Dependent variable:

CPI inflation

(1) (2) (3) (4)

Unempl. 0.0001 −0.0003∗ −0.0002 −0.0005∗∗∗

(0.0001) (0.0002) (0.0002) (0.0002)

Lagged infl. 0.172∗∗ 0.169∗∗ 0.158∗∗ 0.159∗∗∗

(0.068) (0.065) (0.063) (0.059)

Expected infl. 0.001 0.001 0.001∗∗ 0.001∗∗

(0.001) (0.001) (0.001) (0.001)

Oil infl. 0.028∗∗∗ 0.023∗∗∗ 0.023∗∗∗ 0.030∗∗∗

(0.003) (0.003) (0.003) (0.003)

u(non-st.-dep.) 0.282∗∗∗ 0.124 0.190∗∗∗

(0.073) (0.087) (0.063)

u(st.-dep.) 0.162∗∗∗ 0.076∗∗

(0.052) (0.034)

Constant −0.001 0.004∗ 0.001 0.003∗

(0.001) (0.002) (0.002) (0.002)

Observations 156 156 156 187
R2 0.440 0.491 0.522 0.508
Adjusted R2 0.425 0.474 0.503 0.492

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

The period used in the estimation (1)-(3) is 2007M1-2019M12 to exclude period of non-stable slope of the
Phillips curve; The period of estimation in (4) is 2007M1-2022M12.

7.5 Analysis by sector

Now, I turn to the analysis of the contribution of particular sectors to the difference between

the state-dependent and non-state-dependent pricing cost-push effects. To this end, I group

the disaggregated sectors into the 2-digit BEA-coded groups. Table 4 gives the list of these

groups.

First, I compute the marginal importance of each group in explaining the cost-push

effect. For each 2-digit sector group, I recompute the residual, excluding the contribution of

sectors in this group, and compare this new residual with the full residual by regressing the
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Table 4: 2-digit BEA sector names

2-digit BEA Sector description

11 Agriculture, Forestry, Fishing and Hunting
21 Mining, Quarrying, and Oil and Gas Extraction
22 Utilities
23 Construction
31 Manufacturing (non-durable goods)

32-33 Manufacturing (durable goods)
42 Wholesale Trade

44 - 45 Retail Trade
48 - 49 Transportation

51 Information
52 Finance and Insurance
53 Real Estate and Rental and Leasing
54 Professional, Scientific, and Technical Services
55 Management of Companies and Enterprises
56 Administrative and Support and Waste Management and Remediation Services
61 Educational Services
62 Health Care and Social Assistance
71 Arts, Entertainment, and Recreation
72 Accommodation and Food Services
81 Other Services (except Public Administration)
92 Public Administration

latter on the former; I compute the importance of each sector group as (1 less R-squared)

of this regression, which is the loss of fit compared to the full residual. Figure 9 plots the

importance of each sector group in consumption (panel A), production (panel B), and in

explaining Phillips curve residual (panel C). The five most important sector groups emerge

on panel c.

Figure 9: Most important sector groups
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(c) Cost-push effect explained
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 Most important 2-digit groups: 
 - 21: Mining, Quarrying, and Oil and Gas Extraction 
 - 32: Manufacturing (durable goods) 
 - 52: Finance and Insurance 
 - 53: Real Estate and Rental and Leasing 
 - 72: Accommodation and Food Services 

Panel (a): sum of sectoral consumption shares within each group; Panel (b): sum of sectoral Domar weights
(shares in total use) within each group; Panel (c): the share of Phillips curve residual explained by a given 2-
digit BEA sector group; computed by forcing the shocks in a given sector of interest to zero and calculating
the (1- r-squared) from a total Phillips curve residual regression on the resulting counterfactual Phillips
curve residual; blue highlights the group of sectors most important in explaining the dynamics of cost-push
inflation.

Next, I disable state-dependent pricing in these selected sectoral groups to evaluate
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the contribution of each group to the difference between non-state-dependent and state-

dependent Philips curve residual. In Figure 10 I plot the residual with disabled state-

dependence for three out of the five most important sectoral groups. We see that state

dependence in these three selected service-related groups of sectors accounts for most of

the effect of state-dependent pricing. These three groups together account for around one-

quarter of the overall consumption basket.

Figure 10: Contribution of state-dependence in selected sector groups
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In Appendix D, I compute the cost-push effect attributed exclusively to the most impor-

tant sectoral groups over time. The five most important sectoral groups combined account

for the bulk of cost-push effect fluctuations over the observed period. I also compute the

cost-push effect attributed to the sectors most important during three historical periods:

The Great Recession, the COVID crisis, and the Ukraine war. Each of the periods is char-

acterized by its own most important sectors in terms of the contribution to cost cost-push

effect.

8 Conclusions

This paper investigates the implications of state-dependent pricing for cost-push inflation

in a multi-sectoral New Keynesian economy with a production network. To this end, I

estimate the sector-specific degree of state dependence and evaluate its importance for cost-

push inflation in the US.

My empirical approach allows the use of the model to estimate sector-specific price

flexibility and its degree of state dependence using sector-specific data. The estimates

reveal that the majority of sectors in the US economy have a statistically significant degree
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of state dependence.

Theoretically, I show that state-dependent pricing may lead to cost-push inflation having

a different size and even an opposite sign compared to a non-state-dependent pricing frame-

work. This important implication of state-dependent pricing obtains even if one excludes

the effect of inefficiency propagation through the production network.

In the model with an empirically plausible degree of state dependence, the importance

of state dependence for the cots-push effect is different for different historical periods. After

the Great Recession, state dependence amplified the positive cost-push effect, while after the

COVID crisis, it often led to a sign reversal of cost-push inflation. Finally, state dependence

in a selected subgroup of services accounts for the bulk of the difference between the cost-

push effect in state-dependent and non-state-dependent models.
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Appendices

A Model log-linearization appendix

A.1 Sectoral wages

The product market clearing condition in sector i (12) can be written as Pt,iYt,i = Pt,iCt,i+∑
j
Pt,iXt,ji. Using the conditions for optimal input allocation (2), (3), and the link between

sector price and sector marginal cost (5), we get
Pt,iXt,ij

MCt,i·Yt,i
=

Mt,iPt,iXt,ij

Pt,i·Yt,i
= (1 − αi)ωij ,

we have Pt,jXt,ji = (1 − αj)ωji
Pt,jYt,j

Mt,j
. Substituting this result into the market clearing

condition

Pt,iYt,i = Pt,iCt,i +
∑
j

(1− αj)ωji
Pt,jYt,j
Mt,j

(A.1)

Consumption shares and Domar weights are connected through a well-known link (see

Baqaee and Farhi (2020)).

Proposition (Consumption shares to Domar weights link). ξ = L′β.

Proof. First, let us compute (A.1) at the efficient steady state and divide by P̄ Ȳ . We

have the P̄iȲi

P̄ C̄
= P̄iC̄i

P̄ C̄
+
∑
j
(1− αj)ωji

P̄j Ȳj

P̄ C̄
. Then, the steady state product market clearing

condition can be expressed as ξi = βi +
∑
j
(1 − αj)ωjiξj , or in matrix form ξ = β +W ′ξ.

This gives us the link between consumption shares and Domar weights: ξ = L′β.

Log-linearizing (A.1) and dividing by P̄ Ȳ yields

ξi(pt,i + yt,i − µt,i) = βi(pt,i + ct,i)− ξiµt,i +
∑
j

(1− αj)ωjiξj(pt,j + yt,j − µt,j)

The demand for i-th sector consumption is pt,i + ct,i = pt + yt. Hence, we have

(pi + yi − µi) =
1

ξi

∑
j

lji(βj(pt + yt)− ξjµj) = pt + yt −
1

ξi

∑
j

ljiξjµj (A.2)

where lij is (i, j)-th element of matrix L.

Labor demand in log-deviations is wt,i + lt,i = pt,i + yt,i − µt,i and labor supply is

wt,i = pt + yt + γlt,i. Combining labor demand and labor supply, we get the following

expression for equilibrium wage

wt,i =
1

1 + γ
(pt + yt) +

γ

1 + γ
(pt,i + yt,i − µt,i) (A.3)
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Combining (A.2) and (A.3) yields

wt,i = pt + yt −
γ

1 + γ

1

ξi

∑
j

ljiξjµt,j (A.4)

which in vector form gives equation 15.

A.2 Sectoral prices

From (4) log-linear marginal cost deviation is sector i is

mct,i = −at,i + αiwt,i + (1− αi)
∑
j

ωijpt,j (A.5)

The link between sector price and sector marginal cost is pt,i = µt,i + mct,i. Combining

these two results yields the following system of equations for sector prices

pt,i = µt,i − ai + αiwt,i + (1− αi)
∑
j

ωijpt,j (A.6)

This system of price equations can be written in matrix form as

pt = µt − at + Iαwt +Wpt (A.7)

Substituting wage (15) into (A.7), moving parts containing pt to the left side and multiplying

by matrix L = (I −W )−1 gives

pt = Lµt − Lat + (pt + yt) · Lα− γ

1 + γ
LIαI

−1
ξ L′Iξµt (A.8)

Next, I establish a link between labor shares vector and Leontief inverse matrix.

Proposition (Labor shares and Leontief inverse.). Lα = 1.

Proof. Indeed, Lα = 1 ⇔ (I −W )−1α = 1 ⇔ α = (I −W )·1 = 1− (1−α) = α.

Then, the system of price equations can be expressed as

pt = (pt + yt) · 1− Lat + L̃µt (A.9)

where L̃ = L(I − γ
1+γ IαI

−1
ξ L′Iξ).
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A.3 Final output

Log-linearization of consumer price index yields pt =
∑
i
βipt,i = β′ · pt. Multiplying both

sides of price equations (16) by vector β′ and noticing that β′ · 1 =
∑
i
βi = 1, we get

0 = yt − β′ · L · at + β′L̃ · µt (A.10)

Next, as shown shown before β′L = ξ′. Then, β′L̃ = ξ′− γ
1+γ ξ

′IαI
−1
ξ L′Iξ = ξ′− γ

1+γα
′L′Iξ =

ξ′− γ
1+γ1

′ ·Iξ = 1
1+γ ξ

′, where in the third step I use the previous result that Lα = 1. Hence,

we have the expression for output as a function of productivities and markups.

yt = ξ′ · at −
1

1 + γ
ξ′ · µt (A.11)

A.4 Price-markup link

Log-linearizing Equation (21), while treating all Ft−s,i as time-varying coefficients

pt,i = Ft,i ·mct,i +
∞∑
h=1

{[
h−1∏
s=0

(1− Ft−s,i)

]
· Ft−h,i · Et−hmct,i

}
(A.12)

Let mct,i = mct−1,i +∆mct,i. Then, we can write

pt,i = Ft,imct,i+(1−Ft,i)

[
Ft−1,iEt−1mct,i +

∞∑
h=1

{[
h−1∏
s=0

(1− Ft−1−s,i)

]
· Ft−1−h,imct,i

}]
=

= Ft,imct,i + (1 − Ft,i)pt−1,i + (1 − Ft,i)et−1,i

where et−1,i = Ft−1,iEt−1∆mct,i +
∞∑
h=1

{[
h−1∏
s=0

(1− Ft−1−s,i)

]
· Ft−1−h,i∆mct,i

}
is predeter-

mined at period t. Markup is µt,i = pt,i −mct,i. Hence, the price-markup link is

(1− Ft,i) · (pt,i − pt−1,i) = −Ft,iµt,i + (1− Ft,i)et−1,i (A.13)

B Cost-push inflation theoretical appendix

This appendix contains proofs for Section 6.

B.1 Phillips curve

Proof of Proposition 1 (Consumer price inflation Phillips Curve). Rewriting price

equations (16) in terms of sectoral inflations gives

πt = −pt−1 + pt−11+ (πt + yt)1− Lat + L̃µt
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where L̃ = L(I − γ
1+γ IαI

−1
ξ L′Iξ).

On the other hand, the markup-inflation link through price prigdity (21) can be written as

(I − Ft)πt = −Ftµt + (I − Ft)et−1

where Ft = diag{Ft,i}, et−1 is such that

et−1,i = Ft−1,iEt−1∆mct,i +
∞∑
h=1

{[
h−1∏
s=0

(1− Ft−1−s,i)

]
· Ft−1−h,i∆mct,i

}
is predetermined at

period t.

Efficient relative prices are

p̂⋆
t = p⋆

t − p⋆t · 1 = yet · 1− L · at

In terms of price gaps π̂⋆
t = p̂⋆

t − p̂t−1, price equation can be rewritten as

πt − πt · 1 = ỹt · 1+ π̂⋆
t + L̃ · µt

Substituting markup-rigidity link into the previous equation and rearranging, we get

Ft(I + L̃F−1
t (I − Ft))πt − Ft1πt = Ft1ỹt + Ftπ̂

⋆
t + L̃F−1

t (I − Ft)et−1

Let M−1
t = Ft(I + L̃F−1

t (I − Ft)). Multipling previous equation by Mt and then by β′, we

get Phillips curve

πt(1− β′MtFt1) = β′MtFt1ỹt + β′MtFtπ̂
⋆
t + β′MtFtL̃F

−1
t (I − Ft)et−1

Let κt =
β′MtFt1

1−β′MtFt1
. Then, Phillips curve takes the form stated in proposition.

B.2 Cost-push effect decomposition

Proof of Proposition 2 (Phillips curve residual decomposition). Absence of input-

output effect in price setting means that firms set their prices ignoring the inefficient compo-

nent of their marginal costs. Instead they consider marginal costs being equal to the efficient

prices p⋆
t . Hence, the resulting sector prices are pt = Ft ·p⋆

t +(I −Ft)(pt−1+et−1), which

yields (I − Ft) · (pt − pt−1) = Ft · (p⋆
t − pt) + (I − Ft) · et−1.

Since p⋆
t − pt = −L̃ · µt, we have (I − Ft) · (pt − pt−1) = −FtL̃ · µt + (I − Ft) · et−1.

Under this link between inflation and markups, the Phillips curve is

πt(1− β′Ft1) = β′Ft1ỹt + β′Ftπ̂
⋆
t + β′FtL̃F

−1
t (I − Ft)et−1

and the Phillips curve residual not-related to inefficiency in marginal cost is uht = β′Ftπ̂
⋆
t
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Proof of Corollary 1 (Single final good economy(only I-O component)). Let π⋆
t be

desired price changes. β′π⋆
t = π⋆

1,t is the desired consumer price change. Then, price gaps

(relative desired price changes) are π̂⋆
t =

[
0, π̂⋆

2,t, ..., π̂⋆
N,t

]
. As a result uht = β′Ftπ̂

⋆
t = 0

If F1,t < 1 and Fi,t = 1 for all i ̸= 1 then we have [F−1
t (I − Ft)]1,1 ̸= 0 and [F−1

t (I −
Ft)]i,j = 0 otherwise. Then MtFt = [I + L̃F−1

t (I − Ft)]
−1 is such that it has non-zero

first column, ones on the diagonal and zeros otherwise. Then β′MtFt is a row vector with

the first element being the only non-zero element. Hence, we have β′MtFtπ̂
⋆
t = 0 since

π̂⋆
1,t = 0.

Proof of Corollary 2 (Quasi-horizontal economy (only horizontal component)).

If L̃ = I the net effect of markups on marginal cost is zero as intermediate cost effect exactly

compensates the labor cost effect. In this case, Mt = (I + L̃F−1
t (I − Ft))

−1F−1
t = I and

the vertical component disappears.

In the case described by corollary, Leontief inverse is L = I−1
α , which gives L̃ = 1

1+γ I
−1
α .

To eliminate vertical component we need to have αi =
1

1+γ for all sectors i.

B.3 Illustrative examples derivations

B.3.1 Vertical chain economies

Consider a general case of a two-sector vertical chain. U - upstream sector, D - downstream

sector. FU - upstream price flexibility, FD - downstream price flexibility. The share of

upstream input in downstream production is w. Let productivity vector be a′ = [ϵU , ϵD].

Price flexibility matrix is Ft =

(
FU 0

0 FD

)
. I-O matrix is W =

(
0 0

w 0

)
. Leontief inverse

is L =

(
1 0

w 1

)
. Consumption shares are β′ = [0, 1] and Domar weigths are ξ′ = β′L =

[w, 1]. Labor shares α′ = [1, (1 − w)]. Phillips curve residual is ut = β′MtFtπ̂
⋆
t where

MtFt = (I + L̃F−1
t (I − Ft))

−1 and L̃ = 1
1+γ ·

(
1 −γ

w 1

)
.

MtFt =
1+γ
Det ·

(
1 + γ + fD γfD

−wfU 1 + γ + fU

)
where fU = 1−FU

FU , fD = 1−FD

FD and Det =

(1 + γ + fU ) · (1 + γ + fD)−wγfU · fD > 0. β′MtFt =
1+γ
Det · [−wfU , 1 + γ + fU ]. Desired

price changes are π̂⋆
t = −[(1− w)ϵU − ϵD, 0]′. Then, Phillips curve residual

ut =
1 + γ

Det
· w((1− w)ϵU − ϵD) · 1− FU

FU
(A.14)

Example 1: two-sector vertical chain. In this example Oil sector is Upstream and

Final good sector is Downstream. We have FU = FO = 1, ϵU = ϵO and ϵD = 0. As a result

we have u = 1+γ
Det · w((1− w)ϵO) · 1−FO

FO = 0.
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Example 2: Intermediate good. Consider a three-sector vertical chain Oil → Interme-

diate good → Final good. Assume that intermediate good uses only oil and no labor. Let

price flexibilities be FO = 1, F I < 1 and FF < 1. Then, Oil and Intermediate good can be

combined in one Upstream sector such that FU = F I and FD = FF . Under the oil shock

ϵO, we have ϵU = ϵO and ϵD = 0. Then, the residual is is u = 1+γ
Det · w(1 − w) · ϵO · 1−F I

F I .

When oil productivity goes down (oil price goes up), Phillips curve residual also goes down

(consumer prices go down).

Example 3: “Sticky wage” economy. Consider a three-sector vertical chain Labor

sector→ Oil→ Final good. Assume that final good uses only oil and no labor. Let price

flexibilities be FL < 1, FO = 1 and FF < 1. Then, Oil and Final good can be combined in

one Downstream sector such that FU = FL and FD = FF . Under the oil shock ϵO, we have

ϵU = 0 and ϵD = ϵO. Then, the residual is is u = 1+γ
Det · −wϵO · 1−FL

FL . When oil productivity

goes down (oil price go up), Phillips curve residual goes up (consumer prices go up).

B.3.2 Multiple input/goods economies

Next, consider a two-sector horizontal economy with good 1 (G1) and (G2) such that only

labor and own output is used for production of each good. Then production network

is W = I − Iα, L = I−1
α , L̃ = I and Mt = I which eliminates vertical component of

cost-push inflation. The shares of each good in consumption are s1 and s2 such that

s1 + s2 = 1. Let each of these sectors be hit by a respective shock ϵ1 and ϵ2 and the

respective price flexibilities be F1 and F2. Then Lat = [(1 − α1)
−1 · ϵ1, (1 − α2)

−1 · ϵ2]′.
Then, π̂⋆

t = −[s2((1− α1)
−1 · ϵ1 − (1− α2)

−1 · ϵ2), −s1((1− α1)
−1 · ϵ1 − (1− α2)

−1 · ϵ2)]′.
Then cost-push inflation is u = −s1 · s2 · (F1 − F2) · ((1− α1)

−1 · ϵ1 − (1− α2)
−1 · ϵ2).

Example 4: Multiple inputs economy. Consider an economy where single final good

is produced using two inputs Oil and Intermediate good. If price flexibility in final good

sector is 1 and no labor is used in this sector, then this economy is a special case of a

horizontal economy described above. We have F1 = FO = 1, F2 = F I , s1 = 1 − αI ,

s2 = αI , α1 = α2 = 1 and ϵ1 = ϵOil, ϵ2 = 0. As a result we have cost-push effect

u = −αI(1− αI) · (1− F I) · ϵOil.

Example 5: Two-commodity economy. Consider an economy consisting of two com-

modities: Oil and Grain and two final goods: Oil-intensive final good and Grain-intensive

final good. Commodity sectors have fully flexible prices, while final good sectors have

partially rigid prices. If final goods sectors do not use any labor and use only respec-

tive commodities, then this economy can be represented as a special case of a two-sector

horizontal economy described above with Oil commodity and Oil intensive final good

representing the first sector and Grain commodity and Grain-intensive final good rep-
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resenting the second sector. Then, we have F1 = FFO, F2 = FFG, α1 = α2 = 1,

s1 = s2 = 0.5 are consumption shares, ϵ1 = ϵOil and ϵ2 = ϵGrain. Then, cost-push ef-

fect is u = −1
4 · (FFO − FFG) · (ϵOil − ϵGrain)

C Empirical evidence appendix

C.1 Methodology appendix

Computing sector relevant states and markups. Let all industies be indexed by i ∈ {1, ..., N}.
At any period t the available k sectors have indices {i1, ..., ik} ⊆ {1, ..., N}. I construct N×k

selection matrix S, such that S[ij , j] = 1 and zero otherwise. Note, that STS = I. Then

transformation Su transforms k-sized vector u to N -sized vector with zeros for unavailable

sectors; STv transforms N -sized vector v to k-sized, by choosing only elements for available

industires. Hence, we can write a system of k equations for k markups and productivities

in terms of k wages and prices

µ =
1 + γ

γ
· ST (I−1

ξ LT Iξ)
−1S · ((p+ y)·1−w) (A.15)

s = p− ST (L̃S · µ+ (p+ y)·1) (A.16)

Instrument validity. . Note that ṽt,i is independent of zt,i as long as monetary policy does

not react within a month to a productivity shock. Furthermore, Fi(|zt,i|)zt,i has mean zero,

since zi,t is zero mean normally distributed. Hence, we have

Cov(Fi(|zt,i|)zt,i, Fi(|zt,i|)ṽt,i) = E(Fi(|zt,i|)2zt,iṽt,i) =

=

∫ ∫
Fi(|zt,i|)2zt,iṽt,ifzfṽdzdṽ =

∫
ṽ

[∫
z
Fi(|zt,i|)2zt,ifzdz

]
ṽt,ifṽdṽ = 0

The last equality follows as inner integral equals to zero due to zero mean symmetric

distribution of zi,t. Hence, instruments constructed in this matter are valid.

C.2 Dataset construction

This Appendix describes the construction of BEA-coded sectoral prices and wages.

Sectoral wages (from CES to NAICS). Sectoral wages are initially classified with

CES codes, with available correspondence from CES to NAICS codes. So first I transform

the wages classification to NAICS-based. The main complication is that CES to NAICS

mapping is not one-to-one as at least for some NAICS codes more than one CES sector

exists.To overcome this complication I compute the weighted average wage for each NAICS

sector as wNAICS =
∑

αiw
CES
i where wCES

i are CES-sector wages corresponding to a

given NAICS sector code. Each weight αi is computed as a ratio of the number of workers
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employed in sector i to the total number of workers in all CES sectros corresponding to a

given NAICS sector. The number of employed workers is taken form the same CES dateset

as the average number for the year 2012, to correspond to the year of the Input-Output

table used.

NAICS to BEA concordance. The producer prices data is classified by NAICS codes

as well as wages data (after the transformation from CES to NAICS described above).

To apply this data to the available input-output tables I convert NAICS based sectoral

data to BEA based sectoral data. BEA Bridge tables have a rough BEA-NAICS code

correspondence, from which I make use to establish a concordance between NAICS codes

and BEA codes. The problem is that the BEA-NAICS codes correspondence is not one-

to-one. For those cases when one BEA code corresponds to several NAICS codes I need

weights to evaluate the BEA-based price as a weighted average of the NAICS based prices.

For this I need to compute the relative sector size of each NAICS sector withing a given

BEA sector. The primary data source I use to compute NAICS sector sizes is the Annual

survey of manufacturers from the US Census. I use the corresponding ”Shipment value”

quantities for the survey of 2012. The secondary data source is the Current Employment

Survey. I use the number of employed people as an sector size variable, translated from

CES into NAICS codes in the same manner as wages. First I try to compute NAICS sector

weights in each BEA code using ASM data. If ASM data is unavailable, I use CES data.

For those sectors, that are not covered by either dataset I use the uniformal weights.

NAICS to BEA matching procedure. Having constructed the mapping from

NAICS to BEA codes with corresponding weights, I convert the NAICS data into the BEA

data. I want to find a corresponding NAICS code for as many NAICS sectors from the

NAICS-BEA mapping as possible. First, I find the the NAICS codes in the data that have

the identical NAICS codes in the NAICS-BEA mapping. For the remaining NAICS codes

from the BEA-NAICS mapping I try to find the correspondence at the more aggregated

level. I subsequently remove 1,2 and 3 last digits of NAICS codes form the mapping and

try to find the corresponding more aggregated sector in the data.
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C.3 Additional results

Figure C.1: Baseline estimates vs. model with more shocks
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Correlation of average flexibilities is 0.83; state-dependence parameters - 0.45; average state volatilities -
0.96.

Figure C.2: Baseline estimates vs. Pasten et al. (2020) estimates
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D Quantitative appendix

D.1 Model with more shocks

To check the robustness of baseline cost-push effect computations I now compute the alterna-

tive cost-push effect from the model with more shocks. In this computations sector-relevant

states are computed using more sectoral data and the parameters of price flexibility and

state-dependence estimated based on this alternative sector-relevant state.
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Figure D.3: Phillips curve residual in model with more shocks
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D.2 Most important sectoral groups contribution

For these five most important groups, I compute counterfactual cost-push effects generated

exclusively by fluctuations in sectors belonging to these groups. Figure D.4 panel A plots

the residual induced by sector group 21 (Mining, Quarrying, and Oil and Gas Extraction)

and indicates that this sector group alone can partially explain the cost-push effect of 2009

but does not explain any other episode. Adding other important groups 52, 53 (Finance and

Insurance, Real Estate, and Rental and Leasing) on panel B, and 32, 72 (Manufacturing

of durable goods, Accommodation and Food Services) on panel C, improves the fit to full

residual - many fluctuations can be attributed to these most important sectors.
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Figure D.4: Cost-push inflation due to 2-digit sector groups
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Red dashed line plots counterfactual residuals computed by shutting down the shocks in all sectors except
a given 2-digit sector group.

D.3 Sectoral contribution during particular episodes

Now, I investigate which sectors have contributed the most during three important historical

episodes: the post-Great Recession, the post-Covid episode, and the Ukraine war. For this,

I find the largest-seized elements of the sum constituting the main component of the cost-

push effect within each episode of interest. Then, I compute counterfactual residual by

switching off these sectors.

In 2009, a lot of cost-push effect was attributed to the “Petroleum refineries” sector

alone. Figure D.5 (panel A) shows that switching off this sector substantially reduces

the 2009 cost-push effect. The Covid and post-Covid episode was not attributed to any

particular sector but rather to several groups simultaneously 52, 62, 22, 33 (Finance and

Insurance, Health Care and Social Assistance, Utilities, Manufacturing (durable goods).

Figure D.5 (panel B) shows that these groups explain most of the cost-push effect in 2020-

2021. The 2022 surge of the cost-push effect is largely attributed to sector groups 53 and

72 (Real Estate and Rental and Leasing, Accommodation and Food Services) as shown on

D.5 (panel C).
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Figure D.5: Cost-push inflation due to 2-digit sector groups
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(b) disable Covid sectors
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(c) disable Ukraine war sectors
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