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Abstract 

The New Keynesian framework implies that sluggish price adjustment results in a 
distorted allocation of resources. We use a tractable model to identify these 
unobservable distortions, using granular data that depict the price-setting behavior of 
firms. We propose a method to estimate welfare costs for the period preceding 2022, 
and during the subsequent high inflation period. Using granular data from PriceStats, 
as well as data from the ECB PRISMA project, we find that these welfare costs are 
sizeable. In the low inflation environment prevalent before 2022 the efficiency cost is 
quantified in about 2 percentage points of GDP in the Euro Area. Moreover, we 
estimate that the recent inflationary shock has temporarily increased these costs, in 
the order of an additional 3 percentage points of GDP.  

 

1 Introduction 

The inflation surge that followed the sizeable increases of energy prices in Europe, 
pictured in Figure 1, has revived interest on inflation and its welfare costs. After more 
than three decades of stable prices, in 2022 inflation peaked at about 10% in the 
Euro area and the US. The inflation spike was associated with an unusually large 
increase in the frequency of price revisions. In the food-and-beverage sector, where 
the average number of regular price adjustments per year hovered between 1 to 3 
before 2022, the number of price changes almost doubled in 2022 and 2023 (see 
Figure 2). These facts raise several questions about the mechanism by which cost 
shocks transmit to consumer prices, questions on the welfare costs of inflation, on 
the future path of inflation, and on the appropriate policy actions. 
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wish to thank Fernando Alvarez, Isaac Baley, Andres Blanco, Xavier Gabaix, Erwan Gautier, Hugo 
Hopenhayn, Anil Kashyap, Herve Lebihan, Claudio Michelacci, Virgiliu Midrigan, Luigi Paciello. 
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Figure 1 
The 2019-2023 dynamics of energy prices 

 

Sources: European Commission Weekly Oil Bulletin 
Notes: Price with tax per 1000L.  

In this paper we address two narrow and well-defined questions. The first one 
concerns the mechanism: understanding inflation dynamics requires a model of the 
price-setting decisions of a large number of individual firms, and their aggregation. 
We will use a simple model, validated against a rich granular dataset, to argue that 
the workhorse New Keynesian model of monetary policy in use at most central 
banks, built around the assumption of a constant average frequency of repricing by 
firms, misses a key aspect of the inflation dynamics. We will show that such model 
fails to capture the sizeable different speed of passthrough of large versus small 
aggregate shocks. We present a simple tractable model that improves upon the 
benchmark and yields smaller inflation forecast errors. In other words, our preferred 
model features a “highly non-linear” Phillips curve. 

Figure 2 
Frequency of price changes (Food and Beverages) 

  

Sources: PriceStats data for regular price changes. 
Notes: The left graph shows the frequency of price changes for regular prices (excluding sales) for six selected countries. The right 
graph is a binned scatterplot of the frequency and annual inflation rates for nine countries: France, Germany, Greece, Ireland, Italy, 
Netherlands, Spain, Poland, and the UK. Frequency computed using microdata. Annual inflation rates computed by PriceStats. 
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The second question concerns the welfare costs. A classic approach in 
macroeconomics studies the welfare cost of inflation using a powerful public finance 
idea, namely that inflation acts as a distortionary tax on the demand of real balances, 
see e.g., Bailey (1956); Friedman (1968). A microfounded money demand model can 
then be used to quantify these welfare costs, as in e.g., Lucas (2000). In this paper 
we focus instead on the welfare costs that arise in New Keynesian (NK) models, by 
far the dominant framework employed by academics and central bank researchers in 
the recent decades, see e.g., Woodford (2003); Gali (2008); Walsh (2010). In the NK 
framework the welfare costs are made of two elements, both related to the 
assumption of sticky prices. First, since prices deviate from their efficient level, such 
wedges impose a welfare cost to consumers and workers. This is what the literature 
refers to as “misallocation”, which we denote by the variable 𝜒. Second, the costs 
associated to the price-management activities are a waste, much like the resources 
that agents waste to protect themselves from inflation in the money demand models 
cited above. We denote this welfare cost by the variable 𝜑. Both 𝜒 and 𝜑 will be 
measured as a proportion of total GDP, so that their magnitude has a straightforward 
interpretation. 

As neither measure of welfare cost is directly observable to researchers, their 
assessment requires a model, providing us with an explicit mapping between these 
objects and the observable data moments.5 In the first part of the paper, we set up 
such a model, drawing on Caballero and Engel (1999,2007), and parametrize it 
using a granular data set for the food and beverages sector for several European 
countries, see Cavallo (2018). A founding principle of our analysis is to identify a 
model that is broadly consistent with the recent observed price-setting behavior. 
There are two reasons why this is important. First, the credibility of the analysis on 
retail price inflation requires that the model is consistent with the facts about price-
setting behavior by retailers. Second, the welfare costs vary substantially across 
models, in spite of the fact that these models reproduce the same mean frequency 
and mean size of price changes. For instance, the welfare costs of misallocation in 
the well-known Calvo model, at the core of most NK analyses, are two times larger 
than the misallocation produced by a staggered-price adjustment model a la Taylor 
(1980), and six times larger than the misallocation produced by a menu cost model a 
la Golosov and Lucas (2007). 

Matching the model fundamentals to the price-setting patterns observed in the 
granular data will lead us to reject the Calvo model, because of its impossibility to 
account for the significant increase in the frequency of price-setting observed in the 
data, shown in Figure 2, and because of its failure to fit other features of price-setting 
behavior, such as the bi-modal size distribution of the price changes depicted in 
Figure 3. This result yields an important policy lesson: large shocks travel faster than 
small shocks. Failure to acknowledge this fact will lead the policy maker to a wrong 
inference about inflation dynamics. Relatively to our simple model, the use of a 
textbook Calvo model leads to underpredicting inflation in the early periods after the 
shock, and to underestimate its slowdown later (see Figure 10). 

 
5 See Zbaracki et al. (2004) for an attempt at measuring such costs directly. We relate to their findings with 

ours in Section 4. 
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Figure 3 
Distribution of Size of Price Adjustments 2020 (Food and Beverages) 

 

Source: PriceStats microdata for regular price changes. 

In the second part of the paper, we use our model to infer the magnitude of the 
welfare costs caused by the presence of sticky prices, and analyze how these costs 
change following a large inflationary shock such as the recent large increase of 
energy prices. We supplement the granular data for the food and beverages industry 
with some descriptive statistics for the Euro Area, taken from the Price-setting 
Microdata Analysis (PRISMA) network, see e.g., Gautier et al. (2022), and 
descriptive statistics for supermarket data of the Euro Area, drawn from Karadi et al. 
(2023). We develop two conceptually distinct exercises. First, we measure the 
welfare costs 𝜒 and 𝜑 in a steady state. In particular, we gauge these costs using 
data from the low inflation period prevalent before 2022. The results suggest that the 
welfare cost in this low inflation environment range at about 2 percentage points of 
GDP in the Euro Area. This suggests that the resources lost every year due to the 
sticky price frictions are not negligible. Second, we analyze the dynamics of these 
welfare costs following the large energy price increases recorded in 2022. This 
exercise is a canonical impulse-response analysis, studying how inflation and the 
welfare costs evolve from their steady state levels following a large cost shock. The 
exercise allows us to quantify the welfare costs that arise above and beyond the 
steady state costs. Our preliminary estimates suggest that the recent inflationary 
shock triggered a temporary increase of the welfare costs, in the order of an 
additional 3 percentage points of GDP. 

Structure and overview of contents. The paper is organized as follows. Section 2 
presents the New Keynesian setup that guides our analysis of the price-setting 
activity of firms and will (later) be used to quantify the welfare costs. The model is 
inspired by the seminal work of Caballero and Engel (1999, 2007) and nests several 
well-known cases such as the Calvo (1983) model or the menu cost model of 
Golosov and Lucas (2007). 

Section 3 describes the model’s predictions for the frequency and the size-
distribution of price changes and compares them with cross-sectional facts observed 
from the low inflation period before 2022. This part of the analysis relies on a 
granular dataset for European countries provided by PriceStats. The data contain 
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detailed information on the frequency and size of daily price changes for a large 
number of firms and provide the necessary information to solve the inverse inference 
problem mentioned above. For our purposes, the dataset offers two key advantages 
over traditional data sources such as Consumer Price Index (CPI) and Scanner 
Data. Firstly, the daily price data collection with uncensored spells allows for an 
accurate identification of sales and price changes (Cavallo, 2018). Second, the data 
is available without any lags, allowing us to study the recent period of high inflation in 
real-time.6 

Mapping the model to the observables allows us to select a data-consistent 
structural model of price-setting. We show that a main feature of the selected price-
setting model is a sizeable component of state-dependent decisions. This means 
that the firms’ responsiveness to the shocks depends on the size of the shocks7. 
Following a large shock, such as the recent energy shock, firms react faster than in 
normal times. This is important to understand the dynamics of inflation, as also noted 
by Alvarez and Neumeyer (2019); Karadi and Reiff (2019). This finding also differs 
markedly from the time-dependent models widely used at central banks, such as the 
workhorse model of Calvo (1983). We show that the selected model can qualitatively 
replicate the response of the frequency of price changes after a large cost shock, 
such as the ones recently observed, as in e.g., Figure 2. This result is important to 
quantify the deadweight losses triggered by the shock, as firms must engage in 
above-normal repricing activities that are costly to them (as captured by 𝜑). 

Section 4 quantifies the welfare cost of misallocation in NK models. We derive a 
mapping between the theory-based measure of misallocation, 𝜒	and 𝜑, and a set of 
observable moments from the size distribution of price changes. For instance, we 
show that the welfare cost of misallocation,𝜒, are proportional to the product of the 
variance times the kurtosis of price changes. This provides a direct mapping to 
quantify the welfare costs of inflation, that we implement using three different 
granular datasets. As noted above, this result also highlights that different models 
can lead to estimates of misallocation that differ by an order of magnitude (e.g., the 
welfare costs in the Calvo model are six times larger than in the canonical menu cost 
model) as captured by the kurtosis of price changes. 

We use PriceStats data, as well as data provided from the ECB PRISMA project 
(Gautier et al. (2022)), to estimate the welfare cost of inflation in the low inflation 
environment before 2022 to be about 2 percentage points of GDP in the Euro Area. 
The bulk of this welfare costs originates from the sizeable misallocation that is 
estimated in the data (the cost component 𝜒). A smaller part, about 50 basis points of 
GDP, relates to the resources that are used for the price-management activity (the 
cost component 𝜑). We also estimate that the recent inflationary shock has triggered 

 
6 Our data was provided by PriceStats, a private company related to the The Billion Prices Project (see 

Cavallo and Rigobon (2016)). This dataset is a comprehensive collection of retail prices obtained from 
the websites of large, multichannel retailers. It is generated using a technology known as web scraping, 
which automatically scans the code of publicly available webpages daily to gather and store relevant 
data. 

7 See Gagnon (2009); Alvarez et al. (2019a); Karadi et al. (2023) for an extensive documentation of the 
importance of state dependent pricing in several countries including the US and Europe. The idea of 
using large shocks to discuss model selection has been used by other authors, such as Gopinath and 
Itskhoki (2010); Alvarez, Lippi, and Paciello (2016); Bonadio, Fischer, and Sauré (2019). 
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a temporary increase of the welfare costs, in the order of an additional 3 percentage 
points of GDP. This temporary surge is attributed to a roughly equal change in both 
cost components, each by approximately 1.5 percentage points of GDP. Provided no 
new large shocks arrive, this additional cost component is expected to vanish, and 
inflation is expected to return to the baseline. 

1.1 Related literature 

As mentioned, several classic contributions on the welfare cost of anticipated 
inflation consider that inflation acts as a distortionary tax on the demand of real 
balances (Bailey, 1956; Friedman, 1968). Several papers have taken those ideas 
seriously and developed carefully designed models to quantify the deadweight 
losses caused by a stationary inflation rate, as in e.g., Aiyagari, Braun, and Eckstein 
(1998); Lucas (2000); Lagos and Wright (2005). A common finding is that the welfare 
costs of moderate steady inflation are not negligible. The results differ, depending on 
the specifics of the money demand aggregates that are used and other details of the 
modeling strategy, but the estimates are aligned in placing the order of magnitudes 
of the deadweight losses caused by a moderate inflation between 1 to 3% of annual 
consumption.8 

Our paper is not the first one to quantify the misallocation caused by sticky prices. As 
mentioned, measuring misallocation is involved because it requires the identification 
of the gap between actual prices and the efficient ones, where the latter are not 
directly observable from the data. The literature has followed different routes to 
address this problem. Nakamura, Steinsson, Sun, and Villar (2018) and Sheremirov 
(2020) use US price data and proxy misallocation using observations on the degree 
of price level dispersion, and the size of price changes. Relatedly, a paper by Adam, 
Alexandrov, and Weber (2023) assumes that efficient prices follow (product-specific) 
trend inflation and uses this assumption to identify changes of the inefficient price 
dispersion in the UK data. A common feature of these papers is to estimate how 
observed changes of inflation map into an increased cost of misallocation. But the 
level of the misallocation cost itself cannot be measured. In this paper we use an 
alternative approach. We use recent results by Baley and Blanco (2021) and 
Alvarez, Lippi, and Oskolkov (2022) to construct a mapping that allows us to infer the 
price gaps using observable moments on the size and timing of price changes. This 
allows us to estimate the level of the cost of misallocation, as well as its evolution 
following a large inflationary shock. A similar approach is used by Blanco, Boar, 
Jones, and Midrigan (2022) using the CPI data for the UK. 

Finally, other papers focus on the effects of inflation surprises and their distributional 
effects, namely identifying winners and losers after an inflation surprise, see e.g., 

 
8 For instance, Aiyagari et al. (1998) model the costs of inflation as the resources that the households use 

to protect themselves from the inflation tax. They use a simple model and several empirical datasets to 
quantify the steady state costs of moderate inflation. An inflation rate of about 10 percent causes 
welfare losses that are estimated to be between 1% to 2% of total consumption. A similar conclusion is 
reached by Lucas (2000) who uses a money demand model and quantifies the benefits of reducing 
inflation from 10 percent to zero at about 1% to be equivalent to an increase in real income of about 
1%. A higher value, between 3 to 5% of consumption, is estimated by the paper of Lagos and Wright 
(2005) based on a search-theoretic model. 
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Bach and Stephenson (1974); Doepke and Schneider (2006). Other interesting and 
related analyses of the distributional effects of inflation can be found in Argente and 
Lee (2020), who focus on the dynamics of prices for rich and poor households during 
the great recession of 2008. While such distributional effects are important, such 
measurements do not offer a direct assessment of welfare costs, as the deadweight 
loss of a redistributive policy are not directly measured by those statistics. We focus 
here on the deadweight losses associated to both anticipated and unanticipated 
inflation but our is mute about the distributional effects. 

2 A generalized setup for NK models 

This section presents a New Keynesian setup that describes the firm’s price-setting 
decisions. The motivation for introducing a formal model is that it will allow us to 
relate the observed price-setting behavior to the fundamental costs and benefits of 
the price-management activity. We follow a flexible framework proposed by 
Caballero and Engel (2007) that describes the firm’s key decision in terms of the 
probability of price adjustment. The economics is simple: the more a firm is willing to 
adjust its price, the more resources must be assigned to that task. If no resources 
are used, then the prices stay constant. This view is aligned with empirical studies 
that measure the amount of resources dedicated to the price management activity, 
such as Zbaracki et al. (2004). The firm’s behavior is related to its price deviation 
from profit maximization, denoted by the variable 𝑥. The firm’s choice variable will be 
described by a function, Λ(𝑥), giving the probability (per unit of time) that the price 
will be adjusted. Intuitively, it will be shown that larger deviations of 𝑥 from its ideal 
value increase the probability that a price change is observed. The setup embeds a 
broad class of sticky-price models, including well-known cases such as the canonical 
Golosov and Lucas (2007), the pure Calvo (1983) model and the hybrid Calvo-Plus 
model by Nakamura and Steinsson (2010). 

Next, we summarize the key model ingredients9. We consider a setting where firms 
are hit by idiosyncratic productivity shocks, so that firm’s 𝑖 profit maximizing price, 𝑃!∗, 
is given by a constant markup over marginal costs, 𝑚𝑐!: 

𝑃!∗(𝑡) =
𝜂

𝜂 − 1𝑚𝑐!
(𝑡) 

( 1 ) 

where 𝜂 > 1 is the price-elasticity of demand, assumed to be constant. Note that 
𝑃!∗(𝑡) depends on time because the marginal costs can change over time due to the 
productivity shocks. Marginal costs are also affected by aggregate shocks, such as a 
generalized increase in energy prices. 

 
9 For a detailed illustration of the underlying theoretical setup see Caballero and Engel (1999) and 

Caballero and Engel (2007), and Alvarez et al. (2022) for a simplified version. 
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The assumption of sticky prices, the hallmark of the New Keynesian economics, 
creates a wedge between the actual price 𝑃(𝑡) and the desired price 𝑃!∗(𝑡). We refer 
to this gap as the “price gap” and denote it by 𝑥!(𝑡) for firm 𝑖 at time 𝑡. It is given by 

𝑥!(𝑡) ≡ log𝑃!(𝑡) − log𝑃!∗(𝑡) 

( 2 ) 

Absent pricing frictions the gap is identically zero, i.e., each firm charges the optimal 
price 𝑃!(𝑡) = 𝑃!∗(𝑡). If the price is not adjusted, the price gap changes due to trend 
inflation, given by 𝜇, and the idiosyncratic productivity shocks which are assumed to 
follow a driftless Brownian motion 𝜎ℬ(𝑡), where 𝜎 is the standard deviation of the 
productivity innovations per unit of time10. 

We describe the firm’s price-setting decision as the solution to a minimization 
problem: the firm chooses its price to minimize the expected present value of the 
non-zero price gaps, discounted at the rate 𝜌. The solution of this problem involves 
balancing two costs: on the one hand, a price gap 𝑥(𝑡) implies that the firm’s profits 
are below the maximum level by the amount: #(#%&)

(
𝑥(𝑡)(, where for notation 

convenience we drop the 𝑖 index. The quadratic term is obtained from a second 
order expansion of the profit function around the profit-maximizing price. The firm 
would like to “keep 𝑥 small”, i.e., to adjust the own price 𝑃 to track 𝑃∗, but since 
price-setting is costly this cannot be done in every period. We assume that at each 
point in time the firm can choose the probability of price resetting per unit of time, 
ℓ(𝑡), by spending resources (𝜅ℓ(𝑡))) with 𝜅 > 0, 𝛾 > 1. At each time 𝑡 = 𝜏* where the 
effort is successful the price is reset, i.e. 𝑥 is reset at the ideal level 𝑥∗ by a price 
change of size Δ𝑥+! = 𝑥∗ − 𝑥(𝑡).11 This means that the price gap obeys the law of 
motion 𝑥(𝑡) = 𝑥(0) + ∫ 𝑑ℬ(𝑠) + ∑ Δ𝑥+"+!,-

-
. .  

Formally, the firm solves: 

𝑣(𝑥) = 𝔼 HI 𝑒%/0 min
1∗,ℓ4.

N
𝜂(𝜂 − 1)

2 𝑥(𝑠)( + P𝜅ℓ(𝑠)Q
)R𝑑𝑠	|	𝑥(0) = 𝑥

5

.
T 

( 3 ) 

The key element of this problem is the effort rate ℓ for price resetting that each firm 
chooses at each point of time. As highlighted by Caballero and Engel (1999), this 
allows us to describe the optimal firm policy through a generalized hazard function 
(GHF): ℓ∗(𝑡) = ΛP𝑥(𝑡)Q.	This function gives the probability that the price will be 
adjusted given the firm’s current price gap 𝑥(𝑡). 12 

 
10 Technically the variable 𝑥 follows the diffusion 𝑑𝑥 = −𝜇𝑑𝑡 + 𝜎𝑑ℬ. 
11 The optimal return point 𝑥∗ is the profit maximising reset price-gap that satisfies 𝑣"(𝑥∗) = 0. See Appendix 

A of Alvarez and Lippi (2014). We note that the units of the cost function are expressed as a fraction of 
forgone (steady state) profits. Given the CES demand system, to express these units in terms of the 
revenues (and output) they must be divided by 𝜂 − 1. 

12 The notion of a generalized hazard function was developed in seminal papers by Caballero and Engel 
(1993a,b), a derivation from first principles based on random adjustment costs was provided in 
Caballero and Engel (1999) and Dotsey et al. (1999), and later revisited using information theoretical 
foundations by Woodford (2009) and Costain and Nakov (2011b). 
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Figure 4 illustrates the main properties of the firms’ optimal price-setting decisions as 
summarized by the generalized hazard function Λ(𝑥). First, the function Λ(𝑥) has a 
minimum at 𝑥∗, where it is equal to zero. This is intuitive: when 𝑥 = 𝑥∗ the firm is 
perfectly happy with current price gap and there are no incentives to adjust prices. 
Second, the probability of adjustment is increasing in the distance between and 𝑥 
and the optimal reset gap, 𝑥∗ ≈ 0.13 This is intuitive: a larger value of x increases the 
benefit of adjusting the price, leading the firm to pay more attention to this task. 

Figure 1 
The firm decision rule for price changes: Λ(𝑥) 

Notes: The model uses the calibration for the food and beverages sector of euro area countries in Table 2. The calibration matches a 
frequency of 𝑁 = 2.4 price changes a year, the kurtosis and standard deviation of price changes of 2.4 and 15% respectively. 

It is interesting to compare the generalized hazard function Λ(𝑥) with the workhorse 
Calvo (1983) model, where the adjustment probability is assumed to be constant, 
depicted by the horizontal line in Figure 4. The key difference is that price-setting 
decisions in our model depend on the firm’s desired adjustment, 𝑥. Such state 
dependence is appealing theoretically, see e.g. Barro (1972); Sheshinski and Weiss 
(1977); Dixit (1991); Golosov and Lucas (2007), and has been found to be relevant 
empirically, see e.g. Fougere et al. (2007); Dias et al. (2007); Eichenbaum et al. 
(2011); Gautier and Le Saout (2015).14 We will show below that a key implication of 
this framework is that state dependence is important to understand the propagation 
of large aggregate shocks. Intuitively, after a large shock many firms find themselves 
with a price that is far aways from where it should be. This leads the firms to 
dedicate more resources to resetting their prices, leading to an increased frequency 

 
13 The optimal value of 𝑥∗ depends on the inflation rate. At zero inflation 𝑥∗ = 0 and remains roughly 

constant at around zero until inflation enters the two digit region. See Alvarez et al. (2019b) for the 
theory and an empirical illustration. 

14 Several authors have employed the generalized hazard function in applications and empirical work. For 
recent applications see e.g. Costain and Nakov (2011a); Carvalho and Kryvtsov (2018); Sheremirov 
(2020); for empirical work see e.g. Berger and Vavra (2018); Petrella et al. (2018), and for related 
theoretical work Baley and Blanco (2021). A large number of models are nested by this framework, 
including the canonical Calvo model with a constant hazard Λ(𝑥) = 1/𝜅 as 𝛾 ↑ ∞ the Golosov and 
Lucas (2007) model with 𝑥 bounded by the adjustment thresholds where the hazard is flat (almost zero) 
over a range of 𝑥 and then spikes up. Intermediate cases cover the so called Calvo-Plus model by 
Nakamura and Steinsson (2010) and the random menu cost problem of Dotsey and Wolman (2020). 
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of price changes, akin to what was shown in Figure 2. This increased activity will be 
important to understand the consequences of the large inflationary shock for 
misallocation, as measured by the dispersion of the price gaps, as well as to 
measure the amount of resources that are used to “keep prices right”, a useless 
activity that is reminiscent of the shoe-leather cost of inflation. 

The distribution of the price gaps, described by the density 𝑓(𝑥), is important for 
several questions. In a steady state, 𝑓(𝑥) is uniquely determined by the hazard 
function Λ(𝑥) and the law of motion of price gaps.15 The distribution contains 
information on the amount of inefficiencies that are present at the steady state. For 
instance, as showed by Gali (2008), the consumer’s welfare losses triggered by the 
presence of the non-zero price gaps are proportional to the variance of the price 
gaps, 𝑉𝑎𝑟(𝑥). Intuitively, an economy where the firms have small values of 𝑥 is 
preferable to one where the variance of 𝑥 is large. 

Figure 5 
The cross-section distribution of price gaps: 𝑓(𝑥) 

Notes: The model uses the calibration for the food and beverages sector of euro area countries in Table 2. The calibration matches a 
frequency of 𝑁 = 2.4 price changes a year, the kurtosis and standard deviation of price changes of 2.4 and 15% respectively. 

Figure 5 illustrates two density functions produced in a steady state with a 2 percent 
inflation by two models, both featuring a standard deviation of the size of price 
changes equal to 15%, as in the Euro area data discussed below. The blue dotted 
density is the one generated by the hazard function Λ(𝑥) displayed in Figure 4. The 
red dashed function is the density generated by the corresponding Calvo model. 
Although both distributions give rise to price-setting behavior that look alike in the 
steady state (similar frequency and size of price changes), there are important 
difference. First, it is apparent that the Calvo model has “fatter tails”. This 
observation, confirmed by a rigorous analysis of the model, implies that the welfare 
costs of misallocation are larger in the Calvo model compared to a state dependent 

 
15 Formally, the density 𝑓(𝑥) solves the Kolmogorov forward equation Λ(𝑥) ⋅ 𝑓(𝑥) = 𝜇𝑓"(𝑥) + #!

$
𝑓′′(𝑥), for 

each 𝑥 ≠ 𝑥∗, with boundary conditions lim
%↓%∗

𝑓(𝑥) = lim
%↑%∗

𝑓(𝑥); 1 = ∫ 𝑓(𝑥)𝑑𝑥	(
)( , and lim

%→(
𝑓(𝑥) = lim

%→)(
0. 
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model fitting the same price-setting behavior. Second, we will show that in spite of 
the steady state similarities these models do imply very different behavior in 
response to a large aggregate shock. 

These considerations suggest that it is of interest for several policy questions to 
estimate 𝑓(𝑥) as precisely as possible. Unfortunately, since price gaps are 
unobservable, the density 𝑓 cannot be directly measured in the data. To address this 
challenge, we calibrate the model and identify 𝑓 using the observed distribution of 
the sizes of price changes. 

3 Price-setting behaviour: data vs theory 

This section presents statistics of price-setting behavior that allow to calibrate the 
model’s steady state to match the empirical evidence. The current section uses data 
from the years before 2022, before the large energy shocks hit Europe, to infer 
behavior in steady state. We then present a few key predictions of the model about 
the frequency and the size distribution of the price changes. We argue that the GHF 
model is able to account for several key patterns observed in the data. In Section 3.1 
we use the model to study the response of prices to a large energy shock. This 
exercise serves two purposes. First, it provides a validation of the model by 
comparison of the predictions for e.g. the frequency of price changes with the actual 
data for 2022 and 2023. Second, it allows us to quantify the welfare costs following 
the large shocks, an issue that we will inspect in Section 4.2. 

To summarize, the main point of this section is to highlight that a data-consistent 
model of price-setting implies that the economy’s response to a large shock differs 
markedly from the response to a small shock. In particular, a large shock will give 
rise to a much faster pass-through from costs to prices, and hence face 
policymakers with a temporarily high inflation. 

A brief description of the dataset. We base our analysis on granular data on price-
setting behavior, as in Cavallo (2018). These data contain detailed information on the 
frequency and size of daily price changes for a large number of firms and provide the 
necessary information to solve the inverse inference problem of unobservable price 
gaps mentioned above. Our data was provided by PriceStats, a private company 
related to the Billion Prices Project (see Cavallo and Rigobon (2016)). It is generated 
using a technology known as web scraping, which automatically scans the code of 
publicly available webpages daily to gather and store relevant data. The dataset 
consists of product details, such as price, category, and sale indicator. The data is 
uncensored, covering the entire lifespan of all products sold by these retailers, and 
provides prices that are similar to those obtained in offline stores (Cavallo 2017). We 
use a subset of data from retailers in 9 European countries: France, Germany, 
Greece, Ireland, Italy, the Netherlands, Spain, Poland and the UK. The period ranges 
from January 1st 2019 to May 1st 2023. We focus on the “Food and Beverages” 
category, which has experienced one of the highest rates of inflation during this 
period in many countries. 
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This dataset offers several advantages over traditional data sources such as 
Consumer Price Index (CPI) and Scanner Data. Firstly, it provides daily price 
updates, free from unit values, time-averaging, and imputations, which are common 
issues in CPI and Scanner Data. This high-frequency data collection allows for a 
more accurate identification of sales and price changes (Cavallo, 2018). Another 
major advantage of this dataset is the uncensored price spells. Unlike other data, 
prices here are continuously recorded from the day they are first offered to 
consumers until they are discontinued, offering a complete and unaltered view of the 
product’s price life cycle. Furthermore, the data is comparable across countries, 
collected using identical techniques for similar categories of goods over the same 
time period. Finally, it offers real-time availability, providing up-to-date information 
without any processing delay. This makes it a potentially valuable tool for central 
banks and policymakers in real-time estimation of price stickiness and related 
statistics. 

In Table 1 we present summary statistics of price-setting behavior for several Euro 
area countries using data provided by PriceStats. We identify regular prices using 
the sales indicator provided by PriceStats. Additionally, we present aggregate 
statistics from related studies to complement our analysis. In particular, we use the 
statistic for the frequency of price changes from Gautier et al. (2022) who use data 
underlying the CPI. They report many statistics using data from the large-scale 
Price-Setting Microdata Analysis (PRISMA) network led by the ECB. The statistics of 
mean, standard deviation and kurtosis of price changes were kindly provided by the 
authors upon request. We also use statistics from supermarket scanner data in 4 
Euro Area countries from Karadi et al. (2023). The source of those data is IRI. To 
compute the standard deviation of the size of price changes for the supermarket 
scanner data we use their reported measure for the mean absolute deviation (MAD) 
and the assumption that the distribution is close to normal. In particular we use that 
𝑆𝑇𝐷(Δ𝑥) ≈ √2 ⋅ 𝑀𝐴𝐷(Δ𝑥). 

Our choice of reported statistics is guided by theoretical insights. The frequency of 
price changes gives information about the cost of price management. Moreover, 
when analysed together with the standard deviation of price changes, they allow to 
infer the size of idiosyncratic productivity shocks affecting firms. In turn, kurtosis has 
been shown to reveal important information about the response of an economy to 
aggregate shocks. In Alvarez et al. (2016), the authors remark that kurtosis encodes 
information about the “selection” of price changes: the idea that the observed price 
changes come from firms who need it the most and not from a random sample. A 
large kurtosis is an indicator that there is a relatively large mass of late price-
adjusters which implies a more persistent effect of a cost shock. The Calvo model, 
with a kurtosis of 6, does not feature “selection” of price changes since the adjusters 
are a random sample each period. 

From Table 1 we notice that the standard deviation of the size of price changes is 
similar across countries except for Italy and Ireland. The kurtosis measure is also 
similar across Euro area countries and ranges between 2.1 and 2.7 with the 
exception of Ireland with a kurtosis of 1.6. The frequency of price changes in the 
food and beverages sector is larger than the aggregate data and is different across 
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countries. For instance, the UK displays a frequency of 0.7 price changes a year 
whereas the French one of 3.6 price changes a year. 

Table 1 
Price-setting Behaviour before 2022 

 

 Notes: The PriceStats data uses a sample of changes in regular prices (excluding sales). The statistics are computed after dropping 
price changes larger than 1.50 log points in absolute value and products with less than 3 price spells for the period 2019-2021. 
Kurtosis is computed using a correction for unobserved heterogeneity proposed by Alvarez et al. (2022). The statistic for the frequency 
of price changes from the Price-setting Microdata Analysis (PRISMA) network is obtained from Table 7 in Gautier et al. (2022). The 
other statistics were kindly provided by the authors. We report the statistics after dropping outliers corresponding to the bottom and top 
2.5% of the distribution of price changes. These data covers the period from 2005 to 2019. The statistics from Karadi et al. (2023) are 
taken from their Table 2 and correspond to the average of 4 Euro Area countries; Germany, France, Italy and the Netherlands between 
2013 and 2017. Standard deviation is obtained assuming that the distribution of price changes is close to normal so that 𝑆𝑇𝐷 = √2 ⋅
𝑀𝐴𝐷	where MAD refers to mean absolute deviation. 

Calibration. We calibrate the model to match the standard deviation and the kurtosis 
of price changes as well as the frequency of price changes. We use the identity 𝜎( =
𝑁 ⋅ 𝑉𝑎𝑟(Δ𝑥) since this relationship holds for a wide variety of models when 𝜇 ≈ 0, 
see Alvarez et al. (2022). We use standard values for the additional parameters of 
elasticity of substitution and intertemporal preference: 𝜂 = 6 (which implies a markup 
of 20%) and a time discount 𝜌 = 0.05 . We choose an inflation rate of 𝜇 = 2% 
consistent with inflation at steady state. The selection of a kurtosis value of 2.8 for 
the PRISMA data stems from the acknowledgement that the value of 4.1 does not 
account for unobserved heterogeneity. In a comparable investigation employing 
French CPI data, Alvarez et al. (2021) control for heterogeneity through an 
appropriate filter. As a result, their analysis yields a reduced kurtosis estimate that is 
32% lower, providing a basis for deriving the value of 2.8 mentioned above. 
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Figure 6 
The Size of Price Adjustments, 𝑞(𝛥𝑥), in France – Food and Beverages sector 

 

Notes: The right panel shows the distribution for regular price changes with absolute value less of than one standard deviation with in 
this case is 13%.  

Next, we use a GMM estimator to calibrate the parameters of the effort cost function 
κ, γ to match the standard deviation and kurtosis of price changes. With the 
described estimation method, the model is exactly identified and there is a one-to-
one mapping between the mentioned moments and the parameters of the cost 
function. The calibrated parameters are shown in Table 2. Recall that the kurtosis of 
a Calvo model is equal to 6, while the kurtosis of a canonical menu cost model is 1. 
The data suggest a somewhat intermediate situation. Now we present a few key 
predictions of the model about the frequency and the size distribution of the price 
changes. 

Table 2 
Calibration for Price-Setting Behaviour in the Euro Area before 2022 

 

 Notes: (a): The matched value of kurtosis for the PRISMA data is corrected for heterogeneity using a multiple from Alvarez et al. 
(2021) who perform the correction for French CPI data. Parameters 𝛾, 𝜅 are calibrated using a GMM estimator to match the standard 
deviation and kurtosis of price changes in data (Table 1). The drift of price gaps is 𝜇 = 2%. The additional parameters are set to 
standard values: 𝜂 = 6, 𝜌 = 0.05. 

Frequency of price changes. The cross-sectional distribution of firms’ price gaps 
𝑓(𝑥) and the generalized hazard function Λ(𝑥) can be used to compute several 
objects that are observable in data. The steady state frequency of price adjustments 
𝑁 is given by 
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𝑁 = I 𝑓(𝑥)Λ(𝑥)𝑑𝑥
5

%5
 

( 4 ) 

The equation has a simple interpretation: it counts the total number of firms with a 
given price gap, 𝑓 , and their probability of adjustment in a time period (say a year), 
Λ. These price adjustments originate from the firm’s effort ℓ to control the price gaps. 

Distribution of the size of price changes.  Recall that upon any price change the 
firm resets its gap from 𝑥 to the optimally chosen 𝑥∗, i.e. the size of the adjustment is 
Δ𝑥 = 𝑥∗ − 𝑥. This occurs with probability Λ(𝑥) per unit of time. Then the distribution of 
the size of price changes has the following density 𝑞(Δx): 

𝑞(Δ𝑥) ≡
Λ(𝑥)𝑓(𝑥)

𝑁  

( 5 ) 

The left panel of Figure 7 shows that the calibrated model is able to capture some 
key features of the data in Figure 6: the fact that the distribution of price changes is 
bimodal, with a dip at zero. The latter is a major difference compared to the 
prediction of the Calvo model where the constant hazard implies a mode at zero, i.e., 
that the most frequently observed price change has a tiny size. This prediction is 
counterfactual and it is a telltale of the fact that price-setting behavior displays state 
dependence: prices are adjusted only when necessary. 

Figure 7 
Distribution of the size of price adjustments, 𝑞(Δ𝑥), in two models 

 

Notes: The model uses the calibration for the food and beverages sector of euro area countries in Table 2. The calibration matches a 
frequency of 𝑁 = 2.4 price changes a year, the kurtosis and standard deviation of price changes of 2.4 and 15% respectively. 

3.1 The propagation of an aggregate cost shock 

In Figure 2 we reported that inflation and the frequency of price adjustments rose 
quickly after a large energy shock. In this subsection, we provide a thought 
experiment that rationalizes these facts. Namely, it takes an economy at steady state 
and hits it with a marginal cost shock as will be made precise below. We take 
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calibrations of the price-setting model presented in Table 2 to study the propagation 
of large and small shocks. We will illustrate that, under a GHF model, large and 
small shocks have different implications for passthrough and the frequency of price 
adjustments. 

 

In this study, we will focus on the implications of a large shock characterized by a 
20% rise in marginal costs. The rationale behind this specific figure stems from the 
observed escalation in energy prices, which surged by 200% between January 2021 
and April 2022, as depicted in Figure 1. By considering the proportion of energy 
expenses, estimated to constitute 10% of total input costs, we determine that this 
value of 20% accurately captures the magnitude of the shock under investigation. 

Take an economy characterized by a steady state cross-sectional distribution of price 
gaps 𝑓 and a policy rule Λ. The economy is then hit by an unexpected once-and-for-
all shock to marginal cost that displaces the distribution of price gaps 𝛿 percentage 
points to the left as in Figure 8. Firms then would like to increase their prices to close 
their gaps. This incentive shapes the dynamic response of the price level and the 
frequency of price changes after the shock. We will describe the transition of these 
variables back to steady state for small and large shocks. 

Figure 8 
Displacement of price gaps: Large vs Small Cost shock 

 

Notes: The model uses the calibration for the food and beverages sector of euro area countries in Table 2. The calibration matches a 
frequency of 𝑁 = 2.4 price changes a year, the kurtosis and standard deviation of price changes of 2.4 and 15% respectively. The GHF 
is plotted relative to the right vertical axis. 

To understand the mechanism behind the propagation of the shock, notice that in 
Figure 8 the distribution after the shock places most firms’ prices in a region far from 
their desired prices (at a price gap of around −20%). In this region the probability of 
adjustment Λ(𝑥), plotted in dotted black, is higher. This means that a large shock 
triggers an increase in number of price adjustments whereas for a small shock this 
effect is much weaker. 

Figure 9 plots the response of the frequency and the price level after shocks of 
different sizes. The model predicts that the frequency of price changes increases 
sharply after a large shock. This is due to many firms lying in a region far from their 
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desired gap 𝑥∗, i.e. a region where the hazard, Λ(𝑥), is relatively high. This yields a 
persistent increase in the frequency of price adjustments. Notice that this effect is not 
present in the constant hazard Calvo model. 

Figure 9 
Size-dependent propagation of shocks 

Notes: The model uses the calibration for the food and beverages sector of euro area countries in Table 2. The calibration matches a 
frequency of 𝑁 = 2.4 price changes a year, the kurtosis and standard deviation of price changes of 2.4 and 15% respectively. 

We now ask the question: how do cost shocks propagate to the price level after a 
large shock for an economy characterized by the Euro Area food and beverages 
sector data? The left panel of Figure 10 presents the passthrough of a 20% shock to 
marginal costs in such an economy. Namely, for the GHF model calibrated with the 
PriceStats data in Table 2. The figure further depicts, in dotted red, a Calvo model 
with an identical frequency of price adjustments. Notably, the figure illustrates the 
economy’s swifter response to the large shock in comparison to the corresponding 
reaction predicted by the Calvo model. The right panel of Figure 10 conveys similar 
information and presents the inflation forecast error associated with the Calvo model. 
The forecasts of this model feature a pattern characterized by an initial substantial 
underestimation of inflation followed by a subsequent overestimation. 
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Figure 10 
Dynamic Passthrough from Costs to Prices 

 

Notes: The model displays the passthrough of a cost shock with 𝛿 = 20%. The state-dependent model uses the calibration for the food 
and beverages sector of euro area countries in Table 2. The calibration matches a frequency of 𝑁 = 2.4 price changes a year, the 
kurtosis and standard deviation of price changes of 2.4 and 15% respectively. The time-dependent model is a Calvo model with 𝑁 = 
2.4. 

Figure 11 
The distribution of price changes after a large shock 

 

Notes: The model uses the calibration for the food and beverages sector of euro area countries in Table 2. The calibration matches a 
frequency of 𝑁 = 2.4 price changes a year, the kurtosis and standard deviation of price changes of 2.4 and 15% respectively. 

Figure 11 presents an additional validation of the model, showcasing the dynamics of 
the price change distribution in response to a large shock. The right panel illustrates 
the distribution of price changes following the shock, while the left panel displays the 
distribution of price changes for France before and after the energy price shock. 
Notably, the model successfully reproduces the qualitative characteristics observed 
in the French data, namely an asymmetric distribution with a greater mass of positive 
price adjustments. 

In summary, the state-dependent model suggested by the empirical evidence 
features dynamic responses to large cost shocks that resemble the data on inflation 
and the increase in the frequency of adjustments for the recent surge in inflation in 
Europe. Furthermore, as we have shown, the forecast of the frequency of price 
changes and the path of inflation can be markedly different depending on the model 
the analyst is using. For this episode, the implications of a purely time-dependent 
model are counterfactual.  



Inflation and misallocation in New Keynesian Models 19 

4 Quantifying the welfare cost of inflation 

In this section we analyze the welfare costs in NK models in two steps. First, we 
measure both welfare costs, 𝜒 and 𝜑, in a steady state. In particular, we assess 
these costs using data from the low inflation period that prevailed before 2022. 
Second, we study the dynamics of these welfare costs following a large shock to the 
firms’ marginal costs. Specifically, we explore the change in welfare costs that follow 
the large energy price increases in March 2022.  

We focus on two inefficiencies that arise in the new Keynesian framework due to the 
sticky-price friction. The first one is due to price gaps dispersion: sticky prices 
introduce a wedge between the marginal rate of substitution and the marginal rate of 
transformation for consumers and workers. These wedges give rise to an inefficient 
allocation of resources. We call this the welfare cost of “misallocation” and denote it 
by 𝜒. The second one arises when firms waste resources to keep prices close to 
their optimal levels. This corresponds to a deadweight loss, something akin to the 
shoe-leather cost of inflation in textbook models of money demand. We call this the 
welfare cost of the “price-management” and denote it by 𝜑. Since the welfare costs 
depend on the distribution of price gaps, which is unobservable, we derive a 
mapping between the welfare costs (𝜒 and 𝜑) and a set of observable moments from 
the distribution of the size of price changes and the frequency of price changes. 

We use three different data sets to inform our analysis. Firstly, we use granular data 
for the food and beverages sector of several European countries taken from 
PriceStats (Cavallo, 2018). In spite of the fact that these data cover only a fraction of 
the CPI, the high quality of the measurement, based on daily observations, is 
important to identify key features of price-setting behavior. Secondly, we use some 
descriptive statistics for the Euro Area taken from the Price-setting Microdata 
Analysis (PRISMA) network (Gautier et al., 2022) that use data underlying the CPI in 
several Euro area countries. Thirdly, we use some descriptive statistics from Karadi 
et al. (2023) who use supermarket data for some Euro Area countries. 

4.1 Measuring the welfare costs in NK models in steady state 

Misallocation. As explained above, the first component of the welfare costs is due to 
wedges introduced by price gaps. Namely, it is related to price gap dispersion. These 
welfare costs also scale with the parameter of elasticity of demand. Intuitively, this is 
due to a larger resource-shifting reaction caused by a more sensitive demand. It can 
be shown that the welfare cost of misallocation denoted by χ is given by 

𝜒(𝑡) ≡
𝑈 − 𝑈l
𝑈6 ⋅ 𝐶̅

≈
𝜂
2𝑉𝑎𝑟-

(𝑥), 

( 6 ) 

where the index 𝑡 emphasizes that this expression can be used in steady state as 
well as along a transition after a shock. The cost 𝜒 is expressed in terms of GDP 
percentage loss relative to the efficient GDP level. Notice that the expression above, 
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up to first order, is the one used in traditional monetary policy analyses presented by 
Gali (2008) (pp. 63) and Woodford (2003) (pp. 396).16 

The expression in equation (6) gives us a direct map from the distribution of price 
gaps to welfare losses due to misallocation. However, price gaps are unobservable, 
see equation (2), since they require observing firms’ productivity. To address this 
issue, we derive a mapping from data moments to the variance of price gaps. It can 
be shown that in a low inflation steady state, the variance of price gaps satisfies, 

𝑉𝑎𝑟(𝑥) 	= 	
𝑉𝑎𝑟(Δ 𝑥) ⋅ 𝐾𝑢𝑟𝑡(Δ 𝑥)

6 . 

This expression together with equation (6) and an estimate for the elasticity of 
demand allows the researcher to gauge the level of misallocation costs due to sticky 
prices in steady state.  

We are not the first ones to attempt measuring price gap dispersion. However, we 
emphasize the limited informativeness of measuring price level dispersion, even at 
the product level (Sheremirov, 2020), with regards to assessing misallocation. It is 
crucial to recognize that variations in prices can be attributed to differences in 
productivity, which do not necessarily indicate inefficiency.17 Instead, the examination 
of the standard deviation of price changes and its kurtosis proves to be an 
appropriate approach in this context. 

Firstly, placing emphasis on the magnitude of price changes yields valuable insights 
into inefficiency wedges, given that such changes reveal the pre-adjustment price 
gap 𝑥, a point made by Nakamura et al. (2018).  However, relying solely on this 
statistic may be insufficient, as various models can exhibit identical standard 
deviation of price changes while displaying different levels of misallocation. 

The kurtosis of price changes, which encodes the ``selection'' effect, is the second 
key statistic to measure misallocation. A large kurtosis is an indicator of a relatively 
large mass of late price-adjusters which implies larger misallocation (Alvarez et al., 
2016). For example, fixing the standard deviation of price changes, the Calvo model, 
with a kurtosis of 6, does not feature ``selection'' of price changes since the adjusters 
are a random sample each period. In contrast, a canonical menu cost model has a 
kurtosis of 1. The evidence in Table 1 seems to suggest an intermediate point with 
kurtosis hovering around 2 and 3.5.  

In a related study, Blanco et al. (2022) have estimated the extent of misallocation 
and menu costs leveraging data underlying the CPI in the UK. Their estimations 
share a similar order of magnitude when compared to our favoured calibration for the 
Euro Area, with a misallocation cost accounting for 2 percentage points of GDP and 
menu costs amounting to 2.4 percentage points of firms’ revenues for the UK.18 

 
16 Recall that we analyze a steady state problem so second order effects (risk) are not present. 
17 Sheremirov (2020) acknowledges this limitation and undertakes a significant endeavour to control for 

many determinants of productivity across retailers to shed light on inefficient price dispersion. 
18 Their model includes some features absent in ours e.g. strategic complementarity in pricing decisions. 
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Nakamura et al. (2018) investigate the effect of inflation on misallocation. They argue 
that misallocation comoves with the size of price changes. They aim to shed light on 
the effects of inflation using the observations on the absolute size of price changes. 
Intuitively, an increase in the size of the price changes suggests an increase in 
misallocation. While such an approach provides information on the change of the 
welfare costs, it is silent about their level as we argued above. 

Price-management. The second source of inefficiency is due to the forgone 
resources used to perform price-management activities by firms. 

Zbaracki et al. (2004) present an interpretation based in empirical findings from 
manage- rial reports in the United States. The authors posit that pricing activities 
require managers to spend resources on processes such as information acquisition, 
decision-making, and comunication costs. Additionally, they claim that the magnitude 
of these allocated resources increases in a convex manner with the absolute size of 
the price change. They estimate the costs of price-management to be around 1 
percentage point of GDP. 

We can observe that the price-management technology of the model presented in 
Section 2 shares the qualitative features described in Zbaracki et al. (2004). Recall 
that firms face a convex cost (𝜅ℓ)) corresponding to the effort ℓ of managing prices. 
Since the optimal effort rate ℓ∗ = Λ(𝑥) increases with the absolute size of the price 
change |𝑥∗ − 𝑥| then the price-management cost is convex in the absolute size of 
adjustment. 

The expression giving the cost of price-management in the GHF model is 

𝜙(𝑡) ≡
1

𝜂 − 1 ⋅ 𝔼-sP𝜅Λ
(𝑥)Q

)
t 

( 7 ) 

This equation has the following interpretation: it counts the total effort cost 
(resources) used to affect the probability of price adjustment. Since these costs are 
expressed as a percentage of forgone firm’s profits, the expression is then divided by 
𝜂 − 1, the share of profits in GDP, to obtain a measure as a percentage of GDP. 

Application to data. We next analyse the data through the lenses of the results just 
established. Table 3 reports the estimated steady state welfare costs, measured over 
the low inflation period before 2022, using the datasets described before. 
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Table 3 
Estimates of Welfare Costs for the Steady State before 2022 

 

 Notes: Notes: Data sources for observables are discussed in Table 1. (a): We use a value of kurtosis of 2.8 for the PRISMA data in an 
attempt to correct for heterogeneity, see the discussion in Table 2. The estimates for the welfare costs are obtained from the model 
calibrations in Table 2 and assume an price elasticity of demand equal to 6 which implies a markup equal to 20%. The calibration 
matches the frequency of price changes per year, the kurtosis and standard deviation of price changes. 

For the sake of clarity, we used the granular European countries data on food and 
beverages to illustrate the application of our main findings. But the results can be 
applied to measure the welfare costs in a wide variety of sectors and countries for 
which there are micro-data available. The requirements for this assessment are the 
frequency, standard deviation and kurtosis of the distribution of the sizes of price 
changes and an estimate for the elasticity of demand. We attempt a preliminary 
extension of our exercise using the pricing statistics collected by the Price-setting 
Microdata Analysis (PRISMA) in Gautier et al. (2022) and supermarket data for four 
Euro area countries taken from Karadi et al. (2023). As described in Table 1 we take 
the statistic of frequency of price changes from Table 7 of Gautier et al. (2022) 
whereas the other observables were kindly provided by the authors upon request. 
The choice of 2.8 as a value for the kurtosis of price changes is discussed in Table 2. 
The model calibrated to the Euro Area using the PRISMA data (Gautier et al., 2022) 
suggests that the costs of misallocation are in the order of 1.5% of GDP (fifth column 
of the table). The model also allows us to gauge the welfare costs due to the price-
management, which turn out to be smaller, in the order of 50 basis points of GDP 
(last column of the table). This magnitude is close to the direct estimates of 1% in the 
literature (Zbaracki et al., 2004). 

The findings derived from the analysis presented in Table 3 are contingent upon 
accurate estimation of three key values: the price elasticity of demand, the standard 
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deviation of price changes, and the kurtosis of price changes. Based on our 
observations, the estimated values for kurtosis generally lie within the range of 2 to 
3.5, while standard deviation values typically range from 10% to 20%. Consequently, 
while it is prudent to approach point estimates with caution, we can reasonably 
assert that the estimated magnitudes fall within a narrow range depending on the 
particular price-setting behavior in the economy. 

Next, we will briefly discuss the effects of steady state inflation and its associated 
welfare costs. We argue that this is not the suitable approach to study the welfare 
implications for the recent inflation surge. As a result, we then turn into the study of a 
large cost shock which we interpret as the recent energy shock experience in Europe 
during 2022.  

Steady state inflation. One viable approach to analyze the costs associated with 
inflation is to consider steady states with different inflation rates. Interestingly, in the 
models considered the welfare costs display very little variation of the level of the 
welfare costs as long as inflation remains below the two digits. Figure 12 illustrates 
this result: the steady state welfare costs as a function of inflation have a flat profile 
around zero inflation. This result occurs because, when inflation is low, the costs of 
misallocation in equation (6), are closely related to the size of price changes, which 
aligns with the firms’ desire to minimize such gaps. Stated differently, the firms’ 
optimal response to steady state inflation serves to mitigate the costs of 
misallocation. 

In particular, Alvarez and Lippi (2022) show that all even moments of the distribution 
of price changes feature a low sensitivity to steady state inflation. Figure 12 
illustrates that both the cost of misallocation and of price-management activities 
increase by 50 basis points of GDP as steady-state inflation goes from 0% to 20%. 
As a matter of fact, the Calvo model allows us to obtain a closed-form solution of the 
price gap dispersion that arises under steady state inflation. The cost χ in the Calvo 
model is proportional to Var(x) following equation (6) where the latter is given by 

(𝑉𝑎𝑟	𝑥)(𝜇) = u
𝜇
𝑁v

(
+
𝜎(

𝑁  

We observe that the variance of price gaps is flat at 𝜇 = 0	meaning that for small 
changes in steady state inflation the costs of misallocation remain essentially 
unchanged. 

The observations above need not be true for high inflation environments in steady 
state, as in e.g., Argentina or Turkey. Recent results by Baley and Blanco (2021) 
allow us to still obtain an inverse mapping between observables and the variance of 
price gaps under high inflation. 
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Figure 12 
Steady-state inflation vs welfare cost (in % of GDP) 

 

Notes: The model uses the calibration for the food and beverages sector of euro area countries in Table 2. The calibration matches a 
frequency of 𝑁 = 2.4 price changes a year, the kurtosis and standard deviation of price changes of 2.4 and 15% respectively. 

4.2 The welfare cost of a large cost shock 

This section analyzes the welfare costs using a calibrated economy’s reaction to a 
large cost shock. We argue that a large portion of the recent inflation surge can be 
attributed to the large shock in energy prices that hit Europe in 2022. Additionally, we 
posit that this shock has not substantively affected expectations regarding the steady 
state level of inflation, which we maintain to be approximately 2% across our 
exercises. 

As documented above, a large shock triggers a sizeable increase of price-setting 
activity. A proper assessment of the welfare costs must account for the fact that since 
firms are more active (more price changes are observed) both the degree of 
misallocation 𝜒 and the resources for price-setting activity 𝜑 are likely to change. The 
cumulative welfare cost of misallocation and of price-management activities are 
given by 

𝐶IR[χ(t)] 	= 	I (χ(s) − s)ds
7

.
,				,				CIR[ϕ(t)] = I (ϕ(s) − ϕ)ds,

7

.
	

( 8 )	

where 𝜒(𝑡) and 𝜙(𝑡), are defined in equation (6) and equation (7), respectively, and 
their steady state values 𝜒 and 𝜙 are computed using the steady state cross-
sectional distribution of price gaps 𝑓 . The cumulative response 𝐶𝐼𝑅[𝜒(𝑡)] in equation 
(8), measures the welfare costs of misallocation above and beyond the steady state 
cost. Likewise, the cumulative response 𝐶𝐼𝑅[𝜙(𝑡)]	gives the total excess welfare cost 
of price-management after time t has elapsed from the large shock. 

The left panel Figure 13 plots the cost of misallocation for the three shock sizes 
studied using the calibration to the Euro Area with data from the PRISMA network 
(Gautier et al., 2022). The cumulative costs of misallocation after a 20% shock are 



Inflation and misallocation in New Keynesian Models 25 

around 1.5 percentage points of GDP, reported in Table 4. At the instant of the shock 
the variance of price gaps is the same as in steady state. However, the mass of firms 
that were displaced very far from their desired price are very likely to adjust to 𝑥∗ 
right after the shock and this increases the variance of price gaps. More precisely, 
we can see in Figure 8 that 𝑥∗ is far from the mean price gap so the distribution 
displays more variance than at steady state. 

The right panel of Figure 13 plots the cost of price-management for three shock 
sizes i.e., in excess of the analogous cost that arises in steady state 𝜑. The 
dynamics of this variable have no counterpart in our data, but we can use the model 
to infer about these aggregate losses. The cumulative costs of price-management 
after a 20% shock are around 1.4 percentage points of GDP, reported in Table 4. As 
mentioned before, the magnitude of the shock renders different levels and dynamics 
for the responses. For a large shock, the price-management costs are initially larger. 
First, this is because on average firms’ price gaps 𝑥 are further away from 𝑥∗ which 
renders a high incentive to engage in costly price-management efforts. Second, the 
cost of price-management increases in a convex manner with the absolute size of 
the change. 

Figure 13 
Impulse responses of welfare costs to the energy shock (Euro Area) 

 

Notes: The model uses the calibration for the Euro area with PRISMA data which covers many sectors in several euro area countries 
(Gautier et al., 2022). For the calibration see Table 2. The calibration matches a frequency of 𝑁 = 1 price change a year, the kurtosis 
and standard deviation of price changes of 2.8 and 10% respectively. 

 

Table 4 reports estimates of the welfare costs of an inflationary 20% shock using the 
model. As described in Figure 13, the estimated welfare costs for our preferred Euro 
Area calibration are 2.9 percentage points of GDP. Moreover, the estimated costs 
implied by the supermarket data by Karadi et al. (2023) are 3.2 percentage points of 
GDP whereas the costs implied by the Food and beverages sector is 1 percentage 
point of GDP. The stark difference between these welfare costs is attributed mainly to 
differences on the frequency and the kurtosis of price changes. Namely, the food and 
beverages data have a higher degree of price flexibility showcased by more frequent 
adjustments and a relatively lower mass of late adjusters. 
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Table 4 
Estimates of welfare costs for the Euro Area triggered by a 20% cost shock 

 Notes: The estimates for the cumulative welfare costs are obtained from model calibrations described in Table 2. 

Although unreported, we measured a lower standard deviation of price changes for 
the period of 2022-2023. One might be tempted to think that this standard deviation 
of price changes translates into lower misallocation, but this intuition is misleading. In 
fact, a lower standard deviation of price changes after a large shock is consistent 
with the dynamics predicted by the model and is associated with a higher cost of 
misallocation as depicted in Figure 13.  

In the right panel of Figure 14 we also show the evolution of the mean absolute size 
of price changes after a shock. This statistic has been used to gauge changes in the 
costs of misallocation (Nakamura et al., 2018). Indeed, the dynamics of this variable 
do behave qualitatively as the time profile of the costs of misallocation in this model.  

Figure 14 
Impulse responses of moments of the distribution of price changes 

 

Notes: The model uses the calibration for the Euro area with PRISMA data which covers many sectors in several euro area countries 
(Gautier et al., 2022). For the calibration see Table 2. The calibration matches a frequency of 𝑁 = 1 price change a year, the kurtosis 
and standard deviation of price changes of 2.8 and 10% respectively. 

Economies with different frequency of price changes. We presented a welfare 
analysis for a model calibrated to a frequency of 1 price change per year for the Euro 
Area. However, it is important to understand how these welfare costs vary across 
economies with different degrees of price flexibility as measured by their frequency 
𝑁. It can be proved that the cumulative welfare costs from two economies with the 
same distribution of price changes are inversely proportional to their frequency of 
price changes. 

For example, although not perfect, in Table 4 we can see that the cumulative welfare 
costs of the inflation episode for the food and beverages sector is roughly a third of 
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the welfare costs for the aggregate PRISMA data, correspondingly the frequency of 
adjustments in the food and beverages sector is 2.4 times larger. 

5 Concluding remarks 

The New Keynesian paradigm, which greatly influences modern monetary 
economics, assumes that firms' prices are somewhat rigid and unresponsive to 
fundamental shocks, at least temporarily.  

We concentrate on two inefficiencies that emerge from this framework. First, the 
assumption of sticky prices implies distorted prices, impeding efficient resource 
allocation—this is known as the welfare cost of misallocation. Second, firms waste 
resources to maintain prices near optimal levels, resulting in a deadweight loss—we 
term this as the welfare cost of price management. 

We propose a methodology to calculate both welfare costs for the period preceding 
2022, and during the subsequent high inflation period triggered by substantial energy 
shocks in Europe. This task is involved because the welfare costs are not directly 
observable, as is often the case in welfare economics. To measure these costs, we 
apply a tractable sticky-price model, mapping it to detailed data from PriceStats and 
the ECB’s PRISMA project. 

Our findings reveal significant welfare costs for the Euro Area. In the low-inflation 
environment that prevailed before 2022 the efficiency cost amounts to roughly 2% of 
GDP. About 3/4 of these steady-state costs result from misallocation, while the 
remaining 1/4 is attributed to the costly price management activity. Moreover, we 
estimate how the recent inflationary shock has affected these welfare costs. We 
found that the energy shocks led to an above-average surge in costly repricing 
activity, cumulatively adding to a cost of around 1.5% of GDP. 

A comparable increase of the welfare cost was caused by a temporary increase of 
the economy's misallocation. The total cumulated welfare costs of the energy shock 
thus range at about 3% of GDP. 

We see our contribution as providing a first step in quantifying the welfare costs of 
misallocation in NK models. Future studies should examine the robustness of these 
estimates and tackle the data and modeling issues that we have discussed in the 
paper. 
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