

# **Optimal Progressive Pension Systems in a Life-Cycle** Model with Heterogeneity in Job Stability

Leanne Nam

University of Bonn



# Motivation

## Idea:

- Heterogeneity in job stability is a salient feature of the labor market
- $\Rightarrow$  persistent differences in employment risk: source of lifetime earnings inequality
- Job stability remains unobservable during working life
- Pension systems redistribute earnings based on labor market histories
- Progressive pension systems insure against realization of lifetime earnings risk

#### Trade-offs:

- Redistribution and insurance against unstable career paths
- Distortions on incentives for retirement and human capital investment decisions

# **Optimal pension system**

#### Welfare analysis:

• Optimal pension system: increase in pension progressivity from 0.32 to 0.89 • Welfare gain of 0.52% in terms of lifetime consumption for labor market entrants



#### Fig. 1. Welfare and progressivity level

#### **Question**:

How should an optimal pension system consider heterogeneity in job stability?

## Model

#### Framework:

- Life-cycle consumption-saving model with incomplete financial markets
- Heterogeneity in job stability: jobs differ in wages and separation probabilities
- Incomplete markets and frictional labor market with human capital investment



Human capital investment:

Investment productivity decreases with workers' age

#### Table 1. Policy parameters and welfare change

| Model          | γ    | φ    | Tax (%) | Welfare change (%) |
|----------------|------|------|---------|--------------------|
| Baseline       | 0.32 | 0.63 | 8.63    |                    |
| Optimal policy | 0.89 | 1.12 | 8.71    | 0.52               |

#### **Optimal pension system: Insurance**

- Optimal policy reduces consumption variance over the life cycle
- Redistribution and insurance to workers with unstable jobs



#### Fig. 2. Variance of log consumption

- Only employed workers can invest in human capital
- $\Rightarrow$  human capital upon retirement approximates pre-retirement earnings

## **Retirement decision**:

• Agents make retirement decision based on human capital h, assets a, current wage w, and age j

 $V^{r}(a, h, j) + \varepsilon \geq V^{w}(a, w, \lambda, h, j), \quad \varepsilon \sim \text{Logistic}(\mu, s)$ 

•  $\varepsilon$ : non-pecuniary shock that shapes retirement decision

#### **Pension system**:

• Benefit function:  $\omega(h^*) = \phi \cdot \hat{y}(h^*)^{1-\gamma}$ 

- $-\gamma = 0$ : Benefits increase linearly with pre-retirement earnings
- $-\gamma > 0$ : Progressive pension benefits
- $\hat{y}$ : Approximate pre-retirement earnings using human capital upon retirement  $h^*$ • Payroll tax  $\Rightarrow$  budget balance for the government

# Calibration and life-cycle behavior

## **Calibration**:

- Calibration to the U.S. economy (baseline)
- Fit pension parameters to the U.S. Social Security system

#### **Optimal pension system: Distorted incentives**

• Increase in progressivity distorts retirement and human capital investment decision. BUT: • Low-productivity workers retire earlier, whereas high-productivity workers retire later • Policy change does not distort human capital investment of young workers

## Macroeconomic shift in the distribution of job stability

#### **Empirical observation**:

- Increase in job stability since the 1990s in the United States
- Decline in short-duration jobs explains a large portion of this trend

## Question:

How does a change in short-duration jobs affect the optimal pension system?

## **Results**:

#### • Decline in job-separations for young workers

- Match to empirical moments: labor market transition rates, tenure, earnings, and wealth
- Model matches a rich set of facts on labor markets, earnings, consumption, and savings dynamics

## Life-cycle behavior:

- Heterogeneity in job stability: key driver of inequality in lifetime earnings
- Stable jobs allow to invest in human capital and climb the job ladder
- Unstable jobs lead to poor life-cycle outcomes of human capital, earnings, wealth, and consumption
- $\Rightarrow$  Heterogeneity in job stability shapes the optimal design of pension systems

• Increase in average human capital, earnings, consumption, and wealth • Optimal level of progressivity increases in the economy with higher job stability

| Optimal policy       | γ    | φ    | Tax (%) | Welfare change (%) |
|----------------------|------|------|---------|--------------------|
| Baseline             | 0.89 | 1.12 | 8.71    | 0.52               |
| Higher job stability | 0.93 | 1.16 | 8.47    | 0.53               |

• Decrease in short-duration jobs primarily affects young workers: lower unemployment risk and higher earnings

• Increase in pension progressivity can be achieved with lower increase in payroll tax rate compared with baseline economy

## Summary of results

**1.** Progressive pension systems provide insurance against unstable employment histories

2. Increase in pension progressivity of the current U.S. pension system achieves a welfare gain of 0.52% of lifetime consumption

- **3.** Increase in pension progressivity makes productive workers retire later and unproductive workers retire earlier
- **4.** A shift in the job-stability distribution towards more stable jobs implies that a pension system with a higher degree of redistribution is optimal