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Abstract

This paper studies a New Keynesian model with a banking system. As in the data, the
policy instrument of the central bank is held by banks to back inside money and therefore
earns a convenience yield. While interest rate policy is less powerful than in the standard
model, policy rules that do not respond aggressively to inflation – such as an interest rate
peg – do not lead to self-fulfilling fluctuations. Interest rate policy is stronger (and closer
to the standard model) when the central bank operates a corridor system as opposed to a
floor system. It is weaker when there are more nominal rigidities in banks’ balance sheets
and when banks have more market power.
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1 Introduction

Models of monetary policy typically assume that the central bank sets the short nominal inter-
est rate earned by households. In the presence of nominal rigidities, the central bank then has
a powerful lever to affect intertemporal decisions such as savings and investment. In practice,
however, central banks target interest rates on short safe bonds that are predominantly held
by intermediaries.1 At the same time, the behavior of such interest rates is not well accounted
for by asset pricing models that fit expected returns on other assets such as long terms bonds
or stocks: this "short rate disconnect" has been attributed to a convenience yield on short safe
bonds.2

This paper studies a New Keynesian model with a banking system that is consistent with
key facts on holdings and pricing of policy instruments. Short safe assets earn a convenience
yield because they are held by banks to back inside money. The resulting short rate disconnect
makes interest rate policy less powerful than in the standard New Keynesian model. At the
same time, our model economy allows for policy rules such as in interest rate peg that do not
respond aggressively to inflation, without inviting self-fulfilling fluctuations. Our results do
caution against interest policy responding too strongly to output. The short rate disconnect is
quantitatively more important when the central bank operates a floor system (as opposed to a
corridor system), when there are more nominal rigidities in banks’ balance sheets and when
banks have more market power.

Our results follows from three familiar assumptions. First, inside money issued by banks
earns a convenience yield that increases with nominal spending. Second, banks face leverage
constraints: inside money must be backed by collateral. Short safe bonds are good collateral
and therefore also earn a convenience yield that increases with nominal spending. Finally,
pass-through from the policy rate to other rates occurs because total risk-adjusted expected
returns – pecuniary expected returns plus convenience yields – on all assets are equated in
equilibrium.3 Pass-through is imperfect in our model because the convenience yield endoge-
nously adjusts in response to policy.

To see the new mechanism at work, suppose the central bank raises the interest rate on

1For example, in a conventional corridor system with zero interest on reserves, the central bank targets the
interest rate on overnight interbank loans and elastically supplies reserves to achieve its target. More recently,
many central banks have operated a floor system with abundant reserves – policy directly sets the interest rate
on reserves held by intermediaries at the central bank.

2The short rate has been a stylized fact in the empirical term structure literature since Duffee (1996). Lenel,
Piazzesi and Schneider (2019) provide evidence of its connection to bank balance sheets.

3All assets have the same risk-adjusted expected returns in an equilibrium of a model that does not feature
arbitrage opportunities. Since risk-adjustments in the standard New Keynesian model are negligible, assets have
the same expected returns in equilibrium.
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short safe bonds: it raises the target for the interbank rate in a corridor system, or the interest
rate on reserves in a floor system. Standard New Keynesian logic says that sticky prices imply
a higher real short rate and lower nominal spending. However, lower nominal spending lowers
the convenience yield on inside money and hence on short safe bonds that back inside money,
be they interbank loans or reserves. A lower total return on the policy instrument in turn
implies a lower risk-adjusted expected return on other assets. Imperfect pass-through thus
dampens the policy impact on output and inflation.

In contrast to the standard model, our model says that policy rules that do not aggressively
respond to inflation do not make the economy susceptible to self-fulfilling fluctuations. Con-
sider for example an interest rate peg. Can there be a self-fulfilling recession? If agents believe
that output is temporarily low, inflation slows as firms anticipate lower cost. With a pegged
nominal rate, the real rate increases. In the standard model, the expected real return on all
assets increases: lower demand makes the recessionary belief self-fulfilling. In our model, in
contrast, lower spending lowers the convenience yield, which in turn keeps the expected real
return on other assets low. The adjustment of the convenience yield thus works much like the
Taylor principle: it reduces expected real returns when inflation is low and thereby stabilizes
demand, which helps avoid self-fulfilling recessions.

The effect of a convenience yield on the policy instrument can already be demonstrated in
a minimal model without banks. In fact, our paper starts with a setup where the central bank
directly sets the interest rate on deposits. Our interpretation is that the central bank issues a
central bank digital currency (CBDC), for which it controls both the quantity and the interest
rate. We derive the dampening of interest rate policy as well as conditions for determinacy of
equilibrium for this CBDC model. We also show that the quantitative difference from the stan-
dard model depends on the elasticity of money demand. We then proceed to study economies
with banks, and show that banks’ demand for collateral and their liquidity management place
more structure on the convenience yield. Nevertheless, the CBDC model serves as a useful
reduced form guide for assessing policy transmission.

When monetary policy works through banks, central bank operating procedures matter.
In particular, our model distinguishes a corridor system from a floor system by incorporating
bank liquidity management. Banks face liquidity shocks and leverage constraints that limit
overnight borrowing. Reserves are more liquid than other assets and hence particularly useful
for handling liquidity shocks: if they are sufficiently scarce, they earn a larger convenience
yield than short safe bonds. The central bank can thus choose to implement a corridor system
with scarce reserves and a positive spread between the target interbank rate and the reserve
rate. Alternatively, it can implement a floor system with abundant reserves that are perfect
substitutes to other short safe bonds. With a floor system, reserves are abundant and banks can
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manage their liquidity without borrowing reserves overnight from other banks; the overnight
interbank credit market ceases to operate.

Interest rate policy is more powerful with a corridor system because the supply of inside
money is more elastic. Indeed, an increase in the policy rate makes bank liquidity manage-
ment more costly and leads banks to lower the supply of inside money: this force increases
convenience yields and thus strengthens pass-through from the policy rate to other returns.
With a corridor system, our model thus behaves more similarly to the standard New Key-
nesian model. In contrast, a higher reserve rate in a floor system does not affect liquidity
management – banks’ cost of liquidity remains at zero. In fact, a higher reserve rate lowers
banks’ cost of supplying inside money.

We emphasize that the model with a corridor system does not reduce to the standard
model even though reserves are supplied elastically to implement the target rate. This is
because reserves are only one type of collateral used by banks to back inside money. Moreover
they are expensive collateral: they are taxed by the government to earn a low nominal rate
(for example, the interest rate on reserves is often zero.) Alternatively, if banks lend reserves
out overnight, they earn an interbank rate that is lower than other rates and banks’ cost of
capital. Banks thus economize on reserves – we study equilibria at a "reserveless limit", where
reserves make up a small share of bank assets. A corridor system makes the supply of inside
money more elastic, but it does not make it perfectly elastic, as would be required for full pass
through from the policy rate.

Our model highlights that it is misleading to think about policy with a floor system using
the standard New Keynesian model. Indeed, comparing impulse responses to a monetary
policy shock with simple Taylor rules shows much smaller impact in our model. The impact
is particularly small when the model allows for a simple "cost channel" – inside money and
consumptions are complements in utility. The reason is that tighter policy has opposite effects
on households’ cost of liquidity. In the standard model – as well as our model with a corridor
system – tighter policy increases the cost of liquidity. With a floor system, tighter policy
subsidizes banks and hence lowers the cost of liquidity.

The interaction of the cost channel and the convenience yield on the policy instrument
actually introduces a new source of fragility. If the central bank responds too aggressively to
output, there is now scope for multiple equilibria with stagflation. Indeed, if agents believe
that output is temporarily low, they also expect a high cost of liquidity. With a strong cost
channel, this can push up cost and lead to expectations of high inflation. while inflation is
temporarily high. This belief can be self-fulfilling, since it is consistent with both firm and
household optimization. Indeed, an aggressive decline in the policy rate increases the cost of
liquidity. From the Phillips curve, a strong cost channel then pushes up inflation even though
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output is low. From the Euler equation, a higher cost of liquidity discourages consumption
and hence lowers output.

In our model, the quality and denomination of bank assets matters for the creation of
inside money and hence for output and inflation. A negative shock to bank balance sheets –
for example, a sudden reduction in the quality of existing loans – lowers the supply of inside
money and hence increases its convenience yield. It raises the expected real rate of return
on other assets and is contractionary. At the same time, quantitative easing is expansionary
as long as it increases the quantity or quality of bank collateral and thereby relaxes banks’
leverage constraints. In a floor system, the quantity of reserves becomes an additional policy
tool, as it does not need to be chosen to hit a target interest rate.

The short rate disconnect is more relevant when there are nominal rigidities in bank balance
sheets. As a simple example, suppose the central bank runs a floor system and commits to a
path for reserves. The quantity of reserves then works like a nominal anchor for the economy.
An increase in the reserve rate lowers convenience yields not only by reducing real output,
but also by lowering the price level and hence increasing the real quantity of reserves. More
generally, the larger the share of bank assets that is nominally fixed, the larger are deviations
in impulse responses from the standard model, and the weaker are conditions for determinacy.
More generally, our model shows that the "plumbing" of how inside money is supplied can
matter for the transmission of interest rate policy. Another key parameter here is banks’ market
power in deposit markets. In our model, banks price liquidity supplied to households at a
markup over marginal cost. Monetary policy affects banks’ cost, and market power amplifies
its effects.

Our paper adds to a growing literature on New Keynesian models with financial frictions,
dating back to Bernanke, Gertler and Gilchrist (1999). Recent work has focused on finan-
cial frictions in the banking system; see for example Cúrdia and Woodford (2010), Gertler
and Karadi (2011), Gertler et al. (2012), Christiano, Motto and Rostagno 2012, Ireland (2014),
Del Negro et al. (2017), Brunnermeier and Koby (2018) or Wang (2019). In these models, bank-
ing also matters for transmission and there can be imperfect pass-through from the policy rate
to deposit or loan rates. These papers nevertheless share the feature of the standard model
that there is direct pass-through from the policy rate to the short rate, and so the households’
nominal stochastic discount factor. They do not speak to the short rate disconnect, the key fact
that motivates our analysis.4

4 Much recent work on New Keynesian models has been motivated by the zero lower bound on interest rates,
and various "puzzles" such as large fiscal multipliers or strong impact of forward guidance. In this paper, we do
not focus on a lower bound. Instead, our goal is to extend the New Keynesian model in a way that is consistent
with data on interest rates as well as holdings of short safe bonds. From this perspective, 2008 is a watershed
because the Fed adopted a floor system that made liquidity cheap for banks. That decision is still relevant now
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Diba and Loisel (2019) also study the determinacy properties of a New Keynesian model
with banks. In their setup, reserves are an input into bank lending, which gives rise to a
convenience yield. They study dynamics when the central bank directly sets the interest rate
on reserves and reserves are scarce. In our setup, in contrast, the convenience yield of the policy
instrument is due to banks’ provision of liquidity. It is neither essential that reserves are scarce
nor that the policy rate is the reserve rate. In fact, our comparison of operating procedures
focuses on times when either (i) reserves are scarce and the central bank targets an interbank
rate – the US policy regime before the financial crisis – or (ii) reserves are abundant and the
central bank sets the reserve rate – the US regime after the crisis.

There is recent work on New Keynesian models with convenience yields on other assets.
In particular, Hagedorn (2018) studies a HANK model with uninsurable income risk and a
riskfree asset. Some consumers are not on their intertemporal Euler equation, so that their
marginal rate of substitution is not equated to the interest rate. Michaillat and Saez (2018)
assume that wealth is a separate argument in utility, in addition to consumption. In both
cases, a convenience yield is priced into assets that serve as a store of value for households.
Our perspective here is different: we emphasize the convenience yield on assets held by banks
that drives a wedge between the policy rate and the rate at which households save, as we
see in the data. Our mechanism is thus complementary to the above effects. For example, a
HANK model with banks might feature weak pass-through from the policy rate to the rate on
household savings.

More generally, our model builds on a long tradition of asset pricing with investors who
face liquidity or collateral constraints, dating back at least to Lucas (1990), Kiyotaki and Moore
(1997) and Geanakoplos (2003). Recent work has emphasized the role of constrained inter-
mediaries, see for example Brunnermeier and Pedersen (2009), He and Krishnamurthy (2013),
Brunnermeier and Sannikov (2016) or Bocola (2016), as well as, in monetary economies, Drech-
sler, Savov and Schnabl (2018), Brunnermeier and Sannikov (2016) or Di Tella and Kurlat
(2018). Our model also features "intermediary asset pricing" but differs from much of the
literature in that banks are firms that maximize shareholder value and can costlessly recapi-
talize. The mechanism we emphasize does not require frictions in equity markets, and does
not rely on financial accelerator dynamics.

A convenience yield on short bonds is often captured by making bonds an argument in
utility, see for example Bansal and Coleman (1996), Krishnamurthy and Vissing-Jorgensen
(2012) or Nagel (2016). Williamson (2014) derives a convenience yield in a model of decen-
tralized exchange. Lenel, Piazzesi and Schneider (2019) take a closer look at the quantitative
asset pricing implications of the approach we follow here. They show that bank optimization

that the level of interest rates has risen again.
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implies an observable pricing kernel based on bank balance sheet ratios that accounts well for
the short rate disconnect, especially at business cycle frequencies.

We also build on a growing literature that studies macroeconomic effects of the structure of
the banking system. In particular, several authors have emphasized the importance of market
power in deposits markets; see for example Yankov (2014), Driscoll and Judson (2013), Duffie
and Krishnamurthy (1996), Egan, Hortacsu and Matvos (2017), Drechsler et al. (2018) or Corbae
and D’Erasmo (2013). In addition, there has been recent interest in bank liquidity management,
for example Bianchi and Bigio (2014), De Fiore, Hoerova and Uhlig 2018 or Piazzesi and
Schneider (2018). Both features matter for the quantitative relevance of our mechanism; our
results suggest that studying them further is important for understanding the transmission of
monetary policy.

A key feature of our model is the distinction between several payment instruments and
their potential scarcity, in our case, reserves and deposits. The link between scarcity of pay-
ment instruments and convenience yields is well established in monetary theory. In partic-
ular, Williamson (2014) and Venkateswaran and Wright (2014) have shown how assets that
back payment instruments can inherit their convenience yields, an effect that is also central
to our mechanism. The literature has typically studied the coexistence of multiple payments
used by households, for example currency and various types of deposits; see also Rocheteau,
Wright and Xiao (2018), Andolfatto and Williamson (2015), Lucas and Nicolini (2015) and En-
nis (2018)). We abstract from currency and emphasize instead a layered payment system in
which households only pay with deposits, and only banks pay with outside money directly
issued by the government.

Our focus on macro outcomes leads us to abstract from several institutional details. In
particular, we do not explicitly distinguish between banks and money market mutual funds.
From our perspective, the key feature of money market funds is that they are also payment
intermediaries: unlike plain vanilla mutual funds, they provide payment services – this is why
their shares are included in broad measures of money.5 Williamson (2015) and Begenau and
Landvoigt (2018) have studied models where banks and shadow banks compete in the market
for payment instruments. Moreover, bank heterogeneity in our model is stark and serves only
to create an aggregate demand for liquidity. Whitesell (2006), Keister et al. (2008), Afonso and
Lagos (2015) and Afonso et al. (2018) provide more detailed data and modeling on its role
under scarce and abundant reserves. Our results suggest that these details should inform the
transmission of monetary policy.

5In order to provide payment services, money market funds contract with their custodian banks to gain access
to interbank payments arrangements. Our model can be viewed as consolidating money market funds with their
custodian banks.
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Our results show that the nature of nominal assets in the economy is important for the
transmission of policy. Our setup shares this feature with the fiscal theory of the price level.
In particular, Sims (2013) and Cochrane (2018) have studied the role of the maturity structure
of government debt. A key difference between our approach and the fiscal theory is that the
nominal assets that matter for us are those available to banks in order to back inside money.
While government debt can be part of those assets, private contracts such as loans are also
relevant, and their payoff pattern can affect the transmission of policy. Moreover, our results
do not assume a non-Ricardian fiscal regime.

The paper is structured as follows. Section 2 presents the simple model of central bank
digital currency to introduce the key effects. Section 3 studies banks under a floor system.
Section4 considers banks under a corridor system. Proofs and derivations are collected in the
Appendix.

2 Monetary policy with a convenience yield: a minimal model

In this section we study a minimal model of a central bank targeting an instrument with a
convenience yield: money earns a convenience yield because it enters the utility function.
Households and firms solve the same problems as in textbook treatments of the New Keyne-
sian model. The only difference is that the central bank sets the quantity as well as the interest
rate on money, as opposed to the short rate of the representative agent’s stochastic discount
factor. The model thus resembles a New Keynesian model with a money growth rule, but it
allows for more general interest rate policy.

Our interpretation is that there is a central bank digital currency (CBDC): everyone has
deposit accounts at the central bank, which controls both the nominal quantity and the interest
rate. The short rate, like nominal rates of return on all other assets, adjusts to clear markets.
Our interest in this model stems from its formal similarity to the banking models in Sections 3
and 4. We will show that the same mechanisms are at work both when the central bank makes
reserves abundant – hence controlling their price and quantity – and when the central bank
elastically supplies reserves to hit a fed funds rate target.

2.1 Setup

Every period, the representative household chooses consumption goods Ct, nominal money
balances Dt and labor Nt. Preferences are time separable with discount factor β and felicity

1
1− 1

σ

(
C

1− 1
η

t + ω (Dt/Pt)
1− 1

η

) 1− 1
σ

1− 1
η − ψ

1 + φ
N1+φ

t , (1)
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where Pt is the price level, that is, the price of consumption goods in terms of money. More-
over, η is the (intratemporal) elasticity of substitution between consumption and real balances
and σ is the (intertemporal) elasticity of substitution between bundles at different dates. If
σ = η, utility is separable in consumption and real balances.

The New Keynesian model is usually derived by assuming separable utility. Most of our
theoretical results – in particular on determinacy and the dampening of policy effects – already
obtain in this case. We nevertheless develop the model for general nonseparable utility. We
then emphasize below the case σ > η, where consumption and real balances are complements
(that is, the cross partial derivative of the utility function is strictly positive). Complementarity
helps fit the response of velocity to interest rates in the data. Moreover, it introduces a "cost
channel" – marginal cost increases with the opportunity cost of money – which has interesting
theoretical effects, as discussed in Section 2.3 below.6

Money is provided by the central bank which issues a digital currency that pays the nom-
inal interest rate iD

t . The household can also invest in other short safe assets that pay the
nominal interest rate iS

t . We refrain from calling iS
t the interest rate on short bonds. The bank-

ing models below introduce short bonds explicitly; in equilibrium, they are held by banks
whose valuation pushes the bond rate below iS

t . Instead we refer to iS
t as the shadow rate. It

represents the (nominal) short rate in the household’s stochastic discount factor and hence the
first-order term in the nominal rate of return on any asset held directly by households. Since
we linearize the model below and abstract from higher order terms, iS

t is the relevant rate of
return for all intertemporal decisions, as well as for the valuation of firms by shareholders.

The household budget constraint at date t is

PtCt + Dt + St = WtNt + Tt + ΠtDt−1(1 + iD
t−1) + St−1(1 + iS

t−1). (2)

Income on the right-hand side consists of labor income at the nominal wage Wt, government
transfers Tt, profits from firms as well as payoffs from money and other assets that earn the
rate iS. The income is spent on consumption expenditure on the left-hand side and a new
portfolio of money and other assets. Our timing convention is that money chosen at date t
provides liquidity services at that date – that is, it facilitates shopping for consumption Ct.

First order conditions

Household first-order conditions with respect to consumption, money and bonds imply
standard "Euler equations". First, the marginal rate of substitution of consumption for real

6We focus on utility that is homogeneous of degree one in consumption and money in order to obtain a unitary
income elasticity of money demand. Some derivations of the standard model instead work with separable utility
that allows for different curvature parameters. It will become clear below how to extend our results to this case.
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balances must be equal to the relative price of liquidity services provided by money, or the
opportunity cost of money. This intratemporal Euler equation describes a "money demand"
relationship often studied in the empirical literature:

Dt = PtCt ωη

(
iS
t − iD

t

1 + iS
t

)−η

. (3)

Since utility is homogenous of degree one in consumption and money, households hold money
in proportion to nominal spending. Moreover, money holdings are decreasing in the opportu-
nity cost of money, here the spread between other assets and money iS

t − iD
t . The elasticity of

substitution η works like an interest elasticity of money demand.

When consumption and money are complements, an increase in the opportunity cost of
money lowers the marginal utility of consumption. To clarify the effect on labor supply as well
as savings, we write the ideal price index for a bundle of consumption and liquidity services
from money as

Qt :=

1 + ωη

(
iS
t − iD

t

1 + iS
t

)1−η
 1

1−η

. (4)

This ideal price index is measured in units of consumption. Since the household cares about
bundles, as opposed to only consumption goods, labor supply depends on the real wage
measured in units of bundles, Wt/PtQt. A higher spread iS

t − iD
t thus not only increases the

price of liquidity services, but also lowers the price of leisure. At the same time, it affects the
household’s savings decision by increasing the real return on assets in units of bundles, that
is, (1 + iS

t )PtQt/Pt+1Qt+1: future consumption bundles become relatively cheaper.

When consumption and money are complements, an increase in the opportunity cost of
money lowers labor supply relative to consumption. Indeed, the first-order conditions imply
a second intratemporal Euler equation that links the marginal rate of substitution of labor for
consumption to the real wage:

Q1− η
σ

t C
1
σ
t ψNφ

t =
Wt

Pt
. (5)

In the separable case, the optimal choice of labor relative to consumption depends only on the
relative price between these two goods: the real wage in units of consumption. When money
and consumption are complements, in contrast, an increase in the opportunity cost of money
makes consumption less attractive and leads households to take more leisure. Relative to the
standard model, there is a "labor wedge" that is increasing in the opportunity cost of money.7

7In our relevant parameter range η < σ ≤ 1, the labor wedge is driven by competing income effects. Indeed,
elasticities below one imply strong income effects in both the choice between consumption and liquidity services
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This cost channel was emphasized in early flexible price DOGE models, but has received less
attention in the new Keynesian literature.

The intertemporal Euler equation for the shadow rate relates the marginal utilities of con-
sumption at different dates to interest rates:

βEt

[(
Qt+1

Qt

) η
σ−1(Ct+1

Ct

)− 1
σ Pt

Pt+1

] (
1 + iB

t

)
= 1. (6)

Optimal savings implies that the discounted gross rate of return on assets is equal to one. In
the nonseparable case, discounting by the marginal rate of substitution reflects the expected
change in the opportunity cost of money. In particular, when money and consumption are
complements the household acts as if he discounts the future more when the opportunity cost
of money is temporarily lower: cheap liquidity today encourages consumption today.

Combining (3) and (6), we can write an analogous intertemporal Euler equation for money.
It clarifies that money is valued not only for its payoff, but also earns a convenience yield:

βEt

[(
Qt+1

Qt

) η
σ−1(Ct+1

Ct

)− 1
σ Pt

Pt+1

] (
1 + iD

t

)
+ ω

(
PtCt

Dt

) 1
η

= 1. (7)

The total rate of return on the left hand side now consists not only of the pecuniary rate of
return (again appropriately discounted) but also adds a nonpecuniary benefit that is increasing
in the velocity of money Vt := PtCt/Dt: if spending is high relative to money, shopping is more
of a hassle and the convenience yield – the marginal benefit of additional money – is higher.
The response of the convenience yield to velocity is stronger if the interest rate elasticity of
money demand η is lower.

Firms, government and equilibrium

The supply side of the model is standard. Competitive firms make the consumption good
from a continuum of intermediate goods; their production function is CES with elasticity of
substitution ε. Monopolistically competitive firms make intermediate goods from labor using
the linear production function Yt = Nt. We assume Calvo price setting: the opportunity for an
intermediate goods firm to reset its nominal price is an i.i.d. event that occurs with probability

and the choice between bundles and labor. A higher spread today makes liquidity services more expensive
and, with a strong income effect, reduces consumption. A higher price for liquidity services also makes leisure
cheaper and, with a strong income effect, increases demand for the bundle which includes more consumption.
With separable utility, the two forces exactly cancel and we obtain the Euler equation for labor from the standard
model. Complementarity between money and consumption (η < σ) makes the income effect from the cost of
liquidity stronger: a higher spread today thus leads the agent to consume relatively less and take relatively more
leisure.

11



ζ. The firm commits to satisfy demand at its posted price every period.

We consider two alternative scenarios for policy. First, suppose the government chooses
a path for the interest rate on money as well as the money supply, that is, the total size
of the household’s digital currency account. We consolidate the central bank and Treasury,
and assume that the government levies lump sum taxes Tt to satisfy its budget constraint
Dt + PtTt = Dt−1. An equilibrium then consists of sequences for consumption, labor, lump
sum taxes, output of the various goods as well as the nominal interest rates iS

t , iD
t , wage and

price level such that households and firms optimize, the government budget constraint holds
and the markets for goods, labor and money clear.

An alternative way to specify policy is to assume that the government sets the interest rate
on money according to a Taylor rule, that is, iD

t is a function of current inflation and output.
We are particularly interested in this case because in the banking models of Sections 3 and 4,
a Taylor rule on short bonds held by banks – as currently used by many central banks – will
work effectively like a Taylor rule for iD

t . If such a rule is in place, then the path of iD
t is also

endogenous and the policy rule becomes an additional equation that must hold in equilibrium.
We note that the supply of money remains a separate policy instrument in this case – we only
replace the exogenous path for the interest rate with a rule.

In either case, characterization of equilibrium is routine and relegated to Appendix A.2.
The equilibrium paths of output, the shadow rate iS

t , and the price level satisfy a system of
difference equations: a New Keynesian Phillips curve – derived from firms’ optimal price
setting – together with the intertemporal Euler equation (6) and money market clearing (3).
A convenient way to describe equilibrium dynamics is to linearize the difference equations
around a steady state – this is how we proceed below.

Steady state

To obtain an equilibrium with constant real quantities and rates of return, we assume that
the government grows the money supply at the constant rate π – equal to the rate of inflation
– and sets a constant interest rate on money iD. From the Euler equation (6), the growth rate
of money pins down the steady state shadow rate as iS = δ + π, where δ = 1/β − 1 is the
household’s discount rate. The real rate of return on money is rD = iD − π. Both the velocity
of money and the price index for a bundle of consumption and liquidity services are constant
in steady state:

V = ω−η

(
δ + π − iD

1 + δ + π

)η

; Q =

(
1 + ωη

(
δ + π − iD

1 + δ + π

)1−η
) 1

1−η

. (8)
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Long run output is also constant at

Y =

(
ε− 1

ε

1
ψ

Q−(1−
η
σ )

) 1
φ+ 1

σ .

In the separable case, firms’ marginal cost does not depend on the cost of liquidity, but only
on the disutility of labor and the markup. When money and consumption are complements,
in contrast, cheaper liquidity lowers firms’ marginal cost and hence increases output. If it were
costless to produce real balances, then it would be optimal to drive the cost of liquidity to zero.
In this paper, we are interested in the response of the economy with standard preferences and
interest rate policies. We thus maintain preferences that preclude the possibility of satiation
with money.

We note that if interest rate policy is understood to change only the interest rate on money,
as opposed to the shadow rate iS

t , then an interest rate peg does not imply that the price level
is indeterminate. Indeed, the usual argument for indeterminacy follows from the assumption
that the central banks commits to elastically supply money at a fixed spread iS − iD, where
iS is the interest rate peg and iD is the rate on money, usually taken to be zero. With such
a policy, private sector optimization and market clearing only determine real balances Dt/Pt.
For any price level, agents believe that the government will supply money so that real balances
are consistent with the fixed spread. In the CBDC model, in contrast, there are two policy
instruments iD

t and Dt, and money is not elastically supplied.

Interest rate policy via iD also has different long run effects from changes in the shadow
rate. Indeed, an increase in iD does not increase inflation in the long run – there is no "neo-
Fisher" effect. Instead, higher interest on money makes liquidity cheaper and lowers velocity
and the convenience yield on money. The inflation rate and hence also the nominal shadow
rate iS remain unchanged. They change only if the central bank grows the money supply at a
faster rate. The real interest rate on money rD thus increases – in this sense, cheaper liquidity
services have a permanent liquidity effect on the real interest rate. We note that neither of
these points requires nonseparability: they obtain just from taking a different perspective on
what the policy instruments are. Nonseparability only matters by inducing a long run effect
of the cost of liquidity on output.

The linearized model

To study the dynamics of the model, we follow the standard approach of linearizing around
a steady state with zero inflation. We indicate log deviations from steady state by hats. We
arrive at a system of linear difference equations for output, the interest rate and the price level.
Derivations are provided in Appendix A.2. In particular, the New Keynesian Phillips Curve
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and Euler equation take the standard form

∆ p̂t = β∆ p̂t+1 + λ

((
φ +

1
σ

)
ŷt +

(
1− η

σ

) χ

δ− rD

(
iS
t − δ− (iD

t − rD)
))

, (9a)

ŷt = Etŷt+1 − σ
(

iS
t − ∆ p̂t+1 − δ

)
+ (σ− η)

χ

δ− rD

(
∆iS

t+1 − ∆iD
t+1

)
. (9b)

If η = σ, the last term in both equations is zero and we arrive at the standard three equation
model. As usual, the parameter λ = (1− ζ)(1− βζ)/ζ measures the response of inflation to
marginal cost.

If η < σ, there is a cost channel: a temporarily higher cost of liquidity iS
t − iD

t increases
firm’s marginal cost and lowers output. The strength of the cost channel depends on the
parameter χ, the elasticity of the price of a bundle of consumption and money (4) with respect
to the cost of liquidity:

χ =

(
1 + ω−η

(
δ− rD

1 + rD

)η−1)−1

. (10)

The elasticity χ is positive and increasing in households’ preference for liquidity as captured
by the utility weight ω. In the relevant case of a strong income effect (η < 1), it is also
increasing in the steady state price of liquidity chosen by the central bank: a higher price of
liquidity increases the expenditure share on liquidity.

Equilibrium in the money market is summarized by the intratemporal Euler equation (3)

iS
t − δ = iD

t − rD +
δ− rD

η

(
p̂t + ŷt − d̂t

)
. (11)

The Euler equation governs the pass-through from the policy rate iD to the shadow rate iS.
The general principle here is that, to first order, expected returns on all assets are equated. In
particular, the shadow rate must equal the interest rate on money plus the convenience yield.
The coefficient in front of velocity is the inverse semielasticity of money demand with respect
to the cost of liquidity. It depends both on the elasticity η and on the steady state spread
δ− rD. If money demand is less elastic, then fluctuations in velocity have a stronger effect on
the return on money.

If policy is specified as a path for the quantity of money and the interest rate on money, an
equilibrium corresponds to a solution (yt, iS

t , pt) to the system of linear difference equations
given by (9) and (11). In this system, the price level is an endogenous state variable. A
special case has the interest rate on money pegged at zero – this version is discussed in the
literature as the New Keynesian model with a money supply rule. We allow instead for general
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exogenous paths for the interest rate on money. Such paths are important for thinking about
the analogous economies with banking we study below.

If policy is specified as a Taylor rule for the interest rate on money, we add the equation

iD
t = rD + φπ∆ p̂t + φyŷt + ut, (12)

where ut is a monetary policy shock. The interest rate iD now also becomes an endogenous
variable of the system comprised of (9), (11) and (12). We do not claim that this policy rule
is optimal or otherwise desirable for the rate on a CBDC. We are interested in it only because
it is a simple rule that has been widely studied. Our goal is to describe what happens if the
central bank targets an asset with a convenience yield in this way. The bank models below
will show that this is a useful way to think of postwar monetary policy.

2.2 The separable case

In this section, we study the CBDC model when utility is separable in consumption and money.
The behavior of the private sector is then exactly the same as in the standard three equation
New Keynesian model: the New Keynesian Phillips curve and Euler equation are given by (9)
with η = σ. When interest rate policy is specified as a path for the shadow rate iS, the model
is known to have multiple equilibria, even when attention is restricted only to bounded paths,
such a constant "shadow rate peg". The conventional way to address this issue is to assume a
Taylor rule that satisfies the Taylor principle, that is, the central bank responds aggressively to
inflation by increasing the nominal rate. We show that this policy stance is not necessary once
it is recognized that the policy instrument carries a convenience yield.

Price level determinacy

To see how exactly the CBDC model differs from the standard model, it is helpful to first
recall the usual intuition for equilibrium multiplicity. We focus on the case where the central
bank pegs the nominal shadow rate iS to some fixed number. One equilibrium is always that
inflation and output are constant at their steady state values, so the price level remains at its
initial condition. However, there are other equilibria that describe a self-fulfilling recession,
say, even if we impose that expectations of future output and inflation are bounded.

To see why self-fulfilling recessions may occur, suppose agents believe that output is low
today and gradually rises towards steady state. According to the New Keynesian Phillips
curve, paths of low output imply paths of low marginal cost and hence low inflation. But with
a nominal interest rate peg for iS, low expected inflation increases the real rate of return on
savings: intertemporal substitution as captured by the Euler equation thus lowers consump-
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tion and output. The initial belief in low output is thus self-fulfilling. The Taylor principle
breaks the argument: in response to low inflation, the central bank aggressively lowers the
nominal rate and hence the real return on savings, which would encourage consumption –
this is what rules out a self-fulfilling recession.

In the CBDC model, the argument for a self-fulfilling recession breaks down because the
policy instrument is iD, the rate on an asset with a convenience yield that responds endoge-
nously. Indeed, suppose agents were to believe output is low and gradually rises. As before,
they would anticipate low marginal cost and inflation. However, low spending in the recession
also reduces the convenience yield on money. The total return on money – pecuniary return
plus convenience yield – is therefore lower. Since total returns on all assets are equated by (3),
the expected return on savings iS

t − πt+1 is also lower which in turn encourages consumption.
The endogenous response of the convenience yield thus plays the same role as the aggressive
response of the Taylor rule in changing the shadow rate iS

t . Both serve to rule out self-fulfilling
recessions (or booms) supported by bounded expectations.

Formally, we summarize the results on determinacy of equilibrium by

Proposition 2.1: Suppose utility is separable in consumption and money.

(a) If policy is described by bounded paths for the quantity of money Dt and the interest rate on money
iD
t , the system of difference equations (9) and (11) has a unique bounded solution for any initial price

level p̂0.

(b) If policy is described by a bounded path for the quantity of money Dt and a Taylor rule (12) for the
policy rate with coefficients φπ, φy ≥ 0, the system of difference equations given by (9), (11) and (12)
has a unique bounded solution for any initial price level p̂0.

The proof is in Appendix A.2. We have given above the intuitive argument for determinacy
with a peg, a special case of part (a). More generally, the argument relies on the eigenvalues of
the homogenous part of the difference equation, and therefore works for any bounded policy
paths. Part (b) shows that it also carries over to the case of a policy rule. There are then
two complementary mechanisms ruling out multiple equilibria – the endogenous convenience
yield and the policy stance. It it thus not surprising that determinacy continues to obtain. It
follows that standard analysis with Taylor rules can be performed in the CBDC world, without
imposing a restriction on the coefficients of the policy rule.

The transmission of monetary policy

We emphasize three differences between policy transmission in the CBDC model versus the
standard New Keynesian model. Consider first the role of money. In the standard model, there
is a strong sense in which money doesn’t matter: for a given interest rate rule, money demand
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shocks have no effect on inflation, output and the shadow rate. Formally, the result follows
because a system consisting of (9) with η = σ, (11) and a Taylor rule for iS is block recursive:
we can solve for output, inflation and the shadow rate independently of the parameters and
shifters of the money market equilibrium condition. The latter only determines how much
money needs to be endogenously supplied in order to achieve the target interest rate iS.

In the CBDC model with a policy rule for the interest rate on money, money matters even if
utility is separable. Indeed, the system consisting of (9) with η = σ, (11) and (12) is not block
recursive. A shock to money demand, such as a change in the weight on money in utility,
would enter as an additive shock in (11). If the central bank sticks to its interest rate rule, such
a shock affects the shadow rate iS

t and hence the allocation. At the same time, a change in the
exogenous quantity of central bank supplied currency has real effects for a given interest rate
rule. In the banking models studied below, this property carries over to collateral assets used
by banks to back inside money.

Second, consider interest rate policy. In the CBDC model, changes in the policy rate have
weaker real effects than in the standard New Keynesian model. The reason is the imperfect
pass-through from the policy rate to the shadow rate, and hence to intertemporal decisions,
as described by (11). Indeed, consider a positive monetary policy shock, say, that increases the
nominal rate on money. With sluggish price adjustment, the real rate on money also increases,
which entails lower output and lower inflation on impact, as in the standard model. However,
lower spending also reduces the convenience yield on money. As returns on all assets are
equated according to (11), the effect of the policy shock on the shadow rate iS is lower than
in the standard model. In this sense, interest rate policy is weaker. We quantify the effect in
Section 2.4.

A third distinctive property of the CBDC model is that there is a unique steady state price
level to which the system returns after a shock. In particular, a central bank that follows a
Taylor rule for the interest rate on money effectively engages in a version of nominal income
targeting, and hence price level targeting. To see this, consider the case of constant money
supply. Substituting the Taylor rule for money (12) into the money demand equation (11)
delivers an effective rule for the shadow rate:

iS
t = rD + φπ∆ p̂t + φyŷt +

δ− rD

η
( p̂t + ŷt − d̂t) + ut. (13)

The central bank responds to a high price level (relative to steady state) by increasing the
interest rate.
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The role of a nominal anchor

So far we have assumed that the government commits to a bounded path for the money
supply. We now clarify the role of such a "nominal anchor" for the properties of the model. A
nominal anchor is of course crucial for the existence of a unique steady state price level, and
hence for the price level targeting dynamics discussed above. The point of this subsection is
that it is not essential for the other properties of the CBDC model. Instead, local determinacy,
the fact that money matters, and that interest policy is weaker than in the standard model,
are due only to the fact that the policy instrument carries a convenience yield, and not to the
presence of a nominal anchor. A nominal anchor matters for those properties only in so far as
it strengthens the role of the convenience yield.

To illustrate, consider a money supply rule that responds to real spending by the govern-
ment:

Dt = µDt−1 + Pt(γyYt + G). (14)

Mechanically, the government reduces the nominal money supply by a share 1 − µ every
period, and then issues new currency worth γyYt + G consumption goods. It is not essential
whether governments would actually use such a rule for a digital currency. Our purpose here
is to perform a thought experiment on expectation formation. The key property of the rule
(14) is that there is no nominal anchor: if the rule replaces our previous assumption of an
exogenous path for the money supply, there is a continuum of steady state price levels, as in
the standard New Keynesian model.

Loglinearizing (14), the local dynamics of money are given by

d̂t − p̂t−1 = µ
(

d̂t−1 − p̂t−1 − ∆ p̂t

)
+ (1− µ)γnŷt, (15)

where γn = γyY/(γyY + G) is the average share of spending that is responsive to output.
An approximate equilibrium now consists of sequences for inflation, output and real balances
d̂t− p̂t that satisfy (9), (11) and (15). Given such sequences and some initial steady state level of
prices and associated initial money supply, we obtain determinate paths for the money supply
and the price level.

We are interested in the effect of a money supply rule on the dynamics of the convenience
yield. We start from the extreme case where the money supply is proportional to nominal
spending (that is, µ = G = 0 and γy = 1 so γn = 1). The convenience yield (and the velocity
of money) are then constant, and there is one-for-one pass-through from the policy rate iD to
the shadow rate iS. As a result, determinacy again requires the Taylor principle. In contrast, as
soon as there is some inertia in either the evolution of nominal money (µ < 1) or in government
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spending (γn < 1), then the convenience yield declines with nominal spending – the key effect
for our mechanism. As µ goes to one and γn goes to zero, we move back towards the original
model with an exogenous money supply.

Two forces strengthen the convenience yield effect in the absence of a nominal anchor. The
first is nominal rigidity in the money supply. As long as µ > 0, a drop in the price level lowers
the convenience yield and thus contributes to imperfect pass-through. What matters here is
only that the money supply is partly predetermined from the past; it is not essential that it
will not respond to future inflation. Indeed, as µ approaches one, the convenience yield effect
must eventually become strong enough to guarantee determinacy even without the nominal
anchor:

Proposition 2.2: Suppose utility is separable in consumption and money and the government follows
the money supply rule (15) with γy = 0. There is a threshold level µ̄ < 1 such that the conclusions of
Proposition 2.1 hold for all µ ≥ µ̄.

The second force is that the convenience yield responds to output. As a result, pass-
through is imperfect even without any nominal rigidity (µ = 0) provided that the money
supply does not move one for one with output (γn < 1). This is because lower output lowers
the convenience yield.

Proposition 2.3: Suppose utility is separable in consumption and money and the government follows
the money supply rule (15) with µ = 0. The conclusions of Proposition 2.1 hold if and only if

δ− rD

σ
>

λ
(

φ + 1
σ

)
1− β

.

Since η = σ in the separable case, the left hand side is the inverse semielasticity of money
demand, and the right hand side is the (discounted) slope of the Phillips curve from the
standard model. The condition thus says that multiple equilibria can be ruled out as long as
money demand is sufficiently inelastic.

2.3 Nonseparable utility and the cost channel

In the CBDC model, the pass-through (11) from the policy rate to the shadow rate depends
importantly on the elasticity of money demand η. Since standard estimates of η are lower than
conventional numbers for the intertemporal elasticity of substitution σ, the separable case is
overly restrictive. In this section, we thus explore the nonseparable case with η < σ, where
money and consumption are complements in utility. A key new feature is then that the cost
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channel terms in the Phillips curve and Euler equation become relevant: a temporarily higher
cost of liquidity for households iS

t − iD
t increases firms’ marginal cost and hence inflation; at

the same time, it makes consumption more expensive and hence lowers output.

The introduction of a cost channel accentuates the difference between interest rate policy
in the CBDC model versus the standard model. To see this, consider again an increase in the
policy rate in the CBDC model. A drop in spending and hence a lower convenience yield now
feeds back to output and inflation: a lower cost of liquidity amplifies the fall in inflation but
further dampens the fall in output. Interestingly, the cost channel effects here are the opposite
of those in the standard model: if the central bank can increase the shadow rate holding fixed
the rate on money, the cost of liquidity for households increases. In the standard model, the
cost channel thus dampens the fall in inflation and amplifies the fall in output.

The presence of a cost channel in the CBDC model also introduces a new source of fragility:
there is now scope for multiple equilibria if the central bank responds too strongly to output.
Indeed, suppose that agents believe that there is a period of stagflation: output is temporarily
below the steady state while inflation is temporarily high. This belief can be self-fulfilling,
since it is consistent with both firm and household optimization. Indeed, an aggressive decline
in the policy rate increases the cost of liquidity. From the Phillips curve, a strong cost channel
then pushes up inflation even though output is low. From the Euler equation, a higher cost of
liquidity discourages consumption and hence lowers output.

Formally, the determinacy properties are summarized by:

Proposition 2.4: Suppose consumption and money are complements in utility (η < σ). If policy is
described by a bounded path for the quantity of money Dt and a Taylor rule (12) for the policy rate
with coefficients φπ, φy ≥ 0, the system of difference equations (9), (11) and (12) has a unique bounded
solution for any initial price level p̂0 if and only if

φ +
1
σ
>

η

δ− rD

(
1
η
− 1

σ

)
χφy.

As long as the government does not respond to output, the condition is trivially satisfied.
In particular, determinacy always obtains with an interest rate peg, and the result extends in
a straightforward way to any bounded path for the interest rate that the central bank com-
mits to, as in Proposition 1.1(a). The conditions says that the impact of a positive output
response through the cost channel (the right-hand side) must not be too large relative to the
"conventional" effect of output on inflation.
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2.4 Numerical example

In this section, we present a numerical example to show that the differences between the
standard model and the CBDC model can be quantitatively large. Throughout we focus on a
version of the CBDC model with constant money supply. Moreover, we use a version of the
standard model where money pays a constant interest rate rD. This nonstandard assumption
has no effect on dynamics. It permits a cleaner model comparison in the sense that the average
interest rate on money and the average cost of liquidity for households are the same across
the two models.

Calibration

The model period is a quarter. To calibrate the discount rate and the opportunity cost of
money, we need measures of the interest rate on money as well as the shadow rate in the
households’ stochastic discount factor. For the former, we choose the interest rate on Money
of Zero Maturity (MZM), a broad measure of money constructed by the St. Louis Fed. For
the latter, we want a short rate that is not contaminated by the convenience yield effects we
study in our bank models below. We thus use the 3 month rate of the yield curve constructed
by Gurkaynak, Sack and Wright (2007) using only Treasury bonds, leaving out T-bills that are
predominantly held by payment intermediaries. The resulting average deposit spread is 2.4%
per year, so we work with an average deposit rate rD = .0046.

We follow standard practice to identify the elasticity of money demand η from the time
series relationship between the velocity of money and its opportunity cost. In particular, we
find the semielasticity η/

(
δ− rD) by regressing log velocity of MZM on the spread between

the 3 month T-bill rate and the MZM own rate – the average rate on instruments in MZM. The
coefficient on the spread is 8.1 which implies an elasticity of η = .22. This number is similar to
what has been used in past studies. We identify the final preference parameter ω, the weight
on money in utility from (8), to match an average velocity of 1/2.

Other parameters take standard values from the New Keynesian literature. We set both
the intertemporal elasticity of substitution σ and the Frisch elasticity φ equal to one. The
probability of resetting prices is ζ = .75, so the response of inflation to marginal cost is λ =

.085. Without a cost channel, this response only consists of the response of inflation to output,
given by λ

(
φ + σ−1) = .17. The strength of the cost channel is then measured by the parameter

χ = 1.6; in other words, a one percentage increase in the cost of liquidity has the same effect
on inflation as 80bp increase in output.

The dampening of interest rate policy

We now study contractionary monetary policy shocks that increase the policy rate by 25bps.
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Figure 1: Impulse responses to a one time 25bp monetary policy shock; Taylor rule with
coefficient 1.5 on inflation only. Top three panels: percent deviations from steady state; bottom
three panels: percentage point deviations from steady state. Spreads are differences between
shadow rate and policy rate.

Figure 1 displays responses to an unanticipated one time shock when the central bank follows
a Taylor rule with a coefficient of inflation φπ = 1.5 and no weight on output. The top
three panels report percentage deviations from steady state in the price level, output and
nominal money. The bottom three panels report percentage point deviations from steady state
in inflation, the policy rate and households’ cost of liquidity, that is, the spread between
the shadow rate and the deposit rate. In all panels, light gray and black lines represent the
standard New Keynesian model and the CBDC models, respectively.

The impact effects illustrate the dampening of interest rate policy when the policy instru-
ment earns a convenience yield. While contractionary policy causes a recession and deflation
in both models, output and inflation responses in the CBDC model are only about half the
size of those in the standard model. There are two reasons, illustrated in the bottom right
panel. First, pass-through is imperfect in the CBDC model: the spread between the policy rate
and the shadow rate declines. This effect is quantitatively relatively small. Second, the cost of
liquidity in the standard model moves in the opposite direction from the CBDC model. This
is an important force that makes output fall much more in the standard model.

The figure also shows that the CBDC model features internal propagation, whereas the
standard model does not. Indeed, after the deflationary impact effect, the price level in the
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Figure 2: Impulse responses to a one time 25bp monetary policy shock; Taylor rule with
coefficient 1.5 on inflation and .5 on past interest rate. Top three panels: percent deviations
from steady state; bottom three panels: percentage point deviations from steady state. Spreads
are differences between shadow rate and policy rate.

CBDC model gradually returns to the original steady state. Inflation thus turns positive after
the initial shock. Output also turns positive, although the effect is very small. The result
follows because the central bank in the CBDC model with constant money supply is effectively
targeting the price level, as shown in (13). In contrast, the price level in the standard model
jumps to a new steady state right away and inflation is back at its steady state rate of zero
from the second period on.

As a complementary way to think about propagation, consider the evolution of money.
Since the money supply in the CBDC model is constant, the initial price level decline increases
real balances. After the initial shock, households thus find themselves in a world with too
much money: the economy works as if there had been an unanticipated increase in the money
supply. With sticky prices, output and inflation rise and gradually return to the steady state.
In the standard model, in contrast, the central bank withdraws money on impact in order to
return the economy to steady state immediately in the second period.

Figure 2 considers a Taylor rule with interest rate smoothing: the current policy rate de-
pends not only on inflation but also on the last policy rate. The CBDC Taylor rule is

iD
t = .5iD

t−1 + 1.5πt + vt. (16)
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Modest persistence is a feature of many estimated Taylor rules in the literature. The results are
qualitatively quite similar to those in Figure 1; the only difference is that interest rate smooth-
ing makes all effects more gradual. Comparing magnitudes across figures further shows that
interest rate smoothing leads to stronger inflation responses in both models, making those re-
sponses more similar. We conclude that for common policy rules, responses differ significantly
across the two models.

3 Banking with abundant reserves

In this section, we study banking when the central bank operates a floor system with abundant
reserves. We consider a model with banks that issue inside money, labeled "deposits", and
face a leverage constraint. To back deposits, banks can invest in high quality assets called
"reserves" or in "other assets" that are of lower quality. From the perspective of the bank, the
only difference between reserves and other assets is collateral quality. In particular, reserves
play no special role in managing liquidity. We can therefore think of reserves broadly as short
safe bonds, including Treasury bills. Other bank assets are subject to credit or interest rate risk:
they include loans, longer term government bonds, as well as mortgage backed securities.

The setup of this section is designed to capture the policy environment in the United
States since late 2008, when the initial round of quantitative easing made reserves abundant.
As reserves lost their liquidity benefit, the spread between reserves and T-bills declined to
essentially zero and the fed funds market for borrowing and lending reserves between banks
disappeared. The observed negative spread between the fed funds and reserve rate has been
traced to a peculiarity of US money markets, namely that institutions such as GSEs have
reserve accounts but are not legally banks who earn interest on reserves. We abstract from
this feature here since we view it as minor and gradually eliminated by the Fed via the reverse
repo program.

We emphasize that, in a layered payment system, abundance of reserves is not the same as
interest rates reaching the zero lower bound. Indeed, while banks’ cost of liquidity – measured
by the spread between the Fed funds rate and the reserve rate – is zero with abundant reserves,
the cost of liquidity paid by the private sector – measured by the difference between the
shadow rate iS

t and the deposit rate – remains positive. At the same time, reserves can be
abundant both at and away from the zero lower bound. Recent tightening by the Fed has
increased the reserve rate as the key policy rate, while maintaining the floor system with
abundant reserves.
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3.1 Setup

Banks hold reserves – outside money issued by the government that earns the nominal interest
rate iR

t . They issue deposits – inside money held by households that earns the interest rate iD
t .

The balance sheet of the typical bank is

Assets Liabilities
M Reserves Money D
A Other assets Equity

Other assets available to banks earn the interest rate iA
t . Banks maximize shareholder

value. We assume that bank equity can be adjusted every period at no cost. In this section,
we further assume perfect competition among banks; market power in deposit markets is
introduced below.

Bank i’s nominal cash flow at date t reflects changes in deposits, reserves, deposit and
other asset positions as well as interest on those positions:

Mi
t−1

(
1 + iM

t−1

)
−Mi

t − Di
t−1

(
1 + iD

t−1

)
+ Di

t

+ Ai
t−1

(
1 + iA

t−1

)
− Ai

t.

An individual bank maximizes the present value of cash flow, discounted by the shadow rate
iS
t . Since the model is deterministic, iS

t represents the household stochastic discount factor and
hence the banks’ cost of capital, or the required rate of return on bank equity. It is convenient
to work with nominal cash flows discounted by nominal rates to avoid extra notation.

Banks can issue deposits only if they have sufficient collateral to back them, as described
by the leverage constraint

Di
t ≤ `

(
Mi

t + ρLi
t

)
, (17)

where ` ≤ 1 and ρ < 1. The parameter ρ captures the idea that reserves are better collateral
than other assets. The parameter ` serves as a bound on leverage as defined by the ratio of
debt to quality-weighted assets. One interpretation of the constraint is as a capital requirement:
required equity must be higher if assets are lower quality. Even without regulation, a leverage
constraint can be viewed as a simple way to model an increasing marginal cost of debt.8

8In a more general model, such costs might be derived from deadweight costs of bankruptcy. Collateral quality
can then be derived from the riskiness of bank assets. While the resulting tradeoffs that determine leverage are
similar to the ones here, adding portfolio choice under risk yields additional testable predictions on balance sheet
ratios, explored for example in Lenel, Piazzesi and Schneider (2019).
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We focus on the case of a positive deposit spread iS
t − iD

t > 0. We already know from the
household Euler equation (3) that deposits provide a convenience yield whenever the supply
of real balances is finite. It follows that, from the perspective of the bank, deposits represent
a source of funding that is strictly cheaper than equity, which must earn the shadow rate iS

t .
Without a leverage constraint, it would be optimal to fund the bank entirely with deposits.
The leverage constraint will thus bind in equilibrium. A limited quantity of collateral implies
a limited quantity of deposits, which in turn justifies a positive deposit spread.9

Consider bank first order conditions. Given the linear objective, a bank holds an asset
(or issues a liability) if and only if its rate of return is equal to the cost of capital iS

t . Here
the appropriate "rate of return" incorporates both the pecuniary return – that is, the interest
rate – and a nonpecuniary component introduced by the Lagrange multiplier on the leverage
constraint. We focus on banks who hold both reserves and other assets and who issue deposits.
The first order conditions are then

iS
t = iM

t + `γi
t

(
1 + iS

t

)
,

iS
t = iA

t + ρ`γi
t

(
1 + iS

t

)
,

iS
t = iD

t + γi
t

(
1 + iS

t

)
.

A binding leverage constraint induces spreads between bank assets and liabilities and banks’
cost of capital. Mechanically, the presence of the leverage constraint implies that interest rates
on reserves, loans and deposits are all below the cost of capital. For example, on the asset
side, the reserve spread iS

t − iM
t indicates that banks value reserves not only for their interest

rate, but also as collateral that allows issuing more cheap deposits. At the same time, the
spread on other assets iS

t − iA
t is lower than the reserve spread since the collateral quality of

loans (measured by ρ < 1) is lower than that of reserves. Similarly, on the liability side, banks
pay depositors a lower rate of return than shareholders because issuing deposits incurs an
additional leverage cost.

Combining bank first-order conditions clarifies the pricing of liquidity in a layered payment

9A hard leverage constraint simplifies the analysis, but is not essential for our results. In Piazzesi and Schnei-
der (2018), optimal leverage follows from a smooth tradeoff between the marginal cost of leverage and the
liquidity benefit of deposits. The key point both here and in that model is that the liquidity benefit works like the
tax advantage of debt in the standard tradeoff theory of capital structure – combined with an increasing marginal
cost of debt, it generates a determinate optimal leverage ratio.
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system

iS
t − iD

t =
Mi

t

Di
t

(
iS
t − iM

t

)
+

Ai
t

Di
t

(
iS
t − iA

t

)
,

= `−1
(

iS
t − iM

t

)
. (18)

The cost of liquidity for households, captured by the deposit spread, reflects a weighted
average of spreads on the two collateral assets used to back deposits. Since the bank can
substitute freely between reserves and loans, the deposit spread is in fact proportional to the
reserve spread. From the bank’s perspective the formula describes marginal cost pricing of
household liquidity: leverage makes the deposit spread higher than the reserve spread. Put
differently, competition between banks for collateral assets implies that those assets inherit
part of the liquidity benefit conveyed by deposits.

To close the model, we describe policy and the supply of assets. In contrast to the digital
currency model of Section 2, government policy now controls reserves, while the creation
and valuation of deposits is endogenous. The government thus sets paths for the quantity of
reserves Mt and the interest rate on reserves iM

t . We further assume that the nominal supply
of other assets is given by an exogenous path At. Concretely, we can think of firms issuing
a fixed amount of debt. The only other element of the model that is affected is profits in the
household budget constraint, which add up firm and bank profits. Since households and firms
operate in frictionless equity markets, their marginal conditions are unaffected by how firms
are financed. 10

In equilibrium, all banks choose the same balance sheet ratios, so we can directly aggre-
gate. An equilibrium consists of prices and quantities such that households, firms and banks
optimize and asset and goods markets clear. In the system of difference equations characteriz-
ing equilibrium, the equations characterizing nonbank private sector are unchanged: we still
have a New Keynesian Phillips curve, and Euler equation, and a market clearing condition for
deposits. There are three new equations: the binding leverage constraint (17) and the pricing
of deposits and loans (18). These three equations help determine the three new endogenous
variables Dt, iA

t and iD
t .

10A richer model would make the demand for bank loans endogenous, and possibly responsive to the state of
the economy. We choose work with exogenous rules to maximize transparency. Fixed debt is a baseline scenario
motivated by the fact that bank assets tend to adjust slowly to shocks. We discuss other assumptions on both
policy and the supply of loans below.
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3.2 The linearized model

Equilibrium with banks is characterized by a system of linear difference equations that has
the same structure as that for the digital currency model in Section 2. Indeed, the nonbank
private sector equations (9) and (11) continue to hold. What is new is that the deposit spread
depends on policy via the pricing equation (18). The cost channel coefficient χ defined in (10)
thus depends on the policy rate and bank leverage via steady state deposit pricing. Moreover,
we can substitute for the deposit spread in (11) to arrive at a new equation for pass-through
from the policy rate iM

t to the shadow rate:

iS
t − δ = iM

t − rM +
δ− rM

η

(
p̂t + ŷt − d̂t

)
. (19)

The second term on the right hand side is the convenience yield on reserves: just like the
convenience yield on deposits in (11), it moves with the velocity of deposits. The bank model
here differs from the CBDC model in that the policy rate is no longer the rate on money
itself, but instead the rate on a collateral asset used by banks to back money. Nevertheless,
competition by banks for collateral assets implies that pass-through works the same way.
In particular, as in the CBDC model, households’ elasticity of money demand η is a key
determinant of variation in the convenience yield and hence the strength of pass-through.

To complete the linear system, we add equations for the endogenous production and pric-
ing of deposits by banks:

d̂t = αmm̂t + (1− αm)ât, (20a)

iS
t − iD

t = `−1
(

iS
t − iM

t

)
, (20b)

where αm := M/(M + ρL) is the steady state quality-weighted share of reserves on banks’
balance sheets. The first row is the loglinearized leverage constraint: it relates the quantity of
deposits to the quantity of collateral. It implies in particular that velocity in (19) is the ratio
of spending to an exogenous nominal quantity, as in (11). The second row shows that again
households’ cost of liquidity is proportional to the spread between the shadow rate and the
policy rate.

A key difference between the bank model and the CBDC model is that the private sector
cost of liquidity iS

t − iD
t is no longer the same as the spread between the shadow rate and the

policy rate. Instead, it includes a markup determined by bank leverage, as shown in (20b).
Since the policy spread is lower than the deposit spread, fluctuations in velocity have a smaller
effect on the short interest rate in the bank model – in other words, pass-through from the

28



policy rate to the shadow rate becomes stronger. Intuitively, reserves inherit the convenience
yield from deposits because they serve as collateral. If banks are not very levered, the effect is
weaker. A drop in spending that lowers the convenience yield on deposits then has a smaller
effect on the yield on reserves.

Nevertheless, we conclude that the bank model differs from the standard New Keynesian
model in the same way as the CBDC model: there is imperfect pass-through and the cost of
liquidity is decreasing in the policy rate. In fact, with separable utility, the bank model is
formally equivalent to a CBDC model with a higher semielasticity of money demand. With
nonseparable utility, this is not true, however: the strength of the cost channel as captured by
the coefficient χ continues to reflect only the average cost of liquidity for households δ− rD. For
the cost channel, it is not relevant how money is produced and what policy rate banks face;
all that matters is the private sector cost of liquidity.

The formal similarities between the CBDC and bank model clarify the equivalence of super-
ficially distinct institutional features. In particular, in an environment with abundant reserves,
monetary tightening makes liquidity cheaper. Indeed, raising the reserve rate reduces the tax
imposed by the government on the production of inside money. Its impact is thus analogous
to an increase in the deposit rate in the CBDC model. It is not the same as raising the shadow
rate in the household stochastic discount factor. In order to understand policy with abundant
reserves, the CBDC model is thus a better reduced form analogy than the standard model.

Determinacy of equilibrium

An equilibrium is a solution to the system of difference equations consisting of (9), (19)
and (20). The following result summarizes the determinacy properties:

Proposition 3.1: Suppose η ≤ σ. If policy is described by a bounded path for the quantity of reserves
Mt and a Taylor rule (12) for the reserve rate iM

t with coefficients φπ, φy ≥ 0, the system of difference
equations given by (9),(19) and (20) and the Taylor rule has a unique bounded solution for any initial
price level p̂0 if and only if

φ +
1
σ
>

η

δ− rM

(
1
η
− 1

σ

)
χφy.

The scope for multiple bounded equilibria is given by the same type of condition as in the
CBDC model: if the central bank responds too strongly to output, and there is a strong cost
channel, then there can be additional stagflation equilibria. What changes is the interpretation
of the coefficients: the condition now says that the structure of the banking industry matters.
Indeed, holding fixed the policy rate, the coefficient χ is decreasing in bank leverage. If
banks are more constrained, they price liquidity at a higher markup relative to the policy
spread. More costly liquidity strengthens the cost channel and creates more scope for multiple
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equilibria.

Fragility of the equilibrium further depends on the degree of nominal rigidities in bank
balance sheets. So far, we have assumed that all bank assets are nominal and exogenous. Bank
assets thus serve as a nominal anchor and an equilibrium with an interest rate peg is always
determinate. More generally, one might expect that bank assets are denominated in money,
but that their quantity is fixed in real terms. Suppose, for example that bank assets At follow
a rule of the type (14). Since the dynamics of assets directly translates into that of deposits
via the binding leverage constraint, arguments analogous to Propositions 2.2 and 2.3 are also
available here. We do not formally state such results, but just emphasize that the structure of
bank portfolios is now important.

Bank assets, loan shocks and quantitative easing

Much like the CBDC model, the bank features real effects from changes in exogenous
nominal assets. In the CBDC model, the broad money supply was a second policy instrument
of the government. Here it is given by (20) and thus depends both on the quantity of reserves –
the second policy instrument in a floor system – and the quantity of other assets, which is not
controlled by the government. The relative importance of those components is determined by
their (quality weighted) steady state share in bank balance sheets, measured by the parameter
αm. The effectiveness of reserves as an instrument thus depends on banks’ use of reserves to
back deposits.

A shock to the supply of loans – say because bank borrowers become more constrained –
works like a contraction of the money supply. It increases the convenience yield on money,
and thereby also the convenience yield on reserves: as loans become more scarce, reserves
become more valuable as collateral to back broad money. From (19), pass-through increases
the shadow rate even if the central bank does not change the policy rate. Negative loan shocks
thus generate a recession with deflation. While we have varied only the quantity of other
assets At here, an exogenous change in their quality as measured by ρ would work in much
the same way. For example, an announcement that ratings of bank assets are worse than
expected, would reduce quality-adjusted collateral supply, thereby reducing deposit supply
and so increasing the convenience yield on money.

We can also use the model to think about quantitative easing, or more generally unconven-
tional balance sheet policies of the central bank. Consider two examples. First, a one-for-one
swap of high quality reserves for other assets of lower quality on bank balance sheets is de-
scribed by dA = −dM and hence ât = − (M/A) m̂t so the change in the money supply from
(20) is

d̂t = αmm̂t − (1− αm)
M
A

m̂t = (1− ρ) αmm̂t.
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The substitution of good for bad collateral thus increases the money supply and stimulates
the economy, and more so if the collateral purchased by the central bank is of worse quality.

As a second example, consider a central bank purchase of assets not held by banks. In
terms of our model, such bonds are held directly by households. The purchase of such bonds
thus works mechanically like a "helicopter drop" of reserves: there is an increase in M not
accompanied by a drop in other bank assets A. The central bank intervention effectively in-
creases the collateral available to back inside money. The policy thus stimulates the economy
even more than a purchase of assets held by banks. We recognize that to draw stronger con-
clusions here requires a more explicit model of why some assets are held within the banking
system while others are not.11 We can already see however, that even in a richer model a key
determinant of the power of unconventional policy is in how it changes bank collateral assets
and their convenience yield.

Bank market power

Before calibrating the model, we provide a simple extension to bank market power in
deposit markets. For tractability, we assume monopolistically competitive banks that offer
varieties of deposits. We thus modify preferences so households care about a CES aggregate
of different varieties Di

t, each produced by a different bank i:

Dt =

(∫ (
Di

t

)1− 1
ηb

) 1
1− 1

ηb ,

where ηb measures the elasticity of substitution between varieties. One interpretation is that
the household sector works like a large "family" with members in different regions, and for
historical regions banks exert local market power. The key effect we are after is that deposits
are a cheap funding source for banks not only because of their liquidity benefit to households,
but also because of market power.

Consider deposit demand faced by an individual bank. Bank i supplies liquidity to house-
holds at the price (iS − iD,i

t )/(1 + iS
t ), where iD,i

t is the deposit rate promised by bank i. CES
preferences imply an ideal price index that aggregates the individual liquidity prices. We de-
fine the average deposit rate iD

t such that the spread (iS− iD,i
t )/(1+ iS

t ) achieves that aggregate

11Such a model might add additional institutions or intermediaries such as pension funds, insurance compa-
nies, or foreign central banks that value certain assets more than banks, and hence bid down their prices, making
them unattractive as collateral to back inside money. The unconventional policy provides a way to circumvent a
situation with endogenously segmented markets.
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price of liquidity. We can then write deposit demand as

Di
t =

(
iS
t − iD,i

t

iS
t − iD

t

)−ηb

Dt. (21)

The derivation is familiar from monopolistic competition in the goods market and relegated
to Appendix A.3. The only unusual feature is that prices take the form of spreads since the
relevant good is liquidity.

In equilibrium, individual banks maximize profits, taking as given aggregate deposit de-
mand. The quantity of nominal deposits still follows from banks’ binding leverage constraint.
However, market power increases the price of liquidity by a constant markup:

iS
t − iD

t =
ηb

ηb − 1
`−1

(
iS
t − iM

t

)
. (22)

Since liquidity is more expensive with market power, households reduce demand and the
equilibrium real quantity of deposits is lower. With given nominal collateral, this is achieved
by a higher average price level. The overall scale of the banking system is thus smaller the
higher is market power.

The dynamics of the model are qualitatively unchanged once market power is introduced.
There are however two key changes to the system of difference equations. First, the cost
channel coefficient χ now incorporates the markup via the steady state version of (22) Second,
we replace (20b) by (22). With separable utility, these changes affect only the deposit rate –
there is no direct effect on the dynamics of the convenience yield on reserves. More generally,
when a cost channel is present (η < σ), then a larger markup increases the sensitivity of firms’
marginal cost to households’ cost of liquidity. It follows that market power accentuates the
difference between interest rate policy in our bank model versus the standard New Keynesian
model.

3.3 Numerical example

Our numerical example is again designed to show that deviations from the standard model
can be potentially significant. We assume that the central bank runs a Taylor rule with interest
rate smoothing (16) with a coefficient 1.5 on inflation and .5 on the last interest rate. We
also assume that bank nominal assets are constant; this means that the only relevant new
equations are (19) and (22). We thus need to pick two new parameters: the average spread
δ − rM between the policy rate and the shadow rate, and the markup factor that links the
reserve and deposit spreads.
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Figure 3: Impulse responses to a one time 25bp monetary policy shock; Taylor rule with
coefficient 1.5 on inflation and .5 on past interest rate. Top three panels: percent deviations
from steady state; bottom three panels: percentage point deviations from steady state. Spreads
are differences between shadow rate and policy rate (solid lines) and difference between policy
rate and deposit rate (dotted line).

We assume that the average short term rate targeted by the central bank is the same as the
historical average of the policy rate of 4.6% per year. As before, we identify the shadow rate
with the average short rate from Gurkaynak, Sack and Wright (2007) which is 4.9% per year,
so the average spread δ− rM is 30 basis points. With an MZM own rate of 2.6% per year, the
markup factor is about 17. In the current exercise, we cannot identify the extent to which the
markup is due to market power as opposed to leverage, but it is plausible that ` is relatively
close to one, so that a large component must be due to bank market power.

Figure 3 shows responses to a one time contractionary monetary policy shock that increases
the policy rate by 25bps. The panels look essentially the same as those for the CBDC model
in Figure 1. This is even though the pass-through coefficient in (19) is much smaller in size.
The reason is that the strength of the cost channel has not changed: it continues to be driven
by households’ cost of liquidity. The smaller policy spread is therefore not important for
magnitudes. As long as the policy spread is positive, the convenience yield channel is active
and the dampening effects explained above are relevant.
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4 Banking with scarce reserves

In this section we study banking when the central bank operates a corridor system with scarce
reserves. We extend the simple banking model of the previous section by adding liquidity
shocks, thus creating a motive for banks to hold reserves even if they earn a lower rate than
the rate on other short safe assets. We abstract entirely from reserve requirements: reserve
holdings in the model correspond to excess reserves in the data. Our mechanism thus re-
mains relevant today where reserve requirements have essentially disappeared. Indeed, when
we integrate the banking system of this section with the New Keynesian model, we go to a
"reserveless limit" where the quantity of reserves is negligible on bank balance sheets.

Corridor systems typically work with three rates: a lower bound at which banks can de-
posit funds at the central bank, an upper bound at which banks can borrow from the central
bank, and a target for the interbank overnight rate within the corridor. Since the market for
overnight interbank loans is an over-the-counter market, the target is typically an average of
recorded trades, such as the US federal funds rate. The trading desk of the central bank can
steer the overnight rate towards the target by changing the supply of reserves via open market
policy that alters the scarcity of reserves. In addition to the three overnight rates, systems
with scarce reserves often allow for intraday credit from the central bank, such as the Fed’s
overdraft facility in the US.

Our model focuses on two features of corridor systems that distinguish them from floor
systems. First, liquidity is costly for banks in the sense that the interest rate on reserves is
below the interest rate on overnight loans as well as other short bonds. Second, reserves
are supplied elastically by the central bank in order to meet the interest rate target. We can
capture both features by assuming that (i) there is a perfectly competitive overnight interbank
market, and (ii) overnight interbank loans are slightly worse collateral to back inside money
than reserves. Assumption (ii) generates an incentive for banks to economize on reserves,
and assumption (i) allows for the central bank to elastically supply reserves to set the spread
between overnight and reserve rates. While a richer model might generate more detailed
predictions of interbank interactions, our goal is to highlight two features that shape the impact
of policy, and distinguish corridor and flow systems in that regard.

4.1 Setup

We start from the bank model with market power in deposit markets from Section 3. To gen-
erate a liquidity benefit for reserves, we now introduce bank level liquidity shocks, motivated
by banks’ provision of liquid deposits. Formally, suppose every period has two subperiods.
In the first subperiod, bank i selects a portfolio of reserves Mi

t and other assets Ai
t and issues
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deposits Di
t. In the second subperiod an individual bank must transfer λ̃i

tD
i
t funds to other

banks. If λ̃i
t is negative, then the bank receives funds and thus increases its debt. We assume

that the shocks are iid across banks with a continuous cdf G
(
λ̃
)

that is strictly increasing on
the interval [−λ̄, λ̄]. We also assume that the shocks have mean zero. With a continuum of
identical banks, this means that all flows in the second subperiod remain within the banking
system.

Once liquidity shocks have been realized, a fed funds market opens. Interbank loans are
traded competitively at the rate iF

t . Markets for deposits, other assets or equity remain closed.
The bank budget constraint in the second subperiod is therefore

Mi
t − λ̃i

tD
i
t = M̃i

t + Fi+
t − Fi−

t ,

where M̃i
t denotes reserves held overnight (carried over to period t + 1), while Fi+

t and Fi−
t are

funds lent and borrowed in the fed funds market, respectively.

The bank leverage constraint must now hold after the second subperiod; it is given by

Fi−
t + Di

t

(
1− λ̃i

t

)
≤ `

(
M̃i

t + φFi+
t + ρAi

t

)
.

Bank debt issued on the left-hand side now consists of both interbank borrowing plus deposits.
At the same time, bank collateral on the right-hand side includes not only reserves and other
assets A, but also interbank lending. Since interbank loans are private, we assume that they
are worse collateral than reserves: the weight φ is less than one. This assumption makes it
worthwhile for banks hold reserves even if the fed funds rate iF

t is above the reserve rate.

Optimal liquidity management

A bank’s problem in the second subperiod is to choose M̃i
t, Fi+

t and Fi−
t to maximize next

period’s cash
M̃i

t

(
1 + iM

t

)
+
(

1 + iF
t

) (
Fi+

t − Fi−
t

)
,

subject to the budget and collateral constraints as well as nonnegativity constraints on all three
variables. If iF

t = iM
t , then banks are indifferent between holding reserves or lending them out,

and the optimal policy is indeterminate. The interesting case is that of "scarce reserves" when
the fed funds rate is strictly above the reserve rate:

Proposition 4.1. Suppose iF
t > iM

t and a bank’s optimal policy
(

Mi
t, Ai

t, Di
t
)

in the first subperiod
satisfies (

1 + λ̄ (1− `)
)

Di
t ≤ `Mi + `ρAi. (23)
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The bank’s optimal reserve holdings in the second subperiod are then

M̃i
t = max

{
λi∗

t − λ̃i
t, 0
} 1− φ`

¯̀ (1− φ)
Di

t, where λi∗
t :=

Di
t − φ`Mi

t − ρ`Ai
t(

1− φ ¯̀)Di
t

. (24)

When the fed funds rate is higher than the reserve rate, banks strictly prefer to lend out
reserves. However, counterparty risk in the fed funds market, captured by the assumption
φ < 1, implies that lent out reserves are worse collateral than reserves held directly with the
Fed. As a result, banks that receive a sufficiently large inflow of deposits – that is, they must
end the day with particularly high leverage – do not have enough other collateral to lend out
all reserves. Instead, they keep some reserves, which are the highest quality collateral, on their
balance sheets.

Banks’ optimal response to liquidity shocks in the second subperiod depends on their
initial balance sheet composition. Condition (23) says that a bank that experiences the largest
possible deposit inflow λ̃ = −λ̄ can satisfy its collateral constraint if it keeps all its reserves
on the balance sheet. It thus represents a constraint on banks’ choice problem in the first
subperiod. If banks’ initial portfolio does not satisfy this condition, then there are shocks in
the second subperiod such that the bank cannot continue to operate.

Bank portfolios and capital structure

Consider now the bank’s portfolio and capital structure choice in the first subperiod. The
objective function is

E[
(

1 + iA
t

)
Ai

t −
(

1 + iD,i
t

)
Di

t +
(

1 + iF
t

) (
Mt − λ̃tDi

t

)
−
(

iF
t − iM

t

) 1− φ`
¯̀ (1− φ)

∫ λ∗t

−λ̄

(
λ∗t − λ̃

)
dG
(
λ̃
)
]Di

t

−
(

Ai
t + Mi

t − Di
t

) (
1 + iS

t

)
, (25)

where expectations are taken over liquidity shocks λ̃i
t and the threshold shock λi∗

t is given by
(24). Banks anticipate that they will typically trade liquid funds at the rate iF

t , either borrowing
or lending in the fed funds market. For liquidity shocks below λ∗, however, they will hold
reserves overnight. If either iF

t = iM
t or there are no liquidity shocks (λ̄ is zero), the problem

reduces to that of Section 3.

Banks maximize (25) subject to the leverage constraint (23) and the demand function (21).
They take as given aggregate deposits and rates charged by other banks, as well as the Fed
funds rate that will prevail in the second subperiod – since there is no aggregate shock, they
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can perfectly foresee that rate. The FOC for reserves and other assets A are

iS
t = iF

t −
(

iF
t − iM

t

)
G
(

λi∗
t

)
+

{(
iF
t − iM

t

) 1
1− φ

G
(

λi∗
t

)
+ ¯̀γi

t

}
, (26a)

iS
t = iL

t + ρ

{(
iF
t − iM

t

) 1
(1− φ)

G
(

λi∗
t

)
+ ¯̀γι

t

}
, (26b)

where γi
t is the Lagrange multiplier on (23).

The structure of the first order conditions is analogous to the case of abundant reserves:
banks value assets not only for their pecuniary payoffs but also for their convenience yield.
The pecuniary return on reserves is now stochastic. With probability 1− G (λ∗), the bank is
unconstrained so that the rate of return is the fed funds rate iF

t . With probability G (λ∗),
the collateral constraint binds and the bank must hold reserves overnight at iM

t . The term in
braces is the marginal collateral benefit from an extra unit of reserves. The collateral benefit
from other assets is a share ρ of that from reserves, due to the lower collateral quality of other
assets.

The marginal collateral benefit of reserves has two parts. More reserves (i) imply that the
collateral constraint binds less often and more reserves that flow in can be lent out, as well as
(ii) may relax the worst case constraint (23). The collateral benefit from reserves is larger when
Fed funds are better collateral (higher φ). The spread between the shadow rate and the fed
funds rate can be written as

iS
t − iF

t = φ
(

iS
t − (iF

t −
(

iF
t − iM

t

)
G
(

λi∗
t

)
)
)
+ (1− φ) ¯̀γi

t.

If the worst case constraint does not bind, banks are on the margin between fed funds and
reserves, and the spread on fed funds differs from that on reserves only because of the col-
lateral quality. We further have from (26) that iS

t − iA
t = ρ

φ

(
iS
t − iF

t
)

– as in Section (3) bank
optimization implies that the spread on the policy rate is proportional to the rate on other
bank collateral.

The bank’s first order condition for deposits is

iS
t − iD,i

t =
ηb

ηb − 1

{
iF
t − iM

t
¯̀ (1− φ)

((
1− φ ¯̀) ∫ λi∗

t

−λ̄

(
λ∗t − λ̃

)
dG
(
λ̃
)
+ G

(
λi∗

t

)(
φ ¯̀ Mi

t

Di
t
+ ρ ¯̀ Li

t

Di
t

))
+γi

t
(
1 + λ̄

(
1− ¯̀))} . (27)

As in (22), banks price liquidity at a markup over marginal cost, which now depends on
conditions for liquidity management, in particular the spread between the fed funds rate and
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the reserve rate as well as the distribution of liquidity shocks. If banks have stronger balance
sheets and liquidity is cheaper for banks (lower iF

t − iM
t ) then deposits are cheaper to produce

and the deposit spread is lower.

Equilibrium

Banks are ex ante identical and face a choice problem with constant returns to scale: at
given interest rates, they all choose the same ratios Mt/Dt and At/Dt. In equilibrium, the
supply of reserves provided by the central bank to implement its interest rate target must
satisfy the demand of banks with shocks below λ∗:

1− φ`
¯̀ (1− φ)

∫ λ∗t

−λ̄

(
λ∗t − λ̃

)
dG
(
λ̃
)
=

Mt

Dt
. (28)

By Walras’ law, this "reserve market clearing" condition implies that the Fed funds market also
clears. It says that the money multiplier is negatively related to the threshold shock λ∗ and
hence the probability that banks have to hold cash overnight. Indeed, the derivative of the
bracket on the left hand side is G (λ∗) > 0. Intuitively, if banks hold fewer reserves relative to
deposits, then less cash is available for the sector overall to withstand liquidity shocks. As a
result, the equilibrium probability of holding cash overnight must decline.

We have now described a "banking module" that integrates easily into our New Keynesian
setup: bank optimization and reserve market clearing determine bank balance sheet ratios
and interest rates on bank instruments (deposits and other bank assets A) for given policy
rates targeted by the central bank. Mechanically, for given iF

t and iM
t , we can solve the five

equations (23)-(28) for the ratios Mt/Dt and At/Dt, the interest rates iA
t and iD

t as well as
the multiplier γt. With an exogenous path for the nominal quantity of other assets At as in
Section 3, we thus obtain an endogenous quantity and interest rate on deposits. We show next
that the role of banks can again be summarized by equations for interest rate pass-through,
deposit supply and the cost of liquidity, as before. An important difference to the model with
abundant reserves is that reserves are supplied elastically by the government – we thus also
obtain an endogenous quantity of reserves.

Steady state

Consider liquidity management in steady state. The central bank fixes interest rates rF and
rM and supplies reserves elastically to achieve those rates. Given these two policy rates as well
as the shadow rate δ, the five equations (23)-(28) determine balance sheet ratios, rates on bank
instruments and a multiplier. It is helpful to distinguish two types of equilibria. In an elastic
supply equilibrium, banks’ worst case leverage constraint (23) does not bind. In other words,
banks choose initial leverage low enough that even the worst case deposit inflow does not
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require holding all reserves overnight to satisfy the leverage constraint. In an inelastic supply
equilibrium, the worst case constraint does bind.

The following proposition shows that the government can choose the type of equilibrium
by choosing banks’ cost of liquidity rF − rM:

Proposition 4.2. There is a threshold level rF∗ ∈
(
rM, δ

)
for the steady state federal funds rate such

that there is a unique elastic supply equilibrium if rF > rF∗ and there is a unique inelastic supply
equilibrium if rF ≤ rF∗.

If liquidity is more expensive – that is, rF − rM is high enough – banks choose lower
initial leverage ratios so the worst case constraint remains slack. In contrast, cheap liquidity
encourages leverage. An inelastic supply equilibrium works very much like an equilibrium
in the model with abundant reserves studied in Section 3 – in particular, balance sheet ratios
and rates are determined separately.12 In other words, once liquidity is sufficiently cheap, the
model behaves as if reserves are not scarce.

The purpose of this section is to study dynamics when the average share of reserves in
bank balance sheets is small and the average spread between the fed funds and reserve rates
is high, as was the case in the United States before 2007. We show now that this environment
can be described by an elastic supply equilibrium with "small" liquidity shocks. In particular,
for any target balance sheet ratios and interest rates, we can find a liquidity shock distribution
such that those calibration targets are met by an elastic supply equilibrium. Moreover, in
the relevant case where bank reserve shares are negligible, we can make liquidity shocks
arbitrarily small.

Proposition 4.3. (a) For any interest rates rF and rM and weight φ such that rF > (1− φ) δ+ φrM,
and for any balance sheet ratios M/D and A/D such that (M + ρA) /D > 1, there is a leverage
constraint parameter ` < 1 and a distribution of liquidity shocks G such that there exists a steady state
equilibrium with elastic supply.

(b) As the ratio of reserves to deposits goes to zero, we can choose the liquidity shock distribution
such that the support bound λ̄ also goes to zero.

12Indeed, the ratios M/D and L/D follow from the binding worst case constraint together with market clearing.
In particular, the exogenous quantity of loans directly pins down the quantity of deposits. The ratios further
imply λ∗ and the interest rate on loans follows as

iS − iL = ρ
(

iS − iF + G (λ∗)
(

iF − iR
))

.

Finally, the deposit interest rate follows from (27).
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4.2 The linearized model with elastic money supply

The key new effect in an elastic supply equilibrium is that interest rate policy affects bank
leverage and the money multiplier – the supply of real balances to households is interest
elastic. Indeed, suppose the central bank tightens by increasing the fed funds rate. As banks
face a higher liquidity cost, they reduce deposits so as to become constrained less often – the
threshold shock λ∗t declines. The reduction in deposits allows banks to economize on reserves,
which carry a high opportunity cost. The central bank thus reduces the supply of reserves in
order to implement the higher fed funds rate. In fact, a decline in the thresholds λ∗ lowers the
ratio of reserves to deposits and increases the ratio of other assets to deposits – banks become
less liquid and better collateralized.13

To clarify the response of deposit supply to interest rates, we linearize the first order con-
dition for reserves (26a), substitute for λ∗ from its definition and for the endogenous reserve
deposit ratio from market clearing. The dynamics of the ratio of deposit to other assets is
given by

d̂t − ât = ε

(
iS
t − iF

t
δ− rF −

iF
t − iM

t
rF − rM

)
; ε :=

(1− φ`) D
ρL

1− φ + φG (λ∗)

1− φ

G (λ∗)

g (λ∗)
, (29)

where the parameter ε can be interpreted as an interest elasticity of deposit supply. Banks
respond both to the cost of collateral and to the cost of liquidity: a higher spread between the
shadow rate and the fed funds rate means that collateral is more costly, which leads banks to
increase leverage. At the same time, a higher spread between the fed funds and reserve rates
means that liquidity management is more costly, which lowers leverage. Both forces imply
that a higher fed funds rate – other things equal – lowers the supply of deposits.14

In addition to the quantity of deposits, the banking module determines the interest rate
on deposits. To first order, bank optimization and reserve market clearing imply a pricing
equation analogous to (18):

iS
t − iD

t =
(

iS
t − iM

t

) M
D

+
(

iS
t − iA

t

) A
D

=
φM + ρA

φD

{
iS
t − iF

t + α̃m

(
iF
t − iM

t

)}
; α̃m =

φM
φM + ρA

. (30)

13Formally, the optimal threshold λ∗ is determined from (26) with γt = 0. For the market to clear, (28) requires
that the ratio M/D declines. From the definition of λ∗, L/D must increase in order for λ∗ and M∗/D to both
decline.

14The elasticity ε depends on steady state balance sheet ratios and hence ultimately on steady state policy rates.
Indeed, at a higher average fed funds rate rF, both λ∗ and D\L are lower and the money supply is less elastic.
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As in the case of abundant reserves, the deposit spread reflects the weighted spreads on
collateral used to back deposits. Moreover, it can again be written as a simple markup over a
"policy spread". The difference is that liquidity management changes the relevant concept of
leverage as well as the relevant policy rate, which is now a weighted average between the fed
funds and reserve rates.15

We can now combine (30) and (11) to derive an interest rate pass-through equation for the
model with scarce reserves:

iS
t − δ = iF

t − rF − α̃m

(
iF
t − rF −

(
iM
t − rM

))
+

δ− rF + α̃m
(
rF − rM)

η
v̂t. (31)

The structure of the equation is the same as in (11): the shadow rate in households’ stochastic
discount factor equals a policy rate plus a convenience yield on the policy instrument "inher-
ited" from the liquidity benefit of deposits.

The reserveless limit

In the typical policy environment with scarce reserves, the share of excess reserves on bank
balance sheets is negligible. For example, excess reserves at US banks before 2007 averaged
less than one basis point of total bank assets. In what follows we simplify formulas by setting
α̃m = 0. This approximation considerably simplifies the notation and is accurate for the
relevant episode we want to study. We have shown in Proposition 3.3 that for any small target
ratio M/D, there is an elastic supply equilibrium that gives rise to that target ratio.

The dynamics of the model in the "reserveless limit" are given by three equations for pass-
through, deposits and the cost of liquidity that are analogous to (19)-(20).

iS
t − δ = iF

t − rF +
δ− rF

η

(
p̂t + ŷt − d̂t

)
, (32a)

d̂t =
η

η + ε
ât +

ε

η + ε

(
( p̂t + ŷt)−

η

rF − rM

((
iF
t − iM

t

)
− (rF − rM)

))
, (32b)

iS
t − iD

t =
ηb

ηb − 1
ρA
φD

(
iS
t − iF

t

)
. (32c)

The structure of the pass-through and liquidity cost equations is exactly the same as with
abundant reserves: the shadow rate equals the policy rate plus a convenience yield propor-
tional to velocity, and the deposit spread – households’ cost of liquidity – is proportional to
the policy spread.

15The weight α̃m depends on the endogenous supply of reserves and hence on steady state policy rates. In
particular, a higher fed funds rate implies a lower ratio M/L and a lower α̃m.
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The equilibrium quantity of deposits may now reflect the response of deposit supply to
interest rates. With inelastic deposit supply (ε = 0), we have d̂t = ât, that is, deposits are
proportional to nominal collateral as in the model with abundant reserves in Section 3. With
ε > 0, however, the role of nominal collateral is weaker, and deposits now increase with
spending (the first term the bracket) and decrease with banks’ cost of liquidity (the second
term). Since a decline in spending is associated with a drop in nominal deposit supply, it
entails a smaller increase in the convenience yield of the policy instrument. The direct impact
of banks’ cost of liquidity further implies that the convenience yield can in principle increase
with the policy rate.

The deposit equation describes equilibrium in the deposit market. With ε = 0, interest
elastic household demand meets inelastic bank supply: a drop in spending that lowers money
demand has no effect on quantities and is met only by price adjustment, that is, a lower
convenience yield on deposits and hence also on the policy instrument. With positive ε, (29)
shows that a lower convenience yield on the policy instrument reduces bank leverage and
deposit supply. As ε becomes very large, lower spending is eventually met by a one-for-one
reduction in deposits.

Substituting for velocity in the pass-through equation, we can view pass-through alterna-
tively as

iS
t − δ = iF

t − rF +
δ− rF

η + ε
(ŷt − (ât − p̂t)) +

ε

η + ε

δ− rF

rF − rM

(
iF
t − iM

t − (rF − rM)
)

.

This equation shows that, for given demand elasticity η, the elasticity of deposit supply ε

locates the model somewhere on a spectrum between the model with abundant reserves of
Section 3 and the standard New Keynesian model. Indeed, if ε is close to zero, then the model
reduces to the model with abundant reserves. In contrast, as ε becomes large, we have that the
government directly controls the short rate in the household stochastic discount factor.

Determinacy of equilibrium and interest rate policy

Equilibrium with a Taylor rule is a solution
(

p̂t, ŷt, iD
t , iS

t , iF
t
)

to the system of difference
equations consisting of (9) and (32) as well as the Taylor rule for iF

t . The only modification to
(9) is that the cost channel coefficient χ defined in (10) now depends on exogenous parameters
through steady state deposit pricing, as in (32c). The structure of the system is the same as that
of the bank model in the previous section. In particular, interest elasticity of deposit demand
does not affect the condition for determinacy:

Proposition 4.4: Suppose η ≤ σ. If policy is described by a Taylor rule (12) for the interbank rate iF
t

with coefficients φπ, φy ≥ 0, the difference equation comprised of (9), (32)) and the Taylor rule has a
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unique bounded solution for any initial price level p̂0 if and only if

φ +
1
σ
>

η

δ− rF

(
1
η
− 1

σ

)
χφy.

4.3 Numerical example

We provide a numerical example to show that a model with a corridor system is quantita-
tively closer to the standard New Keynesian model than the model with a floor system of the
previous section. We again assume that the central bank runs a Taylor rule with interest rate
smoothing (16) with a coefficient 1.5 on inflation and .5 on the last interest rate. We also as-
sume that other bank nominal assets At are constant. This no longer implies constant nominal
deposits, since reserves are endogenous and deposit supply is elastic. The new equations (32)
contain three new parameters: the average spread δ− rF between the interbank rate and the
shadow rate, the markup factor that links the interbank and deposit spreads and the elasticity
of deposit supply ε.

We set the policy spread δ− rF to 30 basis points per year, so the average difference between
the shadow rate and the policy rate is the same as in the previous section. The idea is that
the central bank is always interested in achieving the same average level of the policy rate; it
just uses different operating procedures, setting rF with scarce reserves and rM with abundant
reserves. The reserve rate in this section is set to zero. Banks’ cost of liquidity rF − rM is thus
equal to the average policy rate of 4.6% per year. We maintain a deposit rate of 2.6% per year.
The calibration is consistent with the fact that banks’ cost of liquidity was typically above
households’ cost of liquidity of δ − rD of 2.4% per year in the regime with scarce reserves
before 2007.

We choose the markup to capture the same ratio of deposit spread to policy spread as in
the previous section. Again we do not need to take a stand on whether it is due to market
power, leverage, or here the collateral quality of federal funds – all that matters for dynamics is
the composite coefficient in (32). Finally, the elasticity ε cannot be identified from steady state
moments alone. We choose the value ε = .24 based on the properties of the impulse response:
we require that a one percent increase in the policy rate goes along with a 50bp increase in the
deposit rate. This order of magnitude is consistent with the numbers reported by Drechsler,
Savov and Schnabel (2017).

Figure 4 shows responses to a one time contractionary monetary policy shock that increases
the interbank rate by 25bps. Qualitatively, the shape of responses for output and inflation are
now hard to distinguish from those of the standard model. Moreover, the money response is
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Figure 4: Impulse responses to a one time 25bp monetary policy shock; Taylor rule with
coefficient 1.5 on inflation and .5 on past interest rate. Top three panels: percent deviations
from steady state; bottom three panels: percentage point deviations from steady state. Spreads
are differences between shadow rate and policy rate (solid lines) and difference between policy
rate and deposit rate (dotted line).

also similar as banks reduce deposits. The calibrated interest elasticity is thus high enough
so as to make bank liquidity cost important. At the same time, there is still some dampening
in the impulse response for output – the cost channel remains strong. The bottom left panel
reports the spreads iS − iD as a solid line as well as iF − iD as a dashed line. Due to the small
shadow spread, the two are almost identical. Calibrating to larger increases in the deposit
spread – that is, more inert behavior of the deposit rate – would increase ε and drive the
corridor model closer to the standard model.
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A Appendix

A.1 Determinacy properties

In this section we study a general system of difference equations that nests all of our models.
We denote by v̂t the log deviation of velocity from the steady state. We also write iP

t for
a generic policy interest rate and n̂t for exogenous nominal assets. We then consider the
following system in

(
ŷt, v̂t, iP

t , iS
t , p̂t

)
:

∆ p̂t = β∆ p̂t+1 + λ

((
φ +

1
σ

)
ŷt +

(
1
η
− 1

σ

)
χv̂t

)
,

ŷt = Etŷt+1 − σ
(

iS
t − ∆ p̂t+1 − δ

)
+ σ

(
1
η
− 1

σ

)
χ∆v̂t+1,

iS
t − δ = iP

t − rP +
δ− rP

η
v̂t,

v̂t =
η

η + ε
( p̂t + ŷt − n̂t) +

η

η + ε

ε

δ− rM

(
iP
t − rP

)
,

iP
t = rP + φyyt + φπ∆pt + ut. (A.1)

We are interested in bounded solutions given some initial condition for the price level p̂0.

All models in the paper are special cases of this system. They differ in some of the coeffi-
cients as well as in what interest rate represents the policy rate and what quantity represents
exogenous nominal assets. The bank models describe other endogenous variables such as the
deposit rate or the interest rate on other assets, but those variables are simple functions of
iS
t , p̂t and ŷt – their determination is not important for characterizing determinacy.

Substituting out for velocity v̂t and the two interest rates, we write a three equation system
for inflation, the price level and output:

∆ p̂t = β∆ p̂t+1 + λ

(
φ +

1
σ

)
ŷt

+

(
1
η
− 1

σ

)
χ

(
η

η + ε
( p̂t + ŷt − n̂t) +

η

η + ε

ε

δ− rM

(
φyyt + φππt + ut

))
ŷt = Etŷt+1 − σ

(
iP
t − ∆ p̂t+1 − rP

)
− σ

δ− rP

η
v̂t + σ

(
1
η
− 1

σ

)
χ

η

η + ε
(∆ p̂t+1 + ∆ŷt+1 − ∆n̂t+1)

+ σ

(
1
η
− 1

σ

)
χ

η

η + ε

ε

δ− rM

(
φy (ŷt+1 − ŷt) + φπ (∆ p̂t+1 − ∆ p̂t + ut+1 − ut)

)
∆ p̂t = p̂t − p̂t−1 (A.2)
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again with an initial condition for p̂t.

In matrix form, we can write this system as ∆ p̂t+1

ŷt+1

− p̂t

 = A

 ∆ p̂t

ŷt

− p̂t−1

+ bt (A.3)

where bt is a vector of exogenous variables.

Proposition A. The difference equation (A.2) has a unique bounded solution for any initial condition
p̂0.if and only if (

φ +
1
σ

)
δ− rP

η
>

(
1
η
− 1

σ

)
χφy (A.4)

Proof. The proof proceeds in three steps. We first write out the coefficients of the matrix
A and its characteristic polynomial and establish some properties. Second, we show that the
matrix A in (A.3) has exactly one eigenvalue inside the unit circle if and only if (A.4) holds. The
results of Blanchard and Kahn (1980) then imply that (i) (A.4) is necessary for the existence of
a unique solution, and that (ii) (A.4) together with a rank condition on A imply that there is
a unique solution. The final step verifies the rank condition.

The matrix A and its characteristic polynomial

We begin by writing out the elements of the matrix A. To ease notation, we define the
nonnegative coefficients

B =

(
1
η
− 1

σ

)
χ, B̃ = λB, γ = δ− rP

AV =
η

η + ε
„ BV = AV

ε

δ− rM , κ = λ

(
φ +

1
σ

)
Γ =

(
1 + σBAV + σBBVφy

)−1

We write Aij for the element in the ith row and jth column of A. We thus have A31 = −1, A32 =

0, A33 = 1 and the elements in the first two rows are

A11 =

(
1− AV B̃− B̃BVφπ

β

)
, A12 = −

(
κ + B̃AV + B̃BVφy

β

)
, A13 =

B̃AV

β

2



A21 = Γ
[

σφπ(1 + BBV) +
σγ

η
(AV + BVφπ)− (σ + σBAV + σBBVφπ)(

1− AV B̃− B̃BVφπ

β
)

]
,

A22 = 1 + Γ

[
σφy +

σγ

η
AV +

σγ

η
BVφy + (σ + σBAV + σBBVφπ)(

κ + AV B̃ + B̃BVφy

β
)

]
,

A23 = −Γ
[

σγ

η
AV + (σ + σBAV + σBBVφπ)(

B̃AV

β
)

]
.

The characteristic polynomial of A is p(λ) = λ3 − a2λ2 + a1λ− a0 with coefficients

a2 = 2 +
(

1− AV B̃− B̃BVφπ

β

)
+ Γ

[
σφy +

σγ

η
AV +

σγ

η
BVφy + (σ + σBAV + σBBVφπ)(

κ + AV B̃ + B̃BVφy

β
)

]
,

a1 = a2 +

(
1− β− B̃BVφπ

β

)
+ Γ

[
(1− AV B̃− B̃BVφπ)(σφy +

σγ

η
AV +

σγ

η
BVφy)

]
+ Γ

[
(κ + B̃AV + B̃BVφy)(σφπ + σBBVφπ +

σγ

η
AV +

σγ

η
BVφπ)

]
,

a0 =

(
1− B̃BVφπ

β

)
+ Γ

[
(1− B̃BVφπ)(σφy +

σγ

η
AV +

σγ

η
BVφy)

]
+ Γ

[
(κ + B̃AV + B̃BVφy)(σφπ + σBBVφπ +

σγ

η
BVφπ)

]

Properties of the characteristic polynomial

The characteristic polynomial satisfies p (0) = −a0 < −1. Indeed, after rearranging we
obtain

a0 = 1 + Γ
(
(1 + σBAV(1− β) +

σγ

η
AV

)
+ φyΓ

(
σ + (1− β)σBBVφy +

σγ

η
BV

)
+ φπΓ

(
σB̃AV + κ

(
σφπ + σBBV +

σγ

η
BV

)
− B̃BV

)
The second and third terms are clearly positive. The fourth term is also positive since

κσBBV − B̃BV = λBBV

((
φ +

1
σ

)
σ− 1

)
> 0.
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The characteristic polynomial also satisfies a2 > 0. Rearranging the formula, we have

a2 = Γ
[
2β(1 + σBAV) + βσηγAV + 1 + σBAV + σκ + AV B̃σ(1 + φ)

]
+ φcΓ

[
2βBBV + σBBV + β(σ + σηγBV) + σB̃BV

]
+ φπΓ

[
B̃BVσφ

]
.

Finally, the characteristic polynomial satisfies p (1) > 0 if and only if (A.4) holds. Indeed,
the coefficients satisfy

a1 = a2 + a0 − 1 + Γ
[

σγ

η
AV(κ + B̃AV + B̃BVφy)− AV B̃(σφy +

σγ

η
AV +

σγ

η
BVφy)

]
= a2 + a0 − 1 + ΓσAV

(
κ

γ

η
− B̃φy

)
= a2 + a0 − 1 + ΓσAVλ

[(
φ +

1
σ

)
δ− rP

η
−
(

1
η
− 1

σ

)
χφy

]

and evaluating the polynomial at λ = 1 yields

p (1) = 1− a2 + a1 − a0

= ΓλσAV

[(
φ +

1
σ

)
γ

η
−
(

1
η
− 1

σ

)
χφy

]

Since a0 > 1, (A.4) also implies a1 > a2. Since a2 > 0, this means that all coefficients of the
characteristic polynomial are all strictly positive.

Necessity of (A.4)

Blanchard and Kahn (1980) show that it is necessary for a unique bounded solution to have
as exactly many roots in the unit circle as there are predetermined variables. Here there is
one predetermined variable, the price level. If there is exactly one root in the unit circle, then
we must have p (1) > 0. Indeed, since p (0) < 0 and p is continuous. p (1) < 0 implies that
there are either zero or two roots between zero and one, a contradiction. Finally, we have
shown above that (A.4) is equivalent to p (1) > 0, so (A.4) is necessary for the existence and
uniqueness of a solution.

Sufficiency of (A.4)

If (A.4) holds, then the polynomial p (λ) has at least one real root, λ1 say, in the interval
(0, 1). Indeed, since a0 > 1, we have p (0) < 0, and (A.4) implies p (1) > 0. By continuity of
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p(λ), we thus know that there is a root in (0, 1) and hence at least one real root in (−1, 1).

We now show that (A.4) implies that the other roots are outside the unit circle. Those other
roots can be either real or complex. We consider both cases in turn.

Suppose first all roots are real. The derivatives of p are

p′ (λ) = 3λ2 − 2a2λ + a1

p
′′
(λ) = 6λ− 2a2

The root λ1 cannot be a triple root of p (λ), that is, both a turning point and an inflection point.
If it were, the second derivative would have to be zero at λ1, so we would have λ1 = a2/3.
Since λ1 ∈ (0, 1) , we must have a2/3 < 1 Moreover, if λ1 is a triple root, the first derivative
would also have be zero at λ1 = a2/3, or

0 =
a2

2
3
− 2

3
a2

2 + a1 = −1
3

a2
2 + a1,

which is impossible since 0 < a2 < a1.

Given that λ1 is not a triple root, it suffices to show that p(λ) has at most one turning point
below one. Indeed, if there is no turning point below one, then p is monotonic on [−1, 1] and
can only have one root in that interval. If instead p has one turning point below one and that
point is not an inflection point, then the derivative p′ (1) must be negative. Since p (1) > 0,
there cannot be two roots below one.

We show that the largest turning points of p (λ) is always greater or equal to one. Indeed,
the turning points of the characteristic polynomial are the roots of the derivative, that is,

λ =
a2 ±

√
a2

2 − 3a1

3

Since p (λ) has only real roots that are not all the same, there must be some turning point,
and hence a2

2 ≥ 3a1. Since (A.4) ensures that a1 > a2 > 0, it follows that a2 > 3, so the largest
turning point must exceed one.

If also follows that λ1 cannot be a double root of p (λ). If it were, it would have to be both
a root and a turning point. But since the second turning point is larger than one, we could
have p (1) > 0.

Alternatively, suppose that there are complex roots. Since there is one real root, λ1 say, the
other roots λ2 and λ3 must be a pair of complex conjugates with |λ2| = |λ3|. We also know

5



that λ1λ2λ3 = a0 and thus

|λi| =
√

λ2λ3 =
√

a0/λ1 > 1; i = 2, 3,

where the last inequality follows because λ1 < 1 < a0.

Finally, we check the rank condition in the proof of Blanchard and Kahn (1980). Let B
denote the matrix of left eigenvectors of A, sorted by their modulus in ascending order. We
want to show that the block corresponding to the predetermined variables is nonsingular. In
our context, this means showing that the top left element of B is different from zero.

Suppose this were not true, that is, we have a left eigenvector (0, x, y) of A that satisfies

(0 x y) A = λ1 (0 x y) ,

where λ1 is the unique eigenvalue in (0, 1) .

Consider the second column of this equation. Since A23 = 0, it reads

xA22 = λ1x,

which cannot hold since A22 > 1 and λ1 < 1.�

A.2 Characterization of equilibrium in the CBDC model

In this appendix, we collect derivations and proofs for the CBDC model of Section 2.

Household first-order conditions

The maximization problem of the household is:

max
{Ct,Dt,Nt,At}

∞

∑
t=0

βt 1
1− 1

σ

[
C

1− 1
η

t + ω

(
Dt

Pt

)1− 1
η

] 1− 1
σ

1− 1
η

− ψ
N1+φ

t
1 + φ

s.t.
PtCt + Dt + At ≤ (1 + iD

t−1)Dt−1 + (1 + iS
t−1)At−1 + WtNt

It is helpful to introduce notation for the bundle of consumption and liquidity services
consumed by the household; we define

Bt :=

[
C

1− 1
η

t + ω

(
Dt

Pt

)1− 1
η

] 1
1− 1

η

6



Denoting the Lagrange multiplier on the budget constraint by λt, the household first-order
conditions for consumption, money, other assets and labor are

B
( 1

η−
1
σ )

t C
− 1

η

t = λtPt,

B
( 1

η−
1
σ )

t ω

(
Dt

Pt

)− 1
η

= λtPt − β(1 + iD
t )PtEt [λt+1] ,

λt = βEt

[
λt+1(1 + iS

t )
]

,

ϕNφ
t = λtWt.

To obtain the money demand equation (3), we simplify the money FOC by substituting out
for Etλt+1 from the bond FOC and for λt from the consumption FOC:

1
Vt

=
Dt

PtCt
=

(
1
ω

iS
t − iD

t

1 + iS
t

)−η

(A.5)

Substituting out for real balances Dt/Pt, we rewrite the bundle Bt of consumption and
liquidity services as

Bt =

[
C

1− 1
η

t + ω

(
Dt

Pt

)1− 1
η

] 1
1− 1

η

=

1 + ωη

(
iS
t − iD

t

1 + iS
t

)1−η
 1

1− 1
η

Ct

= Q−η
t Ct

where Qt :=
[

1 + ωη
(

iS
t −iD

t
1+iS

t

)1−η
] 1

1−η

is the ideal price index for the bundle.

The consumption FOC can now be rewritten as

Q
η
σ−1
t C−

1
σ

t = λtPt (A.6)

Household labor supply (5) now follows by combining the consumption and labor FOCs to
substitute out λt:

ϕQ1− η
σ

t C
1
σ
t Nφ

t =
Wt

Pt

7



Similarly substituting out λt from (A.6) further delivers the intertemporal Euler equations
for other assets and money (6) and (7), respectively:

βEt

[(
Qt+1

Qt

) η
σ−1(Ct+1

Ct

)− 1
σ Pt

Pt+1

]
(1 + iS

t ) = 1

βEt

[(
Qt+1

Qt

) η
σ−1(Ct+1

Ct

)− 1
σ Pt

Pt+1

]
(1 + iD

t ) + ω

(
PtCt

Dt

) 1
η

= 1

Linearization We follow the literature in writing log deviations from steady state in gross rates
of return as deviations from steady state in net returns. For example, the gross return on
money deposits is 1 + iD

t , and we write the log deviation from the steady state rate as

log
(

1 + iD
t

)
− log

(
1 + iD

)
≈ iD

t − iD.

This approximation is justified if rates of return are small, as is the case in our quarterly model
with riskfree assets.

For money demand, we simplify notation by performing an additional approximation:

v̂t ≈ η
1 + rD

δ− rD (iS
t − iD

t − (δ− rD) ≈ η

δ− rD (iS
t − iD

t − (δ− rD) (A.7)

The first equality is justified by loglinearizing and expressing rates of return in net levels, as
explained above. The second equality is justified by recognizing that the small steady state
return rD multiplies small spreads iS

t − iD
t and so we treat the product as second order.

The derivation of the New Keynesian Phillips curve and Euler equation follow the textbook
treatment by Gali (2008). The Phillips curve relates the growth rate of the price level to future
price growth as well as marginal cost:

∆ p̂t = βEt p̂t+1 + λm̂ct

Since labor is the only factor of production and we abstract from the productivity shock,
marginal cost variation is only variation in wages, that is, m̂ct = ŵt.

To find the variation in wages, consider first the effect of the cost of liquidity on the price

of a bundle of consumption and liquidity. We write Zt =
iS
t −iD

t
1+iS

t
for the price of liquidity and
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find

q̂t =
ωηZ1−η

1 + ωηZ1−η
ẑt

=
ωη
(
δ− rD)1−η

(1 + δ)1−η + ωη (δ− rD)
1−η

ẑt

=
ωη
(
δ− rD)1−η

(1 + δ)1−η + ωη (δ− rD)
1−η

η−1v̂t

=
ωη
(
δ− rD)1−η

(1 + δ)1−η + ωη (δ− rD)
1−η

1
δ− rD (iS

t − iD
t − (δ− rD)

=
χ

δ− rD (iS
t − iD

t − (δ− rD)

where the second and third line substitute for the steady state price Z and the log deviation ẑt,
respectively, from (A.5), the fourth line substitutes for v̂t from (A.7) and the fifth line defines
the parameter χ: it measures the response of the price of a bundle to the price of liquidity.

The loglinearized first order condition for labor is now

ŵt =
(

1− η

σ

)
q̂t +

1
σ

ŷt + φn̂t

=
(

1− η

σ

) χ

δ− rD (iS
t − iD

t − (δ− rD) +
1
σ

ŷt + φn̂t

=
(

1− η

σ

) χ

δ− rD (iS
t − iD

t − (δ− rD) +
1
σ

ŷt + φn̂t

where the third line follows from the production function and the fact that we abstract from
productivity shocks, so ŷt = n̂t. Finally, substituting wages for marginal cost, the Phillips curve
takes the form in (9):

∆ p̂t = Et∆ p̂t+1 + λ

(
(φ +

1
σ
)ŷt +

(
1− η

σ

) χ

δ− rD (iS
t − iD

t − (δ− rD))

)
.

Proof of Proposition 2.1

The CBDC model with separable utility is a special case of the general system (A.1) studied
in Appendix A.1. The special case takes iP

t as the deposit rate, n̂t as the exogenous quantity of
deposits, and sets the interest elasticity of money supply to ε = 0. Moreover, the coefficient χ

is given by

χ =

(
1 + ω−η

(
δ− rD

1 + rD

)η−1)−1

(A.8)
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With separable utility, we further have η = σ. The sufficient condition for a unique bounded
solution in Proposition A is trivially satisfied for any nonnegative Taylor rule coefficients.�

Proof of Proposition 2.2

Consider the system of inflation, output and real balances d̂t − p̂t comprised of (9), (11)
and (15). In matrix form, we have ∆ p̂t+1

ŷt+1

d̂t − p̂t

 = A (µ)

 ∆ p̂t

ŷt

d̂t−1 − p̂t−1

+ bt (A.9)

where the coefficients of the matrix A (µ) are given by A31 (µ) = −µ, A32(µ) = 0, A33 (µ) = µ

and A11(µ) = 1/β, A12(µ) = −κ/β, A13(µ) = 0 as well as

A21(µ) = µ
(

δ− rD
)
+ σφπ − σ/β

A22(µ) = 1 + σφy + δ− rD + σκ/β

A23(µ) = −µ
(

δ− rD
)

The coefficients are continuous in µ and converge to the coefficients of (A.3) in Appendix
A.1 as µ → 1 under the special case of the CBDC model where AV = 1, BV = 0 and σ = η.
It then follows that the coefficients of the characteristic polynomial here are continuous in µ

and converge to the polynomial in Appendix A.1 as µ → 1. It follows that there must be a
threshold µ̄ s.t. Proposition A in Appendix A.1 applies for µ ≥ µ̄.

Proof of Proposition 2.3

If µ = 0, output and inflation follow the two-dimensional system(
∆ p̂t+1

ŷt+1

)
= A

(
∆ p̂t

ŷt

)
+ bt

where bt is exogenous and

A =

[
1/β −λ

(
φ + σ−1) /β

σφπ − σ/β 1 + σφy + δ− rD + λ (σφ + 1) /β

]
.

There is a unique bounded solution if and only if both of the eigenvalues are outside the
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unit circle. The characteristic polynomial is p(λ) = λ2 − c1λ + c0 with coefficients

c1 =
1
β
+ 1 + σφy + δ− rD + λ (σφ + 1) /β,

c0 =

(
1
β

)(
1 + σφy + δ− rD + σφπ

)
.

We distinguish real and complex roots. If the roots are real, the smaller root is

λ =
c1 −

√
c2

1 − 4c0

2

which is larger than one if and only if 1− c1 + c0 > 0 which delivers the condition.

If the roots are complex, they are outside the unit circle since the determinant of A is larger
than one.�

Proof of Proposition 2.4

As in the proof of Propostion 2.1, the CBDC model with η < σ is a special case of the gen-
eral system studied in Appendix A.1. The necessary and sufficient condition for determinacy
is therefore that of Proposition A in Appendix A.1�

A.3 Derivations for the bank model with a floor system in Section 3

In this appendix we collect derivations for the bank model of Section 3 as well as the proof of
Proposition 3.1.

Bank market power

In the setup with monopolistic competition, bank i supplies liquidity to households at the
price Zi

t = (iS
t − iD,i

t )/(1 + iS
t ), where iD,i

t is the deposit rate promised by bank i. The spread
iS
t − iD,i

t is interest foregone by investing in deposits as opposed to the shadow rate, discounted
by (1 + iS

t ) as the interest is received next period.

Households value different varieties of deposits according to a CES aggregator with elas-
ticity of substitution ηb. For given individual bank deposit rates iD,i

t and hence liquidity prices
Zi

t, let Zt denote the ideal CES price index that aggregates the individual bank liquidity prices
Zi

t. We then define the ideal average deposit rate iD
t by

iS
t − iD

t

1 + iS
t

= Zt.

11



Household maximization delivers bank i’s deposit demand function

Di
t =

(
Zi

t
Zt

)−ηb

Dt =

(
iS
t − iD,i

t

iS
t − iD

t

)−ηb

Dt (A.10)

Bank cash flow is as before, except that bank i now pays the deposit rate iD,i
t−1 it has chosen:

Mi
t−1

(
1 + iM

t−1

)
−Mi

t − Di
t−1

(
1 + iD,i

t−1

)
+ Di

t

+ Ai
t−1

(
1 + iA

t−1

)
− Ai

t

Bank i maximizes shareholder value by choosing Mi
t, Ai

t, and iD,i
t subject to (??) and (A.10).

Writing γt for the multiplier on the leverage constraint, the terms in the Lagrangian involv-
ing the date t deposit rate are

Di
t −

Di
t

1 + iS
t

(
1 + iD,i

t

)
− γtDi

t =
(

Zi
t − γt

)
Di

t

Shareholder maximization thus works like profit maximization with constant marginal cost γt

via choice of a price Zi
t

The first order conditions with respect to Zi
t take the standard form

(
Zi

t − γt

)
ηb

(
Zi

t

)−ηb−1 Dt

Z−ηb
t

+

(
Zi

t
Zt

)−ηb

Dt = 0

ηb

(
iS
t − iD,i

t

iS
t − iD

t

)−ηb−1
1

iS
t − iD

t

(
1− 1 + iD,i

t

1 + iS
t
− γt

)
Dt −

1
1 + iS

t
Di

t = 0

A higher price of liquidity lowers profits by decreasing the quantity of deposits, but increases
profits by increasing revenue per dollar issues.

Substituting from the demand function and rearranging, we have

iS
t − iD,i

t =
ηb

ηb − 1

(
1 + iS

t

)
γt.

Bank i chooses a price that multiplies marginal cost by a constant markup.
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Solving the bank problem results in the following first order conditions:

iS
t − iM

t = ¯̀γt(1 + iS
t )

iS
t − iL

t = ρ ¯̀γt(1 + iS
t )

iS
t − iD

t =

(
ηb

ηb − 1

)
γt(1 + iS

t )

Combining the reserves and deposits first order condition, we arrive at equation (22):

iS
t − iD

t =
ηb

ηb − 1
`−1

(
iS
t − iM

t

)
.

Proof of Proposition 3.1

The bank model with a floor system is a special case of the general system (A.1) studied in
Appendix A.1. The special case takes the policy rate iP

t equal to the interest rate on reserves,
and sets n̂t = αmm̂t + (1− αm) ât and ε = 0. The coefficient χ is given by (A.8) together with

δ− rD =
ηb

ηb − 1
`−1

(
δ− rM

)
(A.11)

The necessary and sufficient condition for determinacy is therefore that of Proposition A in
Appendix A.1.�

A.4 Proofs of Proposition 4.1-4.3

In this appendix, we collect proofs for the propositions in Section 4. For easier notation we
drop superscripts indicating individual banks.

Proof of Proposition 4.1

A bank’s problem in the second subperiod is to choose M′, F+ and F− to maximize next
period cash

M′
(

1 + iM
)
+
(

1 + iF
) (

F+ − F−
)

,

subject to the budget and collateral constraints as well as nonnegativity constraints in all three
variables.
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The first order conditions are

1 + iR + γ ¯̀ = λ− νM′ ,

1 + iF + γφ ¯̀ = λ− νF+ ,

1 + iF + γ = λ + νF− ,

where γ is the multiplier on the collateral constraint, λ is the multiplier on the budget con-
straint, and the νs are the multipliers on the three nonnegativity constraints.

We distinguish solutions with positive reserve holdings from those with zero reserves.
Suppose first a bank holds no reserves overnight, that is, M′ = 0. The optimal policy is then

F+ − F− = M− λ̀D

In order for the collateral constraint to be satisfied, we must have D−M < ¯̀ρL. The precise
split into F+ and F− is not important in this case – only the net position is determinate.

Suppose instead a bank holds reserves overnight, that is, M′ > 0 and hence νM′ = 0. We
must have γ > 0: otherwise the fed funds lending and reserves FOC cannot jointly hold.
Indeed, these FOC imply

1 + iF + γφ ¯̀ ≤ λ = 1 + iR + γ ¯̀ ,

which cannot hold for γ > 0 since we have assumed iF > iM. From the fed funds borrowing
FOC, we must then have νF− > 0 and hence F− = 0.

When the bank holds reserves, we can thus combine the binding collateral constraint and
the budget constraint to find optimal reserve holdings and fed funds lending

M′ =
(
1− λ̃

(
1− φ ¯̀))D− φ ¯̀M− ρ`L

¯̀ (1− φ)
,

F+ = M− λ̃D−M′

=

(
M− λ̃D

)
` (1− φ)−

(
1− λ̃

(
1− φ ¯̀))D + φ ¯̀M + ρ`L

¯̀ (1− φ)

=
M`+ ρ`L− (1− λ̃ (1− `))D

¯̀ (1− φ)

We need for this case that M′ is positive and F+ is nonnegative. The first condition is equiva-
lent to λ̃ < λ∗. The second condition is satisfied at any value of λ̃ as long as it is satisfied at
λ̃ = −λ̄. The condition assumed in the proposition says that the second condition is indeed
satisfied at λ̃ = −λ̄.�
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Proof of Proposition 4.2

We first derive necessary and sufficient conditions for an elastic equilibrium to exist. Con-
sider the threshold liquidity shock λ∗ implicitly defined by the first order condition for re-
serves – the first equation in (26) – with γ = 0. Since the cdf G is strictly increasing, we can
define a function

f
(

rF
)

:= G−1
(

1− φ

φ

δ− rF

rF − rM

)
over the interval [(1− φ) δ + φrR, δ] . The function f is strictly decreasing and we have that
f ((1− φ) δ + φrR) = λ̄ and f (δ) = −λ̄. Any rF ∈ [(1− φ) δ + φrR, δ] thus implies a liquidity
threshold λ∗ ∈

[
−λ̄, λ̄

]
.

To satisfy the worst collateral constraint, the threshold liquidity shock must be sufficiently
small. We have

`
M
D

+ ρ`
L
D

= 1− (1− φ`) λ∗ + (1− φ) `
M
D

= 1− (1− φ`) λ∗ + (1− φ`)

(
λ∗G (λ∗)−

∫ λ∗

−λ̄
λ̃dG

(
λ̃
))

= 1− (1− φ`)

(
λ∗ (1− G (λ∗)) +

∫ λ∗

−λ̄
λ̃dG

(
λ̃
))

=: h (λ∗)

where the first equality uses the definition of the threshold shocks λ∗ and the second uses fed
funds market clearing (28).

The function h is strictly decreasing: we have h′ (λ∗) = − (1− φ`) (1− G (λ∗)) < 0. More-
over, we have h

(
−λ̄
)
= 1 + (1− φ`) λ̄ and h

(
λ̄
)
= 1, the latter due to our assumption that

the mean of λ̃ is zero. We now consider the composite function h ◦ f and define the threshold
fed funds rate by

(h ◦ f )
(

rF∗
)
= 1 + λ̄ (1− `) .

The composite function is strictly increasing in rF with (h ◦ f ) ((1− φ) δ + φrR) = 1 and

(h ◦ f ) (δ) = 1 + (1− φ`) λ̄ > 1 + λ̄ (1− `)

It follows that there is a unique threshold funds rate r∗ ∈
(
rM, δ

)
.

For given rF, an elastic equilibrium exists if and only if

(h ◦ f )
(

rF
)
> 1 + λ̄ (1− `) .
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Indeed, in this case the threshold shock λ∗ implies balance sheet ratios that are sufficiently
large for (23) not to bind.

Moreover, an inelastic equilibrium exists if and only if the condition does not hold. Indeed,
in an inelastic equilibrium, we determine M/D and L/D from (23) and (28). The implied ratio
λ∗ is then given by h−1 ((1 + λ̄ (1− `)

))
, which is larger than the ratio f

(
rF) consistent with

γ = 0. Since G is strictly increasing, the multiplier γ is positive.�

Proof of Proposition 4.3

Part (a). We need to choose a continuous cdf G that is restricted by

δ− rF

rF − rM =
φ

1− φ
G (λ∗) ,∫ λ∗

−λ̄
G (λ) dλ =

(1− φ) `

1− φ`

M
D

,

λ∗ =
1− φ`M

D − ρ` L
D

1− φ`
.

In addition, the parameters have to satisfy λ∗ ∈
[
−λ̄, λ̄

]
and the worst case leverage constraint

1 + λ̄ (1− `) ≤ `
M
D

+ `ρ
L
D

. (A.12)

By assumption on interest rates and the weight φ, there exists a value G∗ := G (λ∗) <

1 satisfying the first equality. The integral on the left hand side in the second equation is
bounded above by

(
λ∗ + λ̄

)
G (λ∗) and bounded below by zero. Indeed, by choosing the

density g, we can go arbitrarily close to cdfs with mass points of G∗ at either −λ̄ or λ∗ – these
cases provide the upper and lower bounds, respectively.

It follows that we can find a suitable G that achieves the value G∗ at λ∗ as long as there
exists ξ ∈ (0, 1) such that

ξ
(
λ∗ + λ̄

)
G∗ =

(1− φ) `

1− φ`

M
D

(A.13)

The share ξ indicates the area described by the integral as a share of the maximally possible
rectangle described by a cdf with a mass point at −λ̄. Any cdf that distributes the mass below
λ∗ to achieve this share ξ will deliver the desired result.

Suppose now that ` = 1. By assumption on the balance sheet ratios, (A.12) is satisfied.
Moreover, for any λ̄ sufficiently large so λ∗ ∈

[
−λ̄, λ̄

]
, we can find ξ to satisfy (A.13). Since all

inequalities are strict and the conditions depend continuously on ` at ` = 1, we can also lower
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` slightly below one to obtain the same result.

Part (b). Consider a sequence Mn that converges to zero such that the assumptions of the
proposition remain satisfied. Since (Mn + ρL)/D > 1 for all Mn, we must have ρL/D > 1.
We can therefore choose ` < 1 such that ρ`L/D = 1. Since φ < 1, the sequence of thresholds
λ∗n is strictly positive and converges to zero from below. Fix ξ < 1 and choose λ̄n to satisfy
(A.13). Any such λ̄n satisfies λ∗n ∈

(
−λ̄n, λ̄n

)
since λ∗n is negative and the left hand side

of (A.13).must be positive. As n becomes large, both λ∗n and Mn/D converge to zero, and
therefore λ̄n converges to zero as well. �

A.5 Linear approximation to the bank model with scarce reserves

In this appendix, we derive linear approximations to the equations of the bank model of
Section 4 as well as the proof of Proposition 4.4.

We show that the key linearized equations (29) and (30) hold in an elastic supply equilib-
rium. With a slack leverage constraint, we have γt = 0 in (26), which thus simplifies to

iS
t − iF

t =
(

iF
t − iM

t

) φ

1− φ
G (λ∗t ) ,

iS
t − iL

t =
ρ

φ

(
iS
t − iF

t

)
. (A.14)

Given the two policy rates, the five equations (A.14), (27) with γt = 0, (28) and the definition
of the threshold shock

λ∗t =
1− φ`Mt

Dt
− ρ` Lt

Dt(
1− φ ¯̀)

determine five variables: the balance sheet ratios Mt/Dt and Lt/Dt, the threshold λ∗t and the
interest rates on bank instruments iL

t and iD
t .

To derive (29), we start by loglinearizing the definition of the threshold shock λ∗t and the
money market clearing condition:

λ∗λ̂∗t =
ρ`

1− φ`

L
D

(
d̂t − l̂t

)
+

φ`

1− φ`

M
D

(
d̂t − m̂t

)
` (1− φ)

1− φ`

M
D

(
d̂t − m̂t

)
= −G (λ∗) λ∗λ̂∗t

We can substitute out the endogenous change in the ratio of reserves to deposits M
D

(
d̂− m̂

)
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to obtain
1− φ + φG (λ∗)

1− φ
λ∗λ̂∗t =

ρ`

1− φ`

L
D

(
d̂t − l̂t

)
(A.15)

Next, we loglinearize the first order condition for reserves – the first equation in (A.14) –
to find

g(λ?)λ?

G(λ?)
λ̂?

t =
(1 + rF)(δ− rM)

(δ− rF)(rF − rM)

(
iS
t − iF

t

)
− 1 + rM

rF − rM

(
iS
t − iM

t

)
=

(
(1 + rF)(δ− rM)

(δ− rF)(rF − rM)
− 1 + rM

rF − rM

)(
iS
t − iF

t

)
−
(

1 + rM

rF − rM

)(
ıF
t − iM

t

)
=

1 + δ

δ− rF

(
iS
t − iF

t

)
− 1 + rM

rF − rM

(
iF
t − iM

t

)
Again assuming that net rates of return are small decimal numbers we obtain the approxi-

mation
g (λ∗) λ∗

G (λ∗)
λ̂∗t =

iS
t − iF

t
δ− rF −

iF
t − iM

t
rF − rM .

Substituting for λ∗λ̂∗t from (A.15) now leads to

g (λ∗)
G (λ∗)

1− φ

1− φ + φG (λ∗)

ρ`

1− φ`

L
D

(
d̂t − l̂t

)
=

iS
t − iF

t
δ− rF −

iF
t − iM

t
rF − rM ,

and rearranging delivers the equation in the text.

To derive (30), we first rewrite (27) as

ηb − 1
ηb

(
iS
t − iD

t

)
=
(

iF
t − iM

t

) 1− φ ¯̀
¯̀ (1− φ)

∫ λ∗t

−λ̄

(
λ∗t − λ̃

)
dG
(
λ̃
)

+
(

iF
t − iM

t

) 1
¯̀ (1− φ)

G (λ∗t )

(
φ ¯̀ Mt

Dt
+ ρ ¯̀ Lt

Dt

)
=
(

iF
t − iM

t

) Mt

Dt
+
(

iS
t − iF

t

)(Mt

Dt
+

ρ

φ

Lt

Dt

)
=
(

iS
t − iM

t

) Mt

Dt
+
(

iS
t − iL

t

) Lt

Dt

Here the first equality follows by substituting for the first term on the right hand side from
(28) and substituting for the spread in the second term from (A.14).
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Loglinearization around the steady state delivers

(1 + rM)

(
M?

D?

)(
iS
t − iM

t

)
+ (1 + rL)

(
L?

D?

)(
iS
t − iL

t

)
− (1 + rD)

(
iS
t − iD

t

)
+ Ẑt = 0

where

Ẑt = (δ− rM)

(
M?

D?

)(
m̂t − d̂t

)
+
(

δ− rL
)( L?

D?

)(
l̂t − d̂t

)
= (δ− rM)

(
M?

D?

)(
m̂t − d̂t

)
− (δ− rL)

(
φ

ρ

)(
M?

D?

)(
m̂t − d̂t

)
− (δ− rL)

(
1− φ ¯̀

ρ ¯̀

)
λ?λ̂?

t

=

(
(δ− rM)− (δ− rL)(

φ

ρ
)

)(
M?

D?

)(
m̂t − d̂t

)
− (δ− rL)

(
1− φ

ρG(λ?)

)(
M?

D?

)(
m̂t − d̂t

)
=

[
rF − rM − (δ− rF)

(
rF − rM

δ− rF

)](
M?

D?

)(
m̂t − d̂t

)
= 0

where the second and third equality use the log-linearized threshold shock and money market
clearing conditions, respectively, and the last three lines use the steady state versions of the
loans and reserves first order conditions. We end up with

ηb − 1
ηb

(
iS
t − iD

t

)
= (iS

t − iM
t )

1 + rM

1 + rD
M
D

+ (iS
t − iL

t )
1 + rL

1 + rD
L
D

Since the ratios of gross returns are close to one, we drop them and work with the simpler
approximate formula

ηb − 1
ηb

(
iS
t − iD

t

)
=
(

iS
t − iM

t

) M
D

+
(

iS
t − iL

t

) L
D

.

The second equation in the text follows by substituting for iS
t − iL

t from (A.14).

Proof of Proposition 4.4

For any interest elasticity of deposit supply ε > 0 and steady state ratio of other assets to
deposits A/D, an elastic equilibrium of the bank model with a corridor system and reserves
negligible on bank balance sheets is a special case of the general system (A.1) studied in
Appendix A.1. The special case takes the policy rate iP

t to be the federal funds rate iF
t and sets

n̂ = ât. The coefficient χ is determined by (A.8) and

δ− rD =
ηb

ηb − 1
`−1

(
δ− rF

)
.
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The necessary and sufficient condition for determinacy is therefore that of Proposition A in
Appendix A.1.�
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