# A Possible Explanation of the Missing Deflation Puzzle

# Engin Kara & Ahmed Jamal Pirzada

# Ozyegin University & University of Bristol

#### Missing Deflation Puzzle

- Hall (2011) and Ball & Mazumder (2011): **NKPC fails to explain positive inflation during the Great Recession.**
- Del Negro, Giannoni and Schorheide (2015) (NGS) show that the Smets & Wouters (2007) (SW) model with financial frictions mechanism of BGG (1999) can forecast Great Recession but requires large price rigidities (i.e. flatter NKPC).
- Micro data on prices does not support large price rigidities as estimated in SW and NGS (Klenow and Malin (2011)).
- We provide an alternate explanation: Inflation did not fall much because real intermediate input prices were increasing.

Figure 1: Out-of-Sample Forecasts



Note: SW is the Smets & Wouters (2007) model; SW-BGG is SW model with financial frictions; SW-BGG-I is SW-BGG model with intermediate input prices; and SPF is Survey of Professional Forecasters. Average age of the price contract is 2.5 quarters in both SW-BGG and SW-BGG-I

• The new model (i.e. SW-BGG-I) successfully predicts the Great Recession with micro-consistent price rigidities.

### This Paper

- Extends Smets & Wouters (2007) (SW) model with BGG-type financial frictions to allow for changes in Intermediate Input prices. Structure: Two sectors
- Sector s: finished consumption goods are produced.
- $-\operatorname{Sector}$ m: Intermediate input sector (consumption+input for sector s).
- Prices are sticky in both sectors and follow Calvo mechanism.
- Estimates the model with data up to 2008-Q3.
- Focuses on out-of sample inflation and output forecasts after 2008-Q3.
- $-\operatorname{conditional}$  on 2008-Q4 spread and interest rate data.

### Model Structure

• Divide the continuum of firms  $(f \in [0,1])$  into two sub-intervals representing each sector: finished goods sector (s) and intermediate input sector (m):

- Sector s: finished consumption goods are produced.

$$Y_t^s(f) = Y_t^m(f)^{\alpha^m} \left( A_t K_t^s(f)^{\alpha} \left[ \gamma^t L_t^s(f) \right]^{1-\alpha} \right)^{(1-\alpha^m)} - \gamma^t \Phi$$
(1)

- Sector m: intermediate inputs are produced.

$$Y_t^m = A_t (K_t^m)^\alpha (\gamma^t L_t^m)^{1-\alpha} - \gamma^t \Phi$$
(2)

-Prices are sticky in both sectors and follow Calvo mechanism. NKPCs for finished goods and intermediate input sectors are:

 $\pi_t^s = \beta \gamma^{1 - \sigma_c} \pi_{t+1}^s + \kappa^s (\bar{m} c_t^s - \bar{p}_t^s)$ (3)

and

$$\pi_t^m = \beta \gamma^{1 - \sigma_c} \pi_{t+1}^m + \kappa^m (\bar{m} c_t^m - \bar{p}_t^m) + a_t^f$$
(4)

respectively.  $\kappa^i$  is the slope coefficient and is an inverse function of  $\zeta_p^i$  (i.e. degree of price stickiness) where i = s, m.  $\alpha_m$  is the share of intermediate inputs in finished goods production.

**Table 1:** Estimates for Key Parameters

|                        | Table              | T. Doulling | ico for itcy | 1 aranico              |         |
|------------------------|--------------------|-------------|--------------|------------------------|---------|
| Ab                     | Prior Distribution |             |              | Posterior Distribution |         |
|                        | type               | Mean        | st. dev.     | Mean                   | st. dev |
| $\zeta_p^s$            | Beta               | 0.75        | 0.10         | 0.59                   | 0.002   |
| $\zeta_p^m$            | Beta               | 0.40        | 0.10         | 0.46                   | 0.006   |
| Intermedi              | ate Price shock    | $(a_t^f)$   |              |                        |         |
| $\overline{ ho_{a^f}}$ | Beta               | 0.500       | 0.200        | 0.616                  | 0.002   |
| $\sigma_{a^f}$         | Inv.G.             | 1.000       | 2.000        | 1.473                  | 0.064   |

#### Transmission Channel

• Despite the fall in output, marginal cost did not fall much.

Figure 2: Smoothed Marginal Cost



• Why? MC depends on real intermediate input prices,  $\bar{p}_t^m$ , (see eq. 5) which were increasing during the Great Recession:

$$\bar{m}c_t^s = (1 - \alpha^m)\bar{m}c_t^{sw} + (\alpha^m)\bar{p}_t^m$$
 (5)

where  $\bar{m}c_t^{sw}$  is similar to real marginal cost in the SW and NGS model:

$$\bar{m}c_t^{sw} = \alpha r_t^k + (1 - \alpha)w_t - a_t \tag{6}$$

• Since MC in the model is relatively higher, the model does not require large price rigidites (i.e. a flatter Phillips curve) to match relatively stable inflation dynamics.

#### Financial Mechanism and the Role of Risk

• Banks protect themselves by charging over the deposit rate,  $R_t$ :

$$E_t[\tilde{R}_{t+1}^k - R_t] = b_t + \zeta_{sp,b}(q_t^k + \bar{k}_t - n_t) + \tilde{\sigma}_{\omega,t}$$
 (7)

where  $\tilde{\sigma}_{\omega,t}$  is idiosyncratic risk;  $n_t$  is endogenous networth variable;  $q_t^k$  is the price of capital; and,  $\bar{k}_t$  is the capital stock.

 $\bullet$  We adopt the following structure for idiosyncratic risk:

$$\tilde{\sigma}_{\omega,t+i} = \rho_{\tilde{\sigma}}\tilde{\sigma}_{\omega,t+i-1} + \rho_{\tilde{\sigma},n}^{i}\boldsymbol{\epsilon}_{\tilde{\boldsymbol{\sigma}},t} + \rho_{\tilde{\sigma},n}^{i}\sum_{j=1}^{\infty}\rho_{\tilde{\sigma},n}^{j}\boldsymbol{\epsilon}_{t-j}$$
(8)

where  $0 < \rho_{\tilde{\sigma}}, \rho_{\tilde{\sigma},n} < 1$ . Eq. (8) mimics the effect of the Lehman shock.

- $\bullet$   $\epsilon_{\tilde{\sigma},t}$  affects the economy in period 't' via two channels:
- -**Direct**: A shock in period 't' affects risk in period 't'  $(\tilde{\sigma}_{\omega,t})$
- -Anticipated: A shock in period 't' also affects future risk  $(\tilde{\sigma}_{\omega,t+i})$  and thus the current state of the economy.
- Allowing current shocks as signals for future risk improves the forecast performance for inflation and output growth.

Figure 3: Forecasts without the Anticipated Risk Channel



### Conclusion

- Introduced firm level heterogeneity to account for the changes in intermediate input prices.
- The model matches the evolution of key macroeconomic variables during the Great Recession in a way that is consistent with the micro evidence on prices.
- Marginal cost has been a poor proxy for output gap over the last dacade.

\*Poster template credits: Gerlinde Kettl and Matthias Weiser (tex@kettl.de)