Monetary Policy and Production Networks: An Empirical Investigation
Mishel Ghassibe (University of Oxford)

- **Contribution.** First econometric study on the contribution of production networks to the effect of monetary policy shocks on economic activity.
- **Main result.** Production networks substantially contribute to monetary non-neutrality in the short run and their presence accounts for 20%-45% of the effect of monetary policy shocks on US consumption.

Model: roundabout production and sector-specific price rigidity

- Production: \(Y_{kt} = L_{kt}^{1-\delta} (\prod_r Z_{kr}^{\omega_{kr}} (r))^{\delta}, \{\omega_{kr}\} \) entries of input-output table
- Flexible prices: \(P_{kt} = \frac{\theta}{\theta-1} MC_{kt} \sim W_t^{1-\delta} (\prod_r P_{rt}^{\omega_{kr}})^{\delta} \), suppliers’ prices in MC
- Rigid prices: sector-specific probability \(\alpha_k \) of prices remaining fixed
- Monetary policy: \(M_t = NGDP_t = P_t^e C_t \), \(\ln M_t = \ln M_{t-1} + r_t \), \(r_t \) is MP shock
- Effect of MP shock \(r_t \) on final consumption in sector \(k \) (log-linearised):
 \[c_{kt} = \alpha_k c_{k,t-1} + \alpha_k r_t + (1 - \alpha_k) \delta \sum_{r=1}^{K} \omega_{kr} c_{rt} \]
 (\(\uparrow \) in own rigidity) **Direct effect** + **Downstream effect** (\(\downarrow \) in own rigidity)

Surprise monetary policy tightening (25bp)

Econometric strategy

- Run the following regression for every sector:
 \[\Delta c_{kt} = \eta_{k0} + \sum_{j=1}^{12} \eta_{kj} \Delta c_{kt-j} + \sum_{j=1}^{24} \phi_{kj} r_{t-j} + \sum_{j=1}^{12} \psi_{kj} \sum_{r=1}^{K} \omega_{kr} \Delta c_{r,t-j} + \epsilon_{kt} \]
- Estimate the **downstream effect** for every sector as the difference between full and restricted (\(\tilde{\psi}_{kj} = 0, \forall j \)) IRFs to a surprise 25bp MP shock
- Aggregate IRFs using consumption shares as weights (\(c_t = \sum_{k=1}^{K} \omega_{ck} c_{kt} \))

Data (monthly)

- IO table: combine 2007 BEA “MAKE” and “USE” tables
- Consumption weights: 2007 BEA “USE” table