

THE IMPACT OF BORROWER-BASED MACROPRUDENTIAL POLICIES ON FINANCIAL STABILITY, INEQUALITY, AND HOUSING STOCK

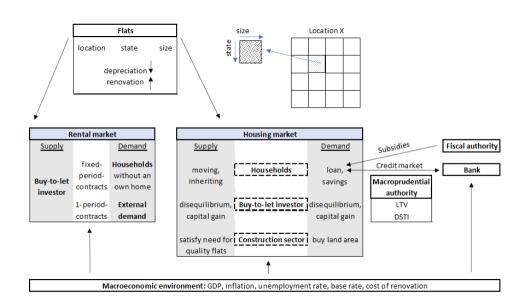
WITH A HIGH-RESOLUTION, DATA-DRIVEN MODEL

MOTIVATION

Policy challenges

- Preventing the emergence of excessive financial risks in the economy
- In the context of the housing market:
 - Inhibiting the build up of vulnerable loan portfolios
 - Restraining the volatility of the prices on the housing market
- BUT: Finding an optimal trade-off between stability and the costs of the regulation

Contributions


- 1) Multiple objectives beyond the "stability-economic growth trade-off":
 - Social, welfare and inequality consequences
 - Housing stock quality, housing standards, energy efficiency

- 2) Heterogeneity of the housing market → Disaggregated policy impact assessment along:
 - Geographic (neighborhoods, counties, regions),
 - Social (income, FTB vs HO vs. BTL)
 - Economic (LTV, DSTI)

dimensions.

MODEL CHARACTERISTICS

Mérő, B., Borsos, A., Hosszú, Z., Oláh, Z., & Vágó, N. (2023). A high-resolution, data-driven agent-based model of the housing market. Journal of Economic Dynamics and Control, 155, 104738.

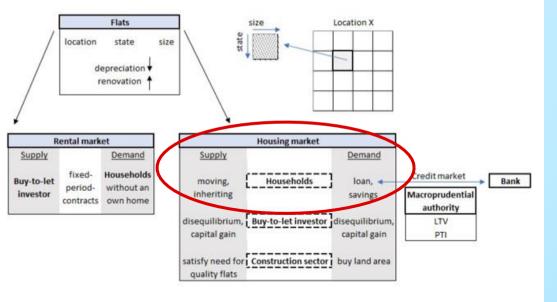
- Stochastic (vs. deterministic)
- Non-linear (vs. linear)
- Dynamic (vs. static)
- Discrete time (vs. continuous)
- Iterative (vs. fixed-point)
- Asynchronous updating (vs. synchronous)
- Data-driven (vs. "toy" model): $\{x_{i,t}\} \sim P(\{x_{i,\tau < t}\}, \theta)$

where the parameters (θ) and the state variables (x) are initiated from empirical micro data.

1:1 SCALE MAPPING

- All of the 4 million Hungarian households
- Occupational classification, income, social welfare benefits, education, age, sex, place of living, etc.
- Central Administration of National Pension Insurance
- Demographic Yearbook

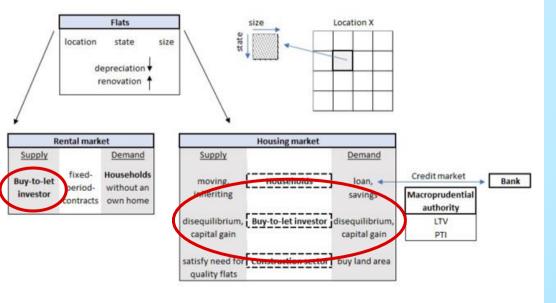
- cc. 200K flats (realtors)
 - + all transactions (NTA)
 - + aggregated statistics of HCSO micro census → 4M flats
- Reconstructing the housing stock such that it mimics the agg. statistics
- 3 characteristics: neighborhood, size, quality attributes.


Households

Flats Loans

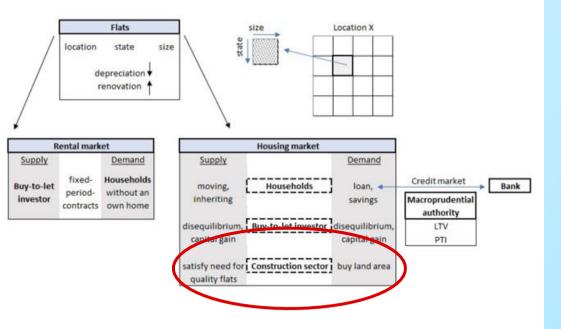
- All 700K housing loan contracts
- Central Credit Registry
- Start date, contracting value, maturity, principal outstanding, payment, interest rate, nonperforming status, nonperforming start date

THE MODEL IN A NUTSHELL 1/5 – HOUSEHOLDS



- Standard consumption theory
 - Based on consumer surplus (CS)
- Each household has been assigned a uniquely calibrated reservation price function with which they can assess the CS of each flat.
- The higher a flat's consumer surplus is for a HH, the higher the probability will be for the HH to bid on the flat.
- Moving probability is also influenced by the neighborhood preferences, the demographic status and the financial situation of the HHs.

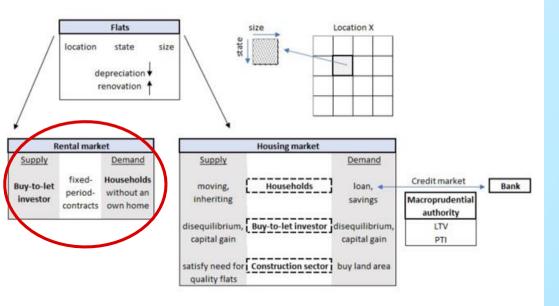
THE MODEL IN A NUTSHELL 2/5 – INVESTORS



- Representative professional investor + HHs
- Demand is influenced by the obtainable capital gain, so their decisions are determined by
 - price changes and
 - vacancy rates.
- The supply and demand sides can be temporarily detached → disequilibrium
- The endogenous change in the prices and in the rental markups ensures the long term convergence to equilibrium

THE MODEL IN A NUTSHELL 3/5 – CONSTRUCTION

The construction sector


- is represented by a representative firm,
- which estimates demand for newly built flats heterogeneously for neighborhoods and flat categories.

Construction process:

- The construction sector builds high quality flats.
- It needs **land site** to build, so it buys the flats with the lowest unit price for sale in the neighborhood where it wants to build.
- Construction takes 18 months, but the construction firm can sell the flats even before they are finished.
- Construction costs are proportional to the regional average salary (and higher than the renovation cost).

THE MODEL IN A NUTSHELL 4/5 – RENTAL MARKET

We distinguish between shortterm (maximum one month) and long-term renting.

- Short-term
 - represents online market place platforms (e.g. Airbnb), which mostly serve the demand coming from tourism.
 - → time-dependent, exogenously given external demand for every for neighborhoods and flat categories based on empirical data
- Long term
 - If a household does not have an own home, it can go to the rental market.

THE MODEL IN A NUTSHELL 5/5 – CREDIT MARKET

E M NOTE OF THE PART OF THE PA

- There are housing mortgage loans, bridge loans and also consumer loans for renovation.
- There are fix and variable rate loans as well.
- A household is eligible for a loan if:
 - (1) it meets the LTV and DSTI rules:
 - (2) its expected income covers the credit payments and a minimal consumption level:
 - (3) and it did not have a defaulting loan in the past five years.
- There can be only one mortgage on one flat

Credit types

Constraints

Bank behaviour

Default

- The bank increases and reduces the credit supply procyclically.
- The bank determines the credit margins with a regression model estimated on actual empirical data.

In case of non-performance, households first try to reduce their consumption → the bank restructures the loan → finally the collateral will be liquidated.

MACROPRUDENTIAL POLICY APPLICATION

ANALYTICAL STRATEGY

Macroeconomic environment

Official macro. numbers until 2022Q1, central bank forecasts until 2024Q4:

- **2018-19:** high growth rate, low unemployment, inflation and interest rate
- 2020: COVID slowdown
- **2021:** recovery in GDP, but growing unemployment, inflation and interest rate
- 2022-24: Very high inflation and interest rate environment

Versatile conditions:

- → richer results
- → higher validity

Policy scenarios

3-3 versions of LTV and DSTI:

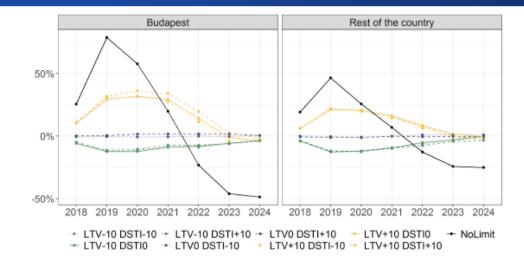
■ Either unchanged, or +/-10 percentage point change (3x3)

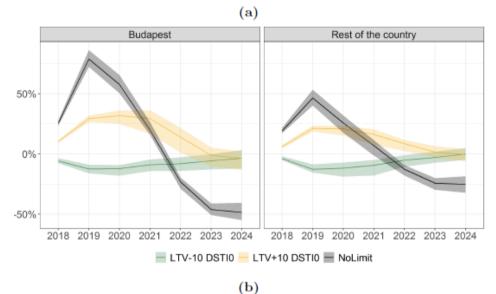
+1 "No limit" scenario:

 No regulatory rules, only credit history and consumption constraints

The results are always relative to the current official regulatory framework in Hungary:

■ LTV: 80%


■ DSTI: 50%


Disaggregated results

	Output variables	Disaggregation dimensions							
		Capital/ Countryside	Income deciles	Age	LTV, DSTI				
	House price index	Х							
	Number of transactions	Х							
)	Newly built transactions	х							
	Credit Availability Index	Х	Х	Х					
	Housing Affordability Index	х	х	х					
	Gross credit flow	х	х		х				
	Purhcases for investment				х				
	Default rate								

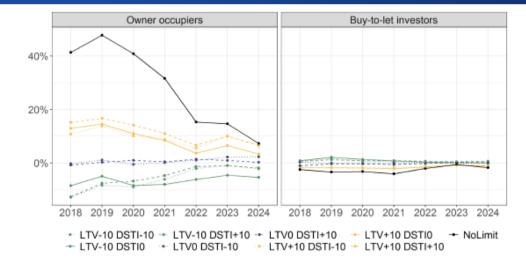
PRICE INDEX DECOMPOSITION BASED ON REGIONS

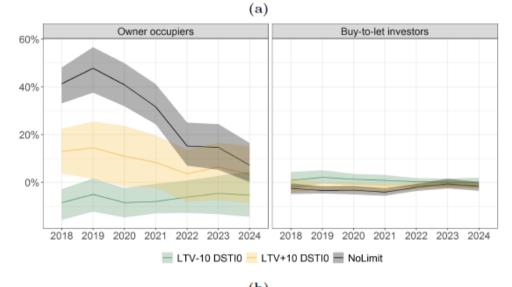
Figure 1: Changes in the house price index relative to the 12 | baseline scenario decomposed based on regions of the country

Looser (or no) LTV house price boom (especially in Budapest)

- "no limit" → bubble bursts endogenously
- Loose LTV → bubble bursts only in the crises

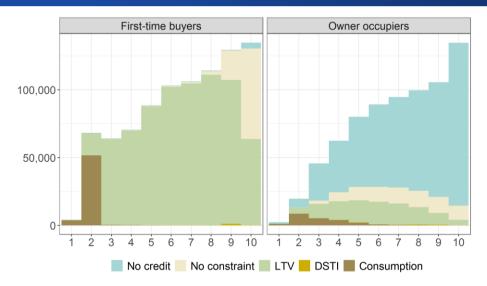
Stricter LTV →


- Does not decrease considerably the volatility of the house prices
- Effect is similar in the whole country


DSTI

only relevant when the LTV is looser

DECOMPOSITION OF TRANSACTION NUMBERS BASED ON THE PURPOSE OF PURCHASE


Figure 2: Transaction numbers on the housing market relative to the baseline scenario decomposed based on the purpose of the purchase

13 l

- Macroprudential tightening (easing) leads to lower (higher) transaction numbers
 - This is driven by owner occupiers
 - And only minimally by buy-to-let investors as they are far less credit constrained
- The direction of change is the opposite for BTL transactions:
 - Professional investors tend to be more countercyclical (they focus more on fundamentals)
 - More first-time buyer households can buy an own flat
 - → lower demand on the rental market
 - → downward pressure on ROI

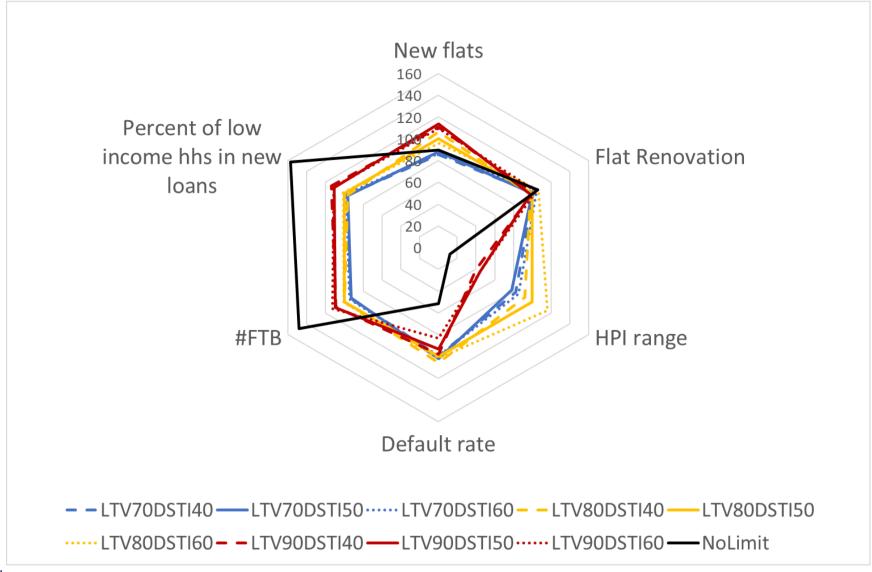
CREDIT AVAILABILITY (CA)

Figure 4-5: Credit availability in the baseline (upper) and in the no limit scenario disaggregated based on income deciles and on FTB-OO categories, aggregated between 2018-2024.

Credit availability (Kelly et al. 2018)

- What is the most restrictive constraint for a household to buy a fair, "justifiable" flat?
- "Justifiable": average flat in the region and income decile of a given household

Home owners


- They can mostly buy their "fair" flat.
- LTV/consumption constraints only below median income.

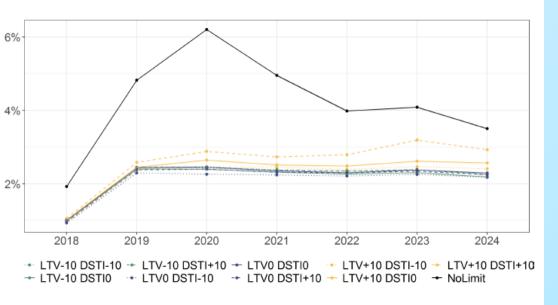
First-time buyers

- Without LTV/DSTI → First 3 deciles: not eligible for credit. Even in the 7th decile only 50% eligible.
- With LTV/DSTI → Barely anyone is eligible for credit. (Even in the 10th decile 50% is not eligible.)

OPTIMAL POLICY MIX

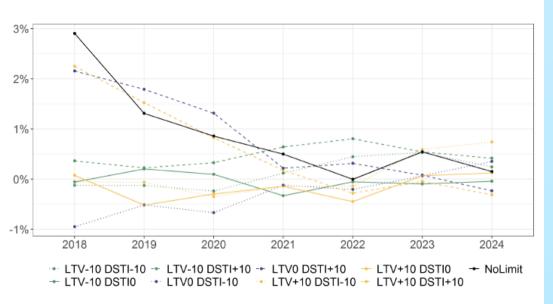


CONTACT DETAILS


András Borsos

Magyar Nemzeti Bank (Central Bank of Hungary) borsosa@mnb.hu

DEFAULT RATES


Figure 3: Annual average default rates of mortgage loans in the 10 different scenarios.

- No limit scenario →
 - 2-3 times higher default rate
- Loose LTV →
 - Considerably higher default rate for the end of the time horizon
- Stricter LTV →
 - No relevant effect
- Looser LTV + stricter DSTI →
 - Only 0.1 percentage point increase in default
 - BUT large jump in transaction numbers and credit flow (without additional risk)

HOUSING STOCK QUALITY

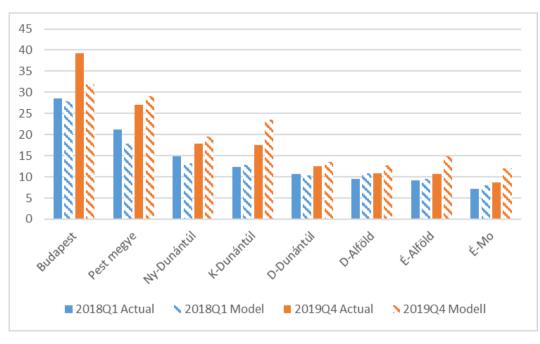


Figure 6: Percentage change of the renovated square meters (by one "state unit") relative to the baseline scenario.

- Energy efficiency and social wellbeing considerations
- Large difference on the time horizon
- The effect is limited in all cases,
 but
- In this case DSTI is similarly influential than the LTV
- This is because there are households, who cannot buy a flat with any policy mix, but looser DSTI can help them to renovate at least.

CALIBRATION

House prices in million HUF

Monthly averages	2018Q1-2019Q2		
Monthly averages	Actual	Model	
Number of transactions on the housing market	15 148	14 752	
Number of transactions of newly built flats	1 966	1 897	

- Parameters are calibrated such that the dynamics of the observable variables match the empirical data:
 - average regional prices,
 - the number of transactions
 - newly built housing stock
- We used data from 2018/19.
- In the evaluation of the simulation results one can disregard this first two years.

VALIDATION

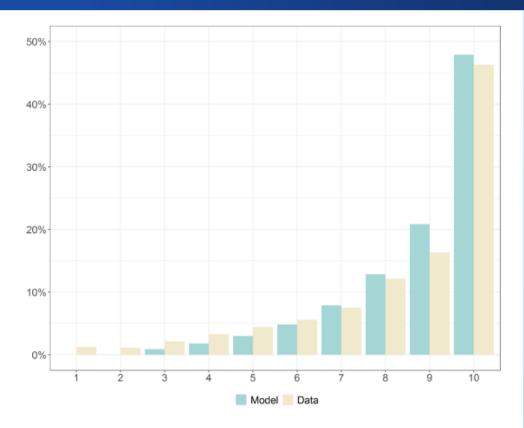


Figure 4: Distribution of the volume of newly issued housing loans in 2018 and 2019 based on the income deciles of the households. (Source: MNB.)

Yearly averages	New credit flow (billion HUF)		Number of contracts		
	Actual	Model	Actual	Model	
2018- 2020	895	1136	79744	75967	

- We tested whether the variables of the model which were not calibrated follow the empirical data.
- We used mainly lending market variables:
 - Number of loan contracts,
 - New credit flow,
 - Distribution of loans based on income deciles, LTV and DSTI categories.
- But also some disaggregated housing market statistics:
 - # of transactions at the regional level
 - Average neighborhood quality of flats in transactions