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Monetary Policy across Inflation Regimes

Motivation

Introduction

Does the e¤ect of monetary policy depend on the level of
in�ation?

Most of the research: linear models with constant parameters

Economic agents: behave di¤erently when in�ation very high
(Weber et al. 2023)

In the presence of state-dependence: linear models erroneous
empirical conclusions, averaging over regimes
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Motivation

This Paper

We build a self-exciting threshold (SET-) Bayesian VAR model

Methodological contributions:

allow for regime-dependence in variance in 1st stage
estimation; novel since we utilise volatility regimes to aid
threshold identi�cation
combine two-step frequentist estimation with Bayesian
regularization; ignore posterior uncertainty of threshold -
allowed due to faster posterior contraction rate
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Motivation

This Paper

Main advantages of Approach:

standard Bayesian shrinkage on large dimensional
regime-dependent VAR parameters (relative to frequentist
procedures)
easier and faster inference (relative to fully Bayesian threshold
treatment)
simple, easily interpretable nonlinearity mechanism (relative to
Markov-switching models)

Our modeling choice: three main goals: (i) parsimony, (ii)
computational speed and (iii) transparency
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Motivation

Plan for the Talk

Methodology, estimation algorithm

Monte Carlo Exercise

Empirical Application to US in�ation regimes
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Methodology

Methodology

Univariate TAR model: introduced by Tong (1977),
generalized by Tong and Lim (1980), Chan (1993), and Tong
(2011)

Consider M � 1 T-VAR(p) model with k regimes:

yt = ∑k
i=1(B0,i +∑p

j=1 Bj ,iyt�j )Ψ
(i )
t (γ

0) + Σ1/2ηt

γ0 is threshold parameter: γ01 < γ02 < � � � < γ0k�1

i th regime de�ned as Ψ(i )t (γ0) = I(γ0i�1 < st � γ0i )

st is Ft�1�measurable state variable
if st variable from yt with lag d 2 f1, ..., pg , the model:
self-exciting T-VAR (SET-VAR)
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Methodology

Methodology

SETAR models

nonlinearity through indicators: model piecewise linear;
facilitates simple estimation
while simple, self-exciting mechanism can capture important
nonlinearities particularly in cyclical data

Consistency and asymptotic distributions of LS in SETAR
models: Chan (1993)
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Methodology

Standard Estimation

Conditional on γ0, estimation of β standard
For each i ,

p
n�consistent asymptotically normal β̂i

γ unknown ) a consistent estimator required
Numerical minimization SSR as function of γ
Let Bi = (B0,i ,B1,i . . . ,Bp,i ), βi = vec(B

0
i ) and

β = (β01, . . . , β0k )
0

β̂ = (β̂
0
1, . . . , β̂

0
k )
0 used to compute residuals for all possible

values of grid for γ
Estimator for γ:

γ̂ = argminγ ∑n
t=1 ε̂0t ε̂t = argminγ

h
minβ1,...,βk ∑n

t=1 ε0t εt
i

where ε̂t =
�
yt �∑k

i=1 (IM 
 x 0t ) β̂iΨ
(i )
t (γ)

�
and

xt =
�
1, y 0t�1, ...y

0
t�p
�0

γ̂ equivalently coming from
�
γ̂, β̂

�
= argminγ,β ∑n

t=1 ε0t εt .
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Methodology

Standard Estimation

The standard identi�cation for all i 2 f1, . . . , kg

8i , j 2 f1, . . . , kg, βi 6= βj when i 6= j ;

i.e., at least one element in β di¤ers across any pair of regimes

Super-consistency of γ̂ to γ0 with faster rate (n instead of the
usual parametric

p
n)

Inference typically in two steps:

γ is estimated
conditional on γ̂, inference on βi is standard, consistent and
asymptotically normal

super-consistency for γ̂: estimation uncertainty of γ no
�rst-order e¤ect on inference for βi ; justi�cation for two-step
plug-in procedure
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Methodology

Novel Procedure

yt = ∑k
i=1

�
B0,i +∑p

j=1 Bj ,iyt�j + Σ1/2
i ηt

�
Ψ(i )t (γ

0)

Prior density p (βi ,Σi ) for each i = 1, ..., k, prior p (γ)

Grid of Nγ points Γ =
�

γ, ...,γ
�
for each γ, i.e. discrete

uniform prior p
�
γij
�
= 1/Nγ

Gaussianity assumption on ηt jFt�1 � N (0, IM )
The log-posterior density (except constants):
ln(p (β,Σ,γjy1, ..., yn))

= ` (β,Σ,γ) +∑k
i=1 ωi ln p (βi ,Σi ) + ln p (γ)

where ` (β,Σ,γ) given by ` (β,Σ,γ) = ∑k
i=1 `i (β,Σ,γ)

`i (β,Σ,γ) = �
ni
2
ln (2π)� ni

2
ln det (Σi )�

1
2 ∑n

t=1 ε0itΣ
�1
i εit

ωi : contribution of regimes: ωi =
ni
n
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Methodology

Novel Procedure

Equivalently denote wt ,i = I(γ̂i�1 < st � γ̂i ) and de�ne
Y = (y1, . . . , yn)0, y = vec(Y ), X = (x 01, . . . , x 0n)0 and
Wi = diag(w1,i , . . . ,wn,i )
For each i , `i (β,Σ,γ) ∝ � tr (W i )

2 ln (detΣi )

�1
2
(y � (IM 
 X )βi )

0 (Σ�1i 
Wi ) (y � (IM 
 X )βi ) ,�
γ̂, β̂, Σ̂

�
= argmaxγ,β,Σ ln(p (β,Σ,γjy1, ..., yn)),

where maximizer γ̂ equivalently obtained through

γ̂ = argmaxγ

�
maxβ1,...,βk ,Σ1,...,Σk ln(p (β,Σ,γjy1, ..., yn))

�
= argmaxγ ln

�
p(β̆, Σ̆,γjy1, ..., yn)

�
= argmaxγ2Γk�1 `

�
β̆, Σ̆,γ

�
+∑k

i=1 ωi ln p
�

β̆i , Σ̆i
�

where β̆ and Σ̆ are the posterior modes
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Methodology

Novel Procedure

In practice: evaluate ln p at mode for θi = [β
0
i , vech (Σi )

0]0

over grid of values for γ; γ̂ - maximizer

Since γ̂ converges at faster rate, as n! ∞

p(
p
n(θi � θ0i )jγ, y1, ..., yn)�p(

p
n(θi � θ0i )jγ̂, y1, ..., yn))! 0

Avoid expensive Metropolis step

Conditional γ̂, standard Bayesian estimation for θi

Bayesian treatment on θ relevant: large M and p ) over�t
after splitting observations into regimes

Prior: useful to penalise and regularise estimation

Standard Bayesian methodology for conditional inference on
θi : Minnesota prior on Bi , Wishart prior on Σ�1i
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Methodology

Conditional Posteriors

βi jΣi ,γ � N
�

β0i , (Σ
�1
i 
 κ0i )

�1�, Σ�1i jγ � W(α0i ,λ0i )

Closed-form NW posterior conditional on γ:

βi jΣi ,γ,X ,Y � N
�

β̃i , (Σ
�1
i 
 κ̃i )

�1�, Σ�1i jγ � W(α̃i , λ̃i ),eβi = �IM 
 eκ�1i � �(IM 
 X 0WiX )β̂i + (IM 
 κ0i )β0i
�
,

eκi = κ0i + X 0WiX ,eαi = α0i + ni , eλi = λ0i + Y 0WiY + B0iκ0iB 00i � eBieκi eB 0i ,
and β̂i threshold OLS for each i :

β̂i = (IM 
 X 0WiX )�1(IM 
 X 0Wi )y ,
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Methodology

Estimation Algorithm

Step 1. For each grid point in Γk�1, compute posterior modes for
βi and Σi , which in the NW setup are β̆i = β̃i and Σ̆i = λ̃i

(α̃i+M+1)
.

Step 2. Evaluate log-likelihood `
�

β̆, Σ̆,γ
�
and weighted prior

density ∑k
i=1 ωi ln p

�
β̆i , Σ̆i

�
at β̆ and Σ̆ for each grid point in

Γk�1.
Step 3. Numerically maximize log-posterior p

�
β̆, Σ̆,γjy1, ..., yn

�
wrt γ over the (k � 1)-dimensional grid and store the estimate γ̂.
Step 4. Given γ̂ from Step 3, make draws for βi and Σi from the
posterior distribution above.
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Monte Carlo

Monte Carlo Exercise

Design small Monte Carlo exercise: study properties; compare
to existing approaches

Univariate process yt = µt + σt εt , εt � N (0, 1) ,
n 2 f200, 1000g
4 DGPs:

DGP I: µt = 0 and σ = 1 for all t;
DGP II: µt = µ11 fyt�1 � γg+ µ21 fyt�1 > γg with
µ1 = �1, µ2 = 1 and σt = 1 for all t;
DGP III: µt = 0 for all t and
σt = σ11 fyt�1 � γg+ σ21 fyt�1 > γg with σ1 = 1, σ2 = 2;
DGP IV: regime-dependent mean as in DGPII and
regime-dependent volatility as in DGPIII

True γ = 0
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Monte Carlo

Monte Carlo Exercise

We estimate

a constant parameter (CP) model
regime-dependent SSR-threshold, constant variance
SSR-threshold with regime-dependence in variance in 2nd
stage (as Chan (1993), Tsay (1998))
regime-dependent likelihood-threshold

Compare RMSEs for each speci�cation and DGP
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Monte Carlo

Monte Carlo Exercise

Average RMSE
Constant Parameter Model

γ µ1 µ2 σ1 σ2
DGP I, n=200 - 0.0572 0.0572 0.0398 0.0398
DGP I, n=1000 - 0.0254 0.0254 0.0177 0.0177
DGP II, n=200 - 0.9975 1.0025 0.4116 0.4116
DGP II, n=1000 - 0.9992 1.0008 0.4138 0.4138
DGP III, n=200 - 0.0899 0.0899 0.5725 0.4275
DGP III, n=1000 - 0.0402 0.0402 0.5796 0.4204
DGP IV, n=200 - 1.0940 0.9060 0.9010 0.1149
DGP IV, n=1000 - 1.0968 0.9032 0.9058 0.0947

SSR Estimation, σ1 = σ2 in Stage 2
DGP I, n=200 - 0.3784 0.3872 0.0817 0.0817
DGP I, n=1000 - 0.2944 0.3046 0.0356 0.0356
DGP II, n=200 0.0219 0.0817 0.0802 0.0799 0.0799
DGP II, n=1000 0.0090 0.0362 0.0360 0.0357 0.0357
DGP III, n=200 0.4284 0.0920 0.1612 1.4702 0.4826
DGP III, n=1000 0.3643 0.0405 0.0725 1.4945 0.4945
DGP IV, n=200 0.9388 0.1151 0.4360 2.1042 1.1043
DGP IV, n=1000 0.9864 0.0530 0.4404 2.1285 1.1285



Monetary Policy across Inflation Regimes

Monte Carlo

Monte Carlo Exercise

SSR Estimation, σ1 6= σ2 in Stage 2
DGP I, n=200 - 0.3784 0.3872 0.1515 0.1513
DGP I, n=1000 - 0.2944 0.3046 0.1042 0.1068
DGP II, n=200 0.0219 0.0817 0.0802 0.0560 0.0567
DGP II, n=1000 0.0090 0.0362 0.0360 0.0251 0.0257
DGP III, n=200 0.4284 0.0920 0.1612 0.1478 0.1624
DGP III, n=1000 0.3643 0.0405 0.0725 0.1172 0.0962
DGP IV, n=200 0.9388 0.1151 0.4360 0.0853 0.0936
DGP IV, n=1000 0.9864 0.0530 0.4404 0.0407 0.0428

Likelihood-based Estimation
DGP I, n=200 - 0.2878 0.2908 0.2670 0.2759
DGP I, n=1000 - 0.2340 0.2394 0.2245 0.2256
DGP II, n=200 0.0221 0.0817 0.0802 0.0567 0.0573
DGP II, n=1000 0.0091 0.0362 0.0360 0.0253 0.0258
DGP III, n=200 0.0740 0.0840 0.1656 0.0599 0.1167
DGP III, n=1000 0.0176 0.0366 0.0717 0.0253 0.0506
DGP IV, n=200 0.0385 0.0861 0.1519 0.0607 0.1084
DGP IV, n=1000 0.0146 0.0380 0.0680 0.0266 0.0479



Monetary Policy across Inflation Regimes

Monte Carlo

No regimes: all approaches valid; CP model best
When switch mean (DGP II) CP model inconsistent; SSR
model with or without regime in σ consistent; likelihood
performs equally well
DGP III: both SSR-models inconsistent estimator for γ; no
distortion on mean inference, since true mean constant, any
sample split
Estimation of σ distorted if regime-dependence ignored, even
when allowed in 2nd stage, estimates poor, threshold not
precisely estimated
Likelihood model performs well; correctly identi�es the value
of the threshold
In DGP IV, CP model inadequate
SSR-model inconsistent estimate of threshold
Likelihood approach: consistent and precise estimate of γ;
consequently precise and consistent estimates for µ and σ in
2nd stage.
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Monte Carlo

Illustration with outliers

One endogenous variable zt , one shock of interest mt ; ut
summarises persistent e¤ects of other variables

zt = βmt1fzt�1 < zg+ γmt1fzt�1 � zg+ ρzt�1 + ut and
mt are zero-mean i.i.d. Gaussian random variables

z is threshold value, calibrated so that zt infrequently exceeds
the threshold; i.e. model is more often in 1st regime.

Assume opposing e¤ects of the shock in the two regimes:
β < 0 and γ > 0.

Simulate 5,000 samples of n = 500; estimate one regression
for entire sample and another only for observations where
zt�1 < z (equivalent to estimating threshold model with
knowledge on true value)
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Monte Carlo

Monte Carlo Exercise

OLS estimate of policy effect

­0.8 ­0.6 ­0.4 ­0.2 0 0.2 0.4 0.6 0.8 1 1.2
0

100

200

300

400
total sample
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Fraction of outliers
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200
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Empirical Application

Empirical Application

We estimate our SET-VAR model on US data, study regime
dependence of policy

Monthly U.S. data from January 1970 to December 2007 on:
FFR, unemployment rate, CPI YoY in�ation; Romer &
Romer�s proxy for policy shock (robustness BBA spread)

Choice of state variable st = πt�1 (results robust to di¤erent
lags)

Info on priors: in paper

Low regime: πt�1 � 5.49 (74.3% of the sample);

Medium regime: 5.49 < πt�1 � 11.02 (19.6% of the sample);

High regime: πt�1 > 11.02 (6.1% of the sample).
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Empirical Application

Objective function
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Empirical Application

Raw Data against estimated Regimes
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Empirical Application

TVP model against estimated Regimes
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Empirical Application

LR Mean and Variance across Regimes
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Empirical Application

Correlations across Regimes
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Empirical Application

Persistence across Regimes
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Empirical Application

IRFs constant parameter model



Monetary Policy across Inflation Regimes

Empirical Application

IRFs across In�ation Regimes



Monetary Policy across Inflation Regimes

Empirical Application

Period-Speci�c IRF Algorithm

Step 1. Determine regime i at t and set ino_shockt = i shockt = i ,
ŷ shockt�1:t�p = ŷ

no_shock
t�1:t�p = yt�1:t�p .

For each posterior draw Bk and Σk iterate between Steps 2-4.
Step 2. For h = 1, determine regime-speci�c coe¢ cients and
compute projections with(out) δ shock:

ŷ shockt+1 = Bk0,i shockt
+∑p

j=1 B
k
j ,i shockt

ŷ shockt+1�j + Σk ,1/2
i shockt

[δ, 0, ..., 0]0

ŷno_shockt+1 = Bk
0,ino_shockt

+∑p
j=1 B

k
j ,ino_shockt

ŷno_shockt+1�j .

Step 3. For h = 2, ...,H, get i shockt+h�1 and i
no_shock
t+h�1 and compute:

ŷ shockt+h = Bk0,i shockt+h�1
+∑p

j=1 B
k
j ,i shockt+h�1

ŷ shockt+h�j

ŷno_shockt+h = Bk
0,ino_shockt+h�1

+∑p
j=1 B

k
j ,ino_shockt+h�1

ŷno_shockt+h�j .

Step 4. Compute IRF as IRF δ
t (h) = ŷ

shock
t+h � ŷno_shockt+h .
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Empirical Application

Period-Speci�c IRFs
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Conclusion

Conclusion

Novel Bayesian SET-VAR model
Econometric contribution:

Regime-dependence in variance; relevant for macro series
Combine two-step frequentist procedures with Bayesian
regularization)parsimonious nonlinear model

Advantages:
allows for large dimensions
easy and fast to estimate
simple nonlinearity mechanism

With SET-VAR we �nd policy e¤ects vary with in�ation
When in�ation under 5.5 %: policy no meaningful e¤ect on
labor markets
When in�ation between 5.5 - 11 %, e¤ects: larger and
longer-lasting; variables more persistent; e¤ects on
unemployment large
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