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Abstract

Does the effect of monetary policy depend on the prevailing level of inflation?

In order to answer this question, we construct a parsimonious nonlinear time series

model that allows for inflation regimes. We find that the effects of monetary policy

are markedly different when year-over-year inflation exceeds 5.5 percent. Below this

threshold, changes in monetary policy have a short-lived effect on prices, but no effect

on the unemployment rate, giving a potential explanation for the recent “soft-landing”

in the United States. Above this threshold, the effects of monetary policy surprises on

both inflation and unemployment can be larger and longer-lasting.
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1 Introduction

What are the effects of monetary policy on the economy? Although this question has long

been a cornerstone of macroeconomic research (see Christiano et al. (1999) and the refer-

ences therein), it has recently become extremely pertinent again, as, after the COVID-19

pandemic, most major economies experienced inflation rates not seen since the early 1980s.

In this paper, we investigate whether the effects of monetary policy and the tradeoffs that

policymakers face depend on the level of inflation that prevails in the economy. Policymakers

rely on economic models to decide their course of action, but much of the research on the

effects of monetary policy is based on linear models with constant parameters, disregard-

ing any potential state-dependence, for example on the underlying level of inflation. There

are reasons to expect that economic agents’ behavior is different when inflation deviates

considerably from its target. For example, Weber et al. (2023), in a series of randomized

controlled trials (RCTs), show that both consumers and firms react to information and form

expectations differently when inflation is high. Households might start to pay more attention

to inflation, in line with rational-inattention-based theories (Sims (2003) and Weber et al.

(2023)); firms change their price-setting behavior in high-inflation environments (Golosov

and Lucas, 2007); and the central bank might adjust its behavior to more aggressively

combat inflation. Ascari and Haber (2021) also document nonlinearities in the response of

inflation and real activity to monetary policy shocks. 1 Historical evidence from the oil

price crises of the 1970s also indicates that high inflation is associated with more persistent

macroeconomic variables and greater volatility. Ignoring this state-dependence can lead to

flawed empirical conclusions.

In this paper, we address this problem by building a parsimonious and computationally

tractable nonlinear vector autoregressive (VAR) model, a self-exciting threshold (SET-)

Bayesian VAR model that delivers easily interpretable nonlinearities and allows the data

to identify the inflation regimes as well as the regime-dependent parameters. We identify

the effects of monetary policy using an instrument for monetary policy shocks, an approach

commonly used in the literature. As such, our identification strategy within each regime is

the same as that in many papers that focus on linear models.

We find that our approach estimates regime changes at high levels of inflation, thus endoge-

nously separating periods where inflation rates are not representative of most of the sample.

Seventy-five percent of our sample falls into one inflation regime where year-over-year CPI-

1They find that inflation reacts stronger in high inflation setups, which is consistent with our empirical
findings.
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based inflation is less than 5.5 percent.2 In this regime, the persistence of macroeconomic

variables is low, and hence the effects of shocks are short-lived. Monetary policy can reduce

inflation, but it has no meaningful effect on the unemployment rate, thus providing a ratio-

nale for the recent “soft landing” of the U.S. economy, at least once year-over-year inflation

became lower than 5.5 percent. This recent episode is not included in our sample3, so it is

not the case that our model simply fits these recent data. Instead, this result is driven by the

different reduced-form relationships that we uncover between inflation and unemployment

when inflation levels are low and stable. Once inflation becomes larger, monetary policy has

larger and more persistent effects on prices and a significant effect on the unemployment rate.

Finally, we find that the persistence and the effects of policy shocks do not monotonically

change with the level of inflation, and once the underlying inflation rate becomes double-digit

(larger than 11 percent), the policy effects disappear and we find a price puzzle. A standard

linear VAR model, applied to our sample, would incorrectly suggest that monetary policy

has no effect on prices or unemployment, as it averages effects across the distinct regimes.

Part of the contribution of the paper is methodological. We built a self-exciting threshold

Bayesian VAR model, allowing for regime-dependence in the variance of the series for full

likelihood-based identification of the threshold parameter, which is particularly relevant for

macroeconomic series that have been documented to undergo volatility regimes over time.

This is novel relative to existing approaches based on sum-of-square-residuals (SSR) mini-

mization which either assume a constant variance or only allow for variance regimes in the

second stage estimation, but do not utilize volatility regimes to aid the threshold parameter

identification. We demonstrate in a small Monte Carlo exercise that when regime-dependence

in the volatility is present, not taking this into account in the first stage threshold estimation

can lead to inconsistent threshold estimates.

Our second methodological contribution is computational: we combine two-step frequentist

estimation procedures with Bayesian regularization via the use of priors on the VAR param-

eters in order to deliver a parsimonious nonlinear time series model. We can ignore posterior

uncertainty on the threshold parameters without distorting posterior inference on the VAR

2Using a different modeling approach and only allowing for two regimes, Canova and Pérez Forero (2024))
discover a strikingly similar threshold of 5.3 percent.

3We use the updated Romer and Romer (2004) monetary policy shock series as our instrument, which is
based on staff forecasts from the Board of Governors before each FOMC meeting. These forecasts are made
public with a five-year lag, preventing us from extending our analysis to the most recent period. Similar
issues arise with the instrument proposed by Aruoba and Drechsel (2022). Other instruments based on
high-frequency variation in asset prices are available for more recent periods, but these samples start in the
late 1980s, missing the high inflation periods of the 1970s and early 1980s.

3



parameters since the contraction rate of the posterior of the threshold parameters is faster

and hence conditioning on the entire posterior of the threshold or just on a consistent point

estimate is equivalent when the sample is large. The main advantages of our econometric

approach are: (i) it can handle a large number of variables allowing for standard Bayesian

treatment on the large dimensional regime-dependent VAR parameters, (ii) it is considerably

easier and faster to estimate than the model with a fully Bayesian treatment of the thresh-

old parameters, and (iii) it provides a simple and easily interpretable source of nonlinearity,

relative to Markov-switching models widely used in the literature, where the regimes are

driven by an unobserved latent process.

The remainder of the paper is organized as follows. Section 2 presents a stylized example to

highlight the pitfalls of disregarding nonlinearities when estimating impulse responses/causal

effects of monetary policy and motivate the usefulness of the threshold model. Section 3 es-

tablishes in detail the econometric methodology and explains the novelties of our model

relative to existing threshold models in the literature. Section 3.2 presents a small Monte

Carlo exercise that demonstrates the merits of our novel approach relative to existing ap-

proaches. Section 4 contains our empirical application to monetary policy in the US across

inflation regimes. Section 5 concludes and the supplementary Appendix contains some ad-

ditional results.

2 The Pitfalls of Disregarding Inflation Regimes - An

Example

To highlight that the causal effects of monetary policy can change dramatically once we

allow for nonlinearities, which can endogenously remove outliers/unusual periods of high

inflation, we present a stylized Monte Carlo exercise to illustrate this issue in a controlled

environment. For simplicity, we focus on one endogenous variable zt, one shock of interest mt

and a variable ut that summarizes the persistent effects of all other variables in the economy.

Our data-generating process is:

ut = ρut−1 + vt

zt =

{
βmt + ρzt−1 + ut if zt−1 < z

γmt + ρzt−1 + ut otherwise

(1)

(2)

where vt and mt are zero-mean i.i.d. Gaussian random variables, and z is the threshold

value, which we calibrate so that zt infrequently exceeds the threshold and so the model is

4



more often in the first regime. We assume opposing effects of the shock in the two regimes:

β < 0 and γ > 0. The exact calibration is ρ = 0.8, z = 13, β = −0.5, γ = 7, mt ∼ N (0, 1),

and vt ∼ N (0, 1.5). We simulate 5,000 samples of size 500 each. For each sample, we

run two ordinary least squares regressions to estimate the policy effect of mt on zt: one

regression for the entire sample and another where we run the same regression, but only for

the observations where zt−1 < z so that we do not consider the outliers. This is equivalent to

estimating the threshold model that we present later with knowledge of the true threshold

value.

OLS estimate of policy effect
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Figure 1: Histogram of OLS coefficients with and without outliers (top panel) and frequency
of outliers (bottom panel). Black lines are kernel estimates of the densities associated with
each histogram.
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Even with infrequent outliers in each sample (the frequency of outliers across the sample

is around 5 percent), the outliers substantially contaminate the results if regime-dependence

is ignored, as expected. We argue that although the blue histogram in the top panel of Figure

1 would ultimately collapse to the total pooled effect of the shock across the two regimes,

this is not a value that most economists would be interested in. Instead, they would be

interested in the causal effects of mt on zt for most of the sample, which is -0.5 and well

approximated by the light blue histogram in the top panel, as well as in the different and

possibly relevant causal effects in the extraordinary periods when zt exceeds the threshold.

Pooling the regimes together by fitting a linear model can cause a bias that does not vanish

as the sample size increases and can lead to erroneous empirical conclusions.

3 Methodology

In this section, we describe our econometric methodology. This methodology is set up to

identify regime-specific causal effects as outlined in the previous section. Modeling nonlin-

earities is a challenging task, especially in environments with dependent data. The modeling

choices we make in this paper are guided by three main goals: (i) parsimony, (ii) transparency

and (iii) computational speed. We prefer a simple model in which the factors determining

the nonlinearities are clear and easily interpretable. Moreover, our model is set up so that

inference is computationally fast and straightforward, while at the same time allowing for

regularization via the use of priors, opening up the use of our nonlinear model for applica-

tions with many observables. In a nutshell, our model is a Bayesian self-exciting threshold

VAR: a piecewise-linear VAR model where breaks in the model’s parameters are governed by

lagged observables and, within each regime, defined by the model’s threshold parameters, the

model is linear and inference is standard. We make two important departures from existing

models in the literature. First, we allow the regimes to be identified via regime-dependence

in the conditional variance in addition to regime-dependence in the conditional mean of the

series. Such an extension is relevant for macroeconomic applications where series undergo

different volatility regimes over time and hence information from regime-dependence in the

second moment may be useful to exploit in order to identify and estimate more precisely

the threshold parameters. The second novelty of our approach relative to existing models in

the literature is the use of Bayesian inference on the VAR parameters while maintaining fast

and efficient Bayesian estimation of the threshold without the need for a computationally

expensive MCMC step. The remainder of this section provides a detailed technical descrip-

6



tion and justification of our modeling approach.

We first provide a brief discussion of the standard practice of estimation of threshold VAR

(T-VAR) models in the literature before we outline how we depart from it and then estab-

lish the novel estimation methodology that we adopt. The univariate TAR model was first

introduced by Tong (1977) and generalized in various directions by Tong and Lim (1980),

Chan (1993), and Tong (2011), among others. Here we consider a multivariate generalization

given by an M × 1 T-VAR model of order p, characterized by k regimes:

yt =
∑k

i=1

(
B0,i +

∑p

j=1
Bj,iyt−j

)
Ψ

(i)
t (γ0) + Σ1/2ηt, ηt|Ft−1 ∼ (0, IM) (3)

where the index i = {1, ..., k} refers to each regime, B0,i is a vector of state-dependent inter-

cepts, Bj,i are state-dependent autoregressive matrices with all the roots of the associated

characteristic polynomial outside the unit disk for each i, Σ is a positive definite covariance

matrix and ηt are martingale difference innovations with Ft denoting the natural filtration of

ηt containing information up to t. The choice of matrix square root to obtain Σ1/2 will encode

the identification restrictions that we use to identify the effects of monetary policy in our ap-

plication; we discuss the details of our choice later. The parameter γ0 is a (k−1)×1 threshold

parameter vector which defines the regimes, with γ0
1 < γ0

2 < · · · < γ0
k−1, and Ψ

(i)
t (γ0) is an

indicator function equal to one whenever a threshold condition associated with regime i is

satisfied at period t. It is standard to assume that the regimes are driven by an underlying

state variable st which is Ft−1-measurable, which can be either internal or external to the

model. The ith regime is defined as all periods t such that Ψ
(i)
t (γ0) = I(γ0

i−1 < st ≤ γ0
i ) (with

Ψ
(1)
t (γ0) = I(st ≤ γ0

1) and Ψ
(k)
t (γ0) = I(st > γ0

k−1) for the first and last regimes respectively),

where I is the indicator function.

Next, we discuss the choice of the state variable st. Whenever st is a lagged variable

from the vector yt with lag d ∈ {1, ..., p} , the model is called a self-exciting T-VAR (SET-

VAR) model. A SETAR model and its multivariate extensions have two important desirable

properties: (i) the nonlinearity through the indicator functions makes the model piecewise

linear, which facilitates simple estimation relative to more complex nonlinear models; (ii)

while simple, the self-exciting mechanism can capture important nonlinearities that are par-

ticularly relevant in cyclical data and SETAR models can generate statistical phenomena

ranging from jump resonance, nonlinear vibrations, jump cycles, harmonic distortions and

even chaos (see Tong and Lim (1980) for a discussion and examples). Consistency and the

resulting asymptotic distributions of the LS estimators in SETAR models are established

in Chan (1993), and the associated limit theory in this literature is established by typically
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showing that the Markov chain defined by the companion form of the process is geometrically

ergodic4.

Letting Bi = (B0,i, B1,i . . . , Bp,i) and βi = vec(B′
i), conditional on the true threshold

parameter γ0, the estimation of the regime-dependent parameter vector βi is standard. In

particular, conditional on the true value of γ, the OLS estimator of βi, for each regime i, is
√
n−consistent and asymptotically normal (see, e.g. Tong (2011)). Since γ is unknown in

most empirical applications, a consistent estimator of γ is required for the estimation of βi.

This is typically done via a numerical minimization of the sum of squared residuals (SSR)

as a function of γ (see Hansen (1997)). In practice, the vector β = (β′
1, . . . , β

′
k)

′ is estimated

via OLS for a grid of values of the threshold. Then, β̂ = (β̂′
1, . . . , β̂

′
k)

′ is used to compute the

residuals for all possible values of the grid for the threshold parameter γ and an estimator

for γ is given by the value that attains the minimum SSR:

γ̂ = argmin
γ

∑n

t=1
ε̂′tε̂t = argmin

γ

[
min

β1,...,βk

∑n

t=1
ε′tεt

]

where εt =
(
yt −

∑k
i=1 (IM ⊗ x′

t) βiΨ
(i)
t (γ)

)
, ε̂t =

(
yt −

∑k
i=1 (IM ⊗ x′

t) β̂iΨ
(i)
t (γ)

)
and xt =(

1, y′t−1, ...y
′
t−p

)′
. The minimizer γ̂ of the above minimization is equivalent to the estimator

γ̂ coming from joint minimization of the sum of squared residuals function:(
γ̂, β̂

)
= argmin

γ,β

∑n

t=1
ε′tεt.

The standard identification assumption in the literature is that for all regimes i ∈ {1, . . . , k},
the following condition holds:

∀i, j ∈ {1, . . . , k}, βi ̸= βj when i ̸= j; (4)

in other words, at least one of the elements in the parameter vector β is required to differ

across any pair of regimes. Super-consistency of γ̂ to the true threshold value can be es-

tablished under regularity conditions (e.g. Chan (1993)) with a faster rate of convergence

to the true γ0 (n instead of the usual parameteric
√
n). Inference in this model is typically

conducted in two steps: (i) γ is estimated and the estimator γ̂ is set as the threshold in the

subsequent analysis, and (ii) conditional on γ̂, inference on βi is standard, consistent and

4This requires stability conditions on the autoregressive parameters across regimes, such as maxi ρ (Fi) <
1, where ρ (.) denotes the spectral radius and Fi is the companion matrix based on the autoregressive matrices
Bj,i in regime i.
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asymptotically normal. The super-consistency for γ̂ implies that estimation uncertainty of

γ does not have a first-order effect on inference (e.g. limit distribution) for βi and hence

can be ignored, providing a justification for the two-step plug-in procedure described above

and widely used in the literature. A similar two-step estimation method can be found in

Samia and Chan (2011), where the objective function considered for γ is a likelihood function

instead with error covariance constant across regimes. While in some papers the variance

is allowed to be regime-specific (e.g. Chan (1993) and Tsay (1998)) in the second estima-

tion stage, estimation of the threshold γ is identified only through regime-dependence in the

conditional mean of the series. This could be a drawback of existing methods if additional

information on the regimes contained in the second moments is ignored when estimating the

threshold parameter γ in the first step. Since such additional information on the volatility

of the series may be useful for identifying γ, particularly in macroeconomic data where we

know that some regimes were characterized not just by mean but also by volatility changes,

we extend the estimator of Samia and Chan (2011) by proposing a novel way to estimate γ

by including the parameters in Σ in the regime-dependent parameter vector. Our approach

is based on the use of a likelihood function, and, crucially, we allow for the variance param-

eters Σ to switch across regimes (that is, Σi may differ across i) in both estimation stages5,

enabling us to exploit additional information contained in the second moment of the series.

Such an extension is economically relevant, since it allows us to identify regimes even when

there may not be an associated break in the conditional mean but only in the conditional

variance of the data. There is ample empirical evidence for the importance of allowing for

the volatility of the series to change over time to properly capture the behaviour of the

macroeconomy (see, e.g. Cogley and Sargent (2005), Primiceri (2005)).

The second novelty of our estimation procedure relative to existing frequentist and

Bayesian approaches is that we allow for a Bayesian treatment of the model’s autoregres-

sive parameters and covariance matrices across regimes as well as for a prior distribution

on the threshold parameter while maintaining computational efficiency. We achieve such

computational gains and the proper Bayesian treatment for the regime-dependent VAR pa-

rameters by using a Bayesian point estimator for γ. Since such a point estimator converges

at a faster rate than the VAR parameter estimates, the two-step procedure that we propose

is well-justified, since the posterior uncertainty of γ does not affect the posterior of the VAR

5A semi-parametric equivalent to our parametric likelihood approach would amount to considering a GLS
rather than an OLS objective function, i.e., minimization of the Mahalanobis instead of the Euclidean norm
of the innovations in the first stage.
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parameters for large samples6. In other words, letting θi = [β′
i, vech (Σi)

′]′ where vech(.)

denotes the half-vec operator, the difference between the scaled posterior centered around

the true value θ0i of the VAR parameters for regime i conditional on posterior values of the

threshold γ and conditional on a super-consistent estimator γ̂ satisfies:

p(
√
n(θi − θ0i )|γ, y1, ..., yn)− p(

√
n(θi − θ0i )|γ̂, y1, ..., yn)) → 0 as n → ∞.

This approach is in contrast to a fully Bayesian treatment of the threshold parameter γ,

(see, e.g. Chen and Lee (1995), and Alessandri and Mumtaz (2017) and Alessandri and

Mumtaz (2019) for applications), which requires approximating the posterior of γ through

an expensive Metropolis step7. A Bayesian treatment of the VAR parameters is particularly

relevant in the context of the SET-VAR model, since a large number of variables and lags

can result in frequentist procedures overfitting, especially after splitting the observations of

the sample into regimes, and a prior distribution can be extremely useful to penalize and

regularize the estimation procedure.

We now turn to describing in detail the methodology we use in this paper. The VAR

model with regime-dependent conditional mean and covariance is given by:

yt =
∑k

i=1

(
B0,i +

∑p

j=1
Bj,iyt−j + Σ

1/2
i ηt

)
Ψ

(i)
t (γ0), ηt|Ft−1 ∼ (0, IM).

We assume a prior density for the VAR parameters p (βi,Σi) for each regime i = 1, ..., k as

well as a prior density for the threshold parameter p (γ) independent from p (βi,Σi) . For

the sake of generality, we allow here for different priors p(βi,Σi) across regimes. In our

empirical application, we use the same prior for all regimes to ensure that the uncovered

differences across regimes are coming from the data rather than from prior beliefs. We

consider a fine grid of Nγ equidistant points Γ =
(
γ, ..., γ

)
for each element of γ, which

corresponds to a discrete uniform prior for each element i: p (γij) = 1/Nγ for γij ∈ Γ for

each gridpoint j = 1, ..., Nγ. Since we need distributional assumptions in order to write down

a likelihood function, we proceed by making a Gaussianity assumption8 on the innovations

6Alternatively, one can view γ as a hyperparameter, whose value is determined in a preliminary estimation
step, which is a common approach in Bayesian inference (Giannone et al., 2015).

7Broemeling and Cook (1992) and Geweke and Terui (1993) provide earlier Bayesian treatment of γ in
TAR models, obtaining a posterior through (numerical) integration.

8Such a distributional assumption is required for full information Bayesian estimation; however, posterior
inference on the conditional mean parameters Bi continues to be valid for large samples even if the distri-
bution of the innovations is non-Gaussian, as long as the first two conditional moments of the innovations
are correctly specified (see, e.g. Petrova (2022)).
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ηt|Ft−1 ∼ N (0, IM). The log-posterior density of the model’s parameters (except constants)

is given by:

ln(p (β,Σ, γ|y1, ..., yn)) = ℓ (β,Σ, γ) +
∑k

i=1
ωi ln p (βi,Σi) + ln p (γ) ,

where the log-likelihood of the sample ℓ (β,Σ, γ) is given by the sum of the log-likelihoods

across each regime:

ℓ (β,Σ, γ) =
∑k

i=1
ℓi (β,Σ, γ)

ℓi (β,Σ, γ) = −ni

2
ln (2π)− ni

2
ln det (Σi)−

1

2

∑n

t=1
ε′itΣ

−1
i εit,

the innovations for each regime εit are defined as εit = (yt − (IM ⊗ x′
t) βi)Ψ

(i)
t (γ) and the

weights ωi depend on the contribution of each regime in the sample, satisfying ωi =
ni

n
, with∑k

i=1 ωi = 1, where ni is the effective sample sizes in each regime i, ni =
∑n

t=1 Ψ
(i)
t (γ). The

problem can be equivalently rewritten in a more compact way as a reweighting scheme of

the likelihood of the observations (y1, . . . , yn) with flat (zero-one) weighting given by the

regimes: for each regime i ∈ {1, ..., k} , observations that satisfy the threshold condition for

the corresponding regime (i.e. Ψ
(i)
t (γ0) = I(γ0

i−1 < st ≤ γ0
i )) are given weight one to evaluate

the regime-specific likelihood ℓi (β,Σ, γ), with the remaining observations receiving weight

zero. For each regime i ∈ {1, ..., k}, we denote the weights for the likelihood as

wt,i = I(γ̂i−1 < st ≤ γ̂i) (5)

and further define the matrices Y = (y1, . . . , yn)
′,X = (x′

1, . . . , x
′
n)

′ andWi = diag(w1,i, . . . , wn,i).

The resulting “weighted” log-likelihood for each regime i of the sample y = vec(Y ) can be

written as:

ℓi (β,Σ, γ) ∝ −tr(Wi)

2
ln (detΣi)−

1

2
(y − (IM ⊗X)βi)

′ (Σ−1
i ⊗Wi) (y − (IM ⊗X)βi) ,

where tr(Wi) = ni gives the “effective” regime sample sizes. Next, we consider joint maxi-

mization of the log-posterior density(
γ̂, β̂, Σ̂

)
= argmax

γ,β,Σ
ln(p (β,Σ, γ|y1, ..., yn)),
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where the maximizer γ̂ can be equivalently obtained through

γ̂ = argmax
γ

[
max

β1,...,βk,Σ1,...,Σk

ln(p (β,Σ, γ|y1, ..., yn))
]
= argmax

γ
ln
(
p(β̆, Σ̆, γ|y1, ..., yn)

)
= arg max

γ∈Γk−1
ℓ
(
β̆, Σ̆, γ

)
+
∑k

i=1
ωi ln p

(
β̆i, Σ̆i

)
(6)

where β̆ and Σ̆ are the posterior modes (the maximizers of the posterior density), as a

function of the threshold parameter γ, Γk−1 is the (k − 1) Cartesian product of the grid Γ

and, in the last line, we have used the fact that our uniform prior for the threshold does not

affect the maximizer γ̂ other than through the set over which the maximization is performed

γ ∈ Γk−1. It is straightforward to use our procedure with an informative continuous prior

on γ. We choose the discrete uniform prior since: (i) it simplifies and streamlines the

estimation through the grid search maximization, (ii) the threshold is a low-dimensional

parameter which does not require penalization, and (iii) we prefer to let the data speak on

the threshold values and choose not to impose any informative prior beliefs ex ante.

Next, we evaluate the corresponding log-posterior density at the posterior mode of the

entire vector θi = [β′
i, vech (Σi)

′]′ over the Γk−1-dimensional grid of values for γ and estimate

the threshold γ as the maximizer over the grid.

Conditional on the threshold estimator γ̂, we proceed with standard Bayesian estimation

for θi. Since the VAR model can be over-parameterized, especially when the number of

variables M and the number of lags p is large and the sample size n is small, we follow a

standard conjugate Bayesian methodology for the conditional inference on θi with standard

Minnesota prior on Bi and Wishart prior on Σ−1
i for each regime i ∈ {1, ..., k} of the form

βi|Σi, γ̂ ∼ N
(
β0i, (Σ

−1
i ⊗ κ0i)

−1
)
, Σ−1

i |γ̂ ∼ W(α0i, λ0i) (7)

where β0i is a vector of prior means, κ0i is a positive definite matrix controlled through a

scalar overall shrinkage parameter, α0i is the Wishart distribution scale parameter, and λ0i

is a positive definite matrix. While our methodology allows for the use of priors that differ

across regimes, as mentioned before, for the empirical application of the paper, we set the

same priors for each regime, since we do not want to impose regime-dependence ex ante.

In this way, our piecewise-linear Gaussian model with Normal-Wishart prior distribution

for βi and Σ−1
i for each regime i ∈ {1, ..., k} yields a closed-form conjugate Normal-Wishart

expression for the posterior density across each regime, conditional on the threshold γ of the
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form:

βi|Σi, γ̂, X, Y ∼ N
(
β̃i, (Σ

−1
i ⊗ κ̃i)

−1
)
, Σ−1

i |γ̂ ∼ W(α̃i, λ̃i), (8)

where the posterior parameters β̃i, κ̃i, α̃i, λ̃i for each regime i are given by

β̃i =
(
IM ⊗ κ̃−1

i

) [
(IM ⊗X ′WiX)β̂i + (IM ⊗ κ0i)β0i

]
,

κ̃i = κ0i +X ′WiX, α̃i = α0i + ni, λ̃i = λ0i + Y ′WiY +B0iκ0iB
′
0i − B̃iκ̃iB̃

′
i,

where β̂i is the threshold OLS estimator for each regime i :

β̂i = (IM ⊗X ′WiX)−1(IM ⊗X ′Wi)y,

Wi is the diagonal matrix containing the zero-one weights for each regime defined in (5)

through the estimated threshold γ̂, X = (x′
1, ..., x

′
T )

′ and B̃i and B0i satisfy β̃i := vec(B̃′
i)

and β0i := vec(B′
0i). The full details of our estimation algorithm can be found below.

3.1 Our Estimation Algorithm

Step 1. For each grid point in Γk−1, compute the posterior modes for βi and Σi, which in

our Normal-Wishart setup are given by β̆i = β̃i and Σ̆i =
λ̃i

(α̃i+M+1)
.

Step 2. Evaluate the log-likelihood of the sample ℓ
(
β̆, Σ̆, γ

)
and the weighted prior density∑k

i=1 ωi ln p
(
β̆i, Σ̆i

)
at the posterior modes β̆ and Σ̆ for each grid point in Γk−1.

Step 3. Numerically maximize the log-posterior p
(
β̆, Σ̆, γ|y1, ..., yn

)
with respect to γ over

the (k − 1)-dimensional grid and store the estimate γ̂.

Step 4. Given γ̂ from Step 3, make draws βi and Σi from the posterior distribution in (8).

3.2 Monte Carlo Exercise

In this section, we design a small Monte Carlo exercise to study the properties of the proposed

estimator and how it compares to existing threshold estimation approaches. In particular, we

simulate data from four data generating processes (DGPs) with sample sizes n ∈ {200, 1000}.
In all cases, we generate observations from the following univariate process

yt = µt + σtεt, εt ∼ N (0, 1) ,

13



with the following specifications: (i) DGP I: constant mean and constant volatility µt = 0

and σ = 1 for all t; (ii) DGP II: regime-dependent mean and constant volatility µt =

µ11 {yt−1 ≤ γ} + µ21 {yt−1 > γ} with µ1 = −1, µ2 = 1 and σt = 1 for all t; (iii) DGP

III: constant mean µt = 0 for all t and regime-dependent volatility σt = σ11 {yt−1 ≤ γ} +

σ21 {yt−1 > γ} with σ1 = 1, σ2 = 2; and (iv) DGP IV: regime-dependent mean as in (ii)

and regime-dependent volatility as in (iii). For all the DGPs with regime-dependence, we

set γ = 0. We estimate four models for each DGP: (i) a constant parameter model; (ii)

a regime-dependent threshold model based on SSR minimisation with constant variance;

(iii) a version of (ii) allowing for regime-dependence in the variance in the second stage (as

in Chan (1993) and Tsay (1998)), and (iv) a regime-dependent threshold model based on

likelihood maximisation proposed in the previous section where both mean and variance

regime-dependence enters in both stages of estimation. In each case, we compare root mean

square errors (RMSEs) for the estimated parameters of each specification and each DGP in

Table 1 below.

Several conclusions emerge from the results. First, when there is no regime dependence

as in DGP I, all approaches are valid for inference on the mean and variance parameters,

as implied by RMSEs decreasing as the sample size increases; however, the constant pa-

rameter model is considerably more efficient, as expected in the absence of regimes. Next,

when there is a switch in the mean, as in DGP II, the constant parameter model is in-

adequate and inconsistent not just for the mean but also the variance parameters. The

model with SSR objective function delivers consistent estimator for the threshold param-

eter, as well as for the mean and variance parameters; and this is the case, whether or

not regime-dependence is allowed in σ in the second stage, since the DGP has a con-

stant variance. The likelihood-based approach which uses regime-dependence in σ to iden-

tify the threshold performs equally well for all parameters, leading to the conclusion that

adding regime-dependence in σ in the first stage estimation does not distort inference on

γ when such dependence is absent in the data. In DGP III, on the other hand, where

only regime-dependence in the variance is present, both models without regime-dependence

in σ in the first stage deliver inconsistent estimator for the threshold, as implied by the

non-decreasing RMSEs. This in turn does not distort inference on the mean for this model

(since the mean is constant in DGP III, so any sample split based on inconsistent thresh-

old still delivers valid mean estimates). However, estimation of the variance is distorted

if regime-dependence in σ is ignored, and even when it is allowed in the second stage, es-

timates across the two regimes are poor, since the threshold is not precisely estimated.
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Average RMSE

Constant Parameter Model

γ µ1 µ2 σ1 σ2

DGP I, n=200 - 0.0572 0.0572 0.0398 0.0398
DGP I, n=1000 - 0.0254 0.0254 0.0177 0.0177
DGP II, n=200 - 0.9975 1.0025 0.4116 0.4116
DGP II, n=1000 - 0.9992 1.0008 0.4138 0.4138
DGP III, n=200 - 0.0899 0.0899 0.5725 0.4275
DGP III, n=1000 - 0.0402 0.0402 0.5796 0.4204
DGP IV, n=200 - 1.0940 0.9060 0.9010 0.1149
DGP IV, n=1000 - 1.0968 0.9032 0.9058 0.0947

SSR Estimation, σ1 = σ2 in Stage 2

DGP I, n=200 - 0.3784 0.3872 0.0817 0.0817
DGP I, n=1000 - 0.2944 0.3046 0.0356 0.0356
DGP II, n=200 0.0219 0.0817 0.0802 0.0799 0.0799
DGP II, n=1000 0.0090 0.0362 0.0360 0.0357 0.0357
DGP III, n=200 0.4284 0.0920 0.1612 1.4702 0.4826
DGP III, n=1000 0.3643 0.0405 0.0725 1.4945 0.4945
DGP IV, n=200 0.9388 0.1151 0.4360 2.1042 1.1043
DGP IV, n=1000 0.9864 0.0530 0.4404 2.1285 1.1285

SSR Estimation, σ1 ̸= σ2 in Stage 2

DGP I, n=200 - 0.3784 0.3872 0.1515 0.1513
DGP I, n=1000 - 0.2944 0.3046 0.1042 0.1068
DGP II, n=200 0.0219 0.0817 0.0802 0.0560 0.0567
DGP II, n=1000 0.0090 0.0362 0.0360 0.0251 0.0257
DGP III, n=200 0.4284 0.0920 0.1612 0.1478 0.1624
DGP III, n=1000 0.3643 0.0405 0.0725 0.1172 0.0962
DGP IV, n=200 0.9388 0.1151 0.4360 0.0853 0.0936
DGP IV, n=1000 0.9864 0.0530 0.4404 0.0407 0.0428

Likelihood-based Estimation

DGP I, n=200 - 0.2878 0.2908 0.2670 0.2759
DGP I, n=1000 - 0.2340 0.2394 0.2245 0.2256
DGP II, n=200 0.0221 0.0817 0.0802 0.0567 0.0573
DGP II, n=1000 0.0091 0.0362 0.0360 0.0253 0.0258
DGP III, n=200 0.0740 0.0840 0.1656 0.0599 0.1167
DGP III, n=1000 0.0176 0.0366 0.0717 0.0253 0.0506
DGP IV, n=200 0.0385 0.0861 0.1519 0.0607 0.1084
DGP IV, n=1000 0.0146 0.0380 0.0680 0.0266 0.0479

Table 1: RMSE Results

On the other hand, the likelihood-based model performs well and delivers precise esti-

mates for all parameters, and crucially, it correctly identifies the value of the threshold. In

the case of DGP III, the constant parameter model performs satisfactory for the mean, since

the data have constant mean; however, estimation of the variance is inconsistent, as expected.
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Finally, in DGP IV, where both the mean and the variance are subject to regime-dependence,

the constant parameter model is unsurprisingly inadequate. Moreover, the model based on

SSR minimisation cannot consistently estimate the threshold, suggested by the increasing

RMSE over the sample size. Estimation of both the mean and variance parameters is con-

taminated by the imprecise threshold estimates, and we see increasing estimation errors as

we increase the sample. The likelihood-based approach, by modelling the second moment

regime-dependence in the first stage can consistently and precisely estimate the threshold,

and consequently, delivers precise and consistent estimates for the mean and the variance

parameters in the second stage.

To summarise, this simple simulation exercise demonstrates clearly the advantages of

our proposed approach. The standard approach based on SSR minimisation fails in the

cases when there is regime-dependence in the variance (DGP III and IV), whether or not

such regime dependence in the variance is modelled in the second stage. This is the case,

since it does not use second moment information to identify the threshold parameter; and,

consequently, conditional on the imprecisely estimated threshold parameter, delivers poor

estimates for the mean and variance parameters in the second stage. This problem is not

resolved when we increase the sample size, implying that the threshold parameter estimates

cannot be recovered in these DGPs. On the other hand, the likelihood-based approach,

by allowing additionally for variance regimes in the first stage estimation, performs very

well whether or not there is regime-dependence in either the mean or variance parameters

(DGPs I through IV) and delivers precise estimates for all parameters with estimation errors

decreasing with the sample size.

4 Inflation and the Effects of Monetary Policy

We apply the SET-VAR methodology outlined in the previous section to U.S. data in order

to study the effects of monetary policy at different inflation levels. Given the recent inflation

experience not only in the U.S. but also across the world, an important question is whether

policymakers’ decisions have the same effect when inflation is around the 2 percent target

as when inflation is much higher. The most widely used models in the literature to allow

for possible structural changes in the evolution of the economy are time-varying parameter

(TVP) VAR models. While TVP-VAR models are extremely flexible, an important draw-

back is that all of the model’s parameters are allowed to change at every point in time.

This lack of parsimony leads to two serious issues that hinder the practical implementa-
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tion of TVP-VAR models: (i) they are subject to the curse of dimensionality, and so the

widely used state space approaches (see, e.g. Cogley and Sargent (2005), Primiceri (2005))

come with large computational costs that grow quickly with the number of parameters and

lags, and (ii) if the true parameters switch only across a finite number of macroeconomic

regimes, allowing parameter changes at each period is unnecessary and can result in a loss

of efficiency; for example, in the TVP-VAR setup, Petrova (2019) obtains a nonparametric

consistency rate for the time-varying parameters while the SET-VAR approach obtains the

standard parametric
√
n−consistency rate.

Alternative approaches that focus on a small number of distinct regimes (Hamilton, 1989;

Sims and Zha, 2006) typically model the regimes as a function of an unobservable variable

that follows a discrete Markov chain. Our choice to model the regime directly as a function

of an observable variable facilitates a more transparent understanding of what drives the dif-

ferent regimes, allows one to focus on the specific nonlinearities characterized by our choice

of state variable, and is computationally substantially less demanding.

Compared to both TVP- and Markov-switching VAR models, our approach provides par-

simony, interpretability, and computational ease. Another class of models related to ours

consists of smooth transition VARs, where VAR parameters are a convex combination of two

sets of VAR parameters and the weights are governed by a smooth function of an observable

variable (Auerbach and Gorodnichenko, 2012). Finally, Mavroeidis (2021) and Aruoba et al.

(2022) develop VAR models with occasionally binding constraints that also speak to nonlin-

ear dynamics of macroeconomic outcomes, albeit different nonlinearities from those we are

focusing on.

4.1 Data, Priors, and Our State Variable

We use monthly U.S. data starting in January 1970 through December 2007 on the Federal

funds rate (FFR), the unemployment rate, and inflation (computed as the year-on-year

growth of the consumer price index). All data series are from the Federal Reserve Bank of

St. Louis. In Appendix C we show that our findings are robust to including the BAA spread

as an additional observable along the lines of Caldara and Herbst (2019). In addition, we

use a proxy for the unobserved monetary policy shock to identify the effects of exogenous

changes in monetary policy. In particular, we use the updated version of the Romer &

Romer’s monetary policy shock (Romer and Romer (2004); Wieland and Yang (2020)). We

choose the Romer & Romer instrument because it allows us to use data from the 1970s and

1980s to infer about the effects of monetary policy shocks. Alternative instruments based on
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high-frequency changes in asset prices around monetary policy decisions (Gertler and Karadi,

2015) are generally only available for much shorter and more recent sample periods. Recent

work by Aruoba and Drechsel (2022) uses machine learning techniques to incorporate textual

data and nonlinearities to generalize the Romer & Romer approach, but unfortunately for

our purposes, their sample does not contain the high inflation episodes of the 1970s. The

downside of the Romer & Romer proxy is that the sample ends in 2007 because there is

no unique way to extend the measure during periods where the effective lower bound on

nominal interest rates binds. In Appendix D we present results for one possible extension

that incorporates the effective lower bound - results are similar to our benchmark analysis

presented here.9

In order to apply the SET-VAR approach, we require a suitable choice for the state

variable that drives the regimes. Given that central banks consider inflation to be the

relevant macroeconomic variable to target, and hence to determine monetary policy choices,

we consider it to be the natural candidate. For measurability (so that the RHS of the model

is not random given Ft−1), we use inflation from the previous period; that is, we set d = 1.

In the notation of Section 3, this means that st = πt−1
10. In theoretical macroeconomic

models, a one-period lag of the inflation rate is often an important state variable.

For the estimation of the model, we use a specification with 12 lags and three regimes,

and impose a flat prior on the threshold vector γ in the first estimation step. In the notation

of Section 3, we set γ and γ to be the minimum and maximum observed values of the state

variable in the sample, respectively. More details about the construction of the grid Γ can

be found in Appendix A. For the VAR parameters, we use a loose Minnesota-style prior with

overall shrinkage λ = 1 to ensure flexibility. Since the variables included in our SET-VAR

do not exhibit a clear stochastic trend, we follow standard practice (Bańbura et al. (2010),

Kilian and Lütkepohl (2017)) and center the coefficient on the first lag of each variable at

zero. We further impose the condition that, in each regime, the companion form of the

SET-VAR only has eigenvalues less than one in complex modulus. The prior for the Wishart

parameters is set following the automatic rule in Kadiyala and Karlsson (1997). Importantly,

we impose the same prior in all regimes; that is, our priors are not regime-specific, and hence,

the estimated threshold γ̂ is not directly affected by our choice of VAR priors. This is not a

9The extended sample ends in 2017, because there is no public access to more recent Tealbook forecasts
prepared by Board staff.

10Since year-on-year inflation is a very persistent series, different values of the lag d deliver very similar
results. We have performed robustness checks with respect to d; these additional results can be found in
Figure A-2 in the Appendix. The Appendix also contains an additional set of empirical results with the
addition of BAA spread to the model.
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necessary feature of the methodology outlined, but rather a choice, in order to avoid imposing

any prior beliefs about the different regimes ex ante.

With the above choice of state variable, lag order, and number of regimes, the SET-VAR

model (3) becomes:

yt =
∑3

i=1

(
B0,i +

∑12

j=1
Bj,iyt−j + Σ

1/2
i ηt

)
I(γi−1 < πt−1 ≤ γi). (9)

We consider the model (9) and estimate the threshold parameter γ = (γ1, γ2)
′ using our

novel Bayesian approach, allowing, in addition, for Σi to differ across regimes, as explained

in Section 3. This yields threshold estimates γ̂ = (5.49, 11.02) and the resulting regimes are

defined accordingly:11

• Low regime: πt−1 ≤ 5.49 (74.3% of the sample);

• Medium regime: 5.49 < πt−1 ≤ 11.02 (19.6% of the sample);

• High regime: πt−1 > 11.02 (6.1% of the sample).

Figure 2: Macroeconomic data in our VAR. Light and dark grey areas denote the medium-
and high-inflation regimes respectively.

Figure 2 displays our raw macroeconomic data against the estimated regimes. It is clear

that the high regime (i.e. the regimes in place whenever inflation is higher than 11.02 percent)

represents periods characterized by outliers, that is, observations that are not necessarily

11Figure A-1 in the Appendix displays the posterior objective function against the two-dimensional grid
for γ, which we maximize to obtain the threshold estimates.
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representative of the vast majority of the sample. Seventy-five percent of our sample is

represented by what we label the low regime. We interpret the third regime, which almost

exclusively covers the short era of non-borrowed reserves targeting by the Federal Reserve,

as effectively removing outliers from our estimation. Only having two regimes, and thus not

removing this outlier period, contaminates the estimates for the first two regimes and leads

to drastically different results, as we show in Appendix E. This provides a strong justification

for the inclusion of the third regime.

In Figure 3, we perform the following exercise: we estimate as an alternative a fully time-

varying parameter (TVP) VAR model using the same lag order and priors, using the quasi-

Bayesian kernel approach of Petrova (2019) and display the TVP model-implied long-run

means and variances of the series against the identified regimes of our SET-VAR model.12

As discussed, this TVP model is more flexible, since it allows the VAR parameters to change

in each period, but on the downside, it is also a highly parameterized model with a slower

nonparametric rate of convergence, and crucially, it can be unnecessarily overparameterized,

especially if it is applied to a setup where the parameters are only a subject to a small

number of regimes changes. It also makes it harder to interpret what drives the resulting

nonlinearities. We conduct this exercise to investigate whether the estimated long-run means

and variances of the flexible TVP model display regime-dependence along the lines of our

identified regimes. As is clear from Figure 3, not only the unconditional means but also the

unconditional variances of the series change with the SET-VAR-identified inflation regimes,

providing a justification for our selection of lagged inflation as the state variable, as well

as for our modeling choice to use regime-dependence in the second moments to identify the

threshold. Furthermore, this figure provides some evidence that the assumption of three

regimes is reasonable for our data set.

A central theme of our findings is that our approach endogenously filters out outliers or

unusual time periods: those with unusually high inflation rates. There is always a tension

about what to do with somewhat unusual periods in empirical analyses. On the one hand,

behavior during those periods might not be representative of most of the sample, resulting

in estimation bias; but on the other hand, periods of high volatility (which turn out to be

periods of high inflation in our sample) help tightly pin down estimates if the underlying

relationships are unchanged. The results in this paper lend credibility to the former view,

while, at the same time, providing a data-driven methodology that can help researchers

12We define the unconditional or long-run moments as the moments associated with the parameters in
place at each point in time, assuming no further parameter changes, as is common in the literature on
time-varying parameter VARs (Cogley and Sargent, 2005; Primiceri, 2005).
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Figure 3: Time-varying LR means and variances against estimated regimes

decide whether outliers are contaminating results.

4.2 The Effects of Monetary Policy Shocks

In this section, we consider how the transmission and effectiveness of monetary policy can

differ when the economy is in different inflation regimes. We estimate the structural SET-

VAR model with the Romer & Romer instrument as a proxy for the policy shock. Formally,

our identification strategy involves a Cholesky factorization of the regime-dependent covari-

ance matrix, ordering the Romer & Romer proxy first in the vector of observables, following

Plagborg-Møller and Wolf (2021). We normalize the Cholesky factor to have ones on the

main diagonal; then the first column of the resulting matrix, associated with the policy in-

strument, yields the effect of the monetary shock on impact on all variables, up to scaling.

Given that impulse responses are identified only up to scale in our setting, we further normal-

ize the impact vectors to ensure better comparability across inflation regimes. Namely, we

analyze a monetary policy shock that causes an immediate increase of 50 basis points in the

FFR in every regime. We first look at what happens if we disregard any nonlinearities and

estimate instead a linear Bayesian VAR (using the same priors as in the regime-dependent

case). The posterior median and 68 percent posterior bands of the resulting impulse re-

sponse functions to a 50 basis points monetary policy shock are displayed over a horizon of

90 months in Figure 4. From the figure, we find that there is no statistically meaningful

movement in unemployment and inflation in response to a monetary policy shock if we focus
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on the linear model, a result that few policymakers would take at face value. Many papers

in the VAR literature that study monetary policy shocks and their effects find similar in-

conclusive or even counter-intuitive evidence, which often also depends on the exact sample

used (Bu et al., 2020; Ramey, 2016). One compelling explanation for such discrepancies in

the empirical results could be that if the true underlying effects of policy shocks were in

fact regime-dependent, then fitting a linear model on differing samples that could contain

various proportions of each separate inflation regime would result to large variations in the

empirical findings.

10 20 30 40 50 60 70 80 90

-1

-0.5

0

0.5

1

1.5

2

2.5

Federal Funds Rate

10 20 30 40 50 60 70 80 90

-1

-0.5

0

0.5

1

1.5

2

2.5

3

IMPULSE RESPONSE FUNCTIONS

Unemployment

10 20 30 40 50 60 70 80 90

-1

-0.5

0

0.5

1

1.5

2

2.5

3
Inflation

Figure 4: Fixed-coefficient impulse responses - posterior median and 68 percent posterior
bands.

Next, we demonstrate how these problems can be mitigated by explicitly allowing for

regime-dependence associated with the underlying level of inflation in the economy. While

in the linear model, there is a unique notion of an IRF, in the nonlinear model, due to the

nonlinearities present, there are multiple ways to define an IRF. In particular, we compute

two types of IRFs. The first type is computed as in the linear model, conditional on a

particular regime staying in place. This way of reporting results is common in the nonlinear

VAR literature (Cogley and Sargent, 2005). The IRFs computed this way represent the

responses to a policy shock, given that: (i) inflation at horizon 0 is within each regime

(far from the threshold values), (ii) there are no other shocks, and (iii) the policy shock

is sufficiently small, so that inflation remains in the same regime in all future horizons

considered. Figure 5 presents the IRFs conditional on staying in each regime13. The left

column displays the response when inflation in the last period is less than 5.5 percent. There

13The impulse responses of the Romer & Romer instrument can be found in Figure A-3.
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is a persistent increase in nominal rates, but it is not associated with any significant increase

in the unemployment rate. On the other hand, inflation falls after around two years, but the

effect is relatively small and short-lived, with no impact after 40 months. When inflation is

between 5.5 percent and 11 percent, we find a response of the short-term interest rates similar

to that in the low-inflation case, but this interest rate change is associated with a substantial

increase in the unemployment rate as well as a more pronounced, but also more delayed, fall

in inflation. In fact, the initial increase in inflation, which is present, but not significant in

the low-inflation regime, is now significant, but short-lived. In this medium-inflation regime,

the responses of unemployment and inflation are much longer-lived and the monetary policy

shock still has effects after 96 months (8 years). These long-lived responses are an outcome

of the larger persistence of the series in this regime, which we discuss further in Section 3.3.

The response of inflation can be explained by price-setters changing prices more quickly in

high-inflation environments, a common result in the literature on state-dependent pricing

(Golosov and Lucas, 2007). Finally, for completeness, the last column of Figure 5 displays the

IRFs in the high-inflation regime, where we find that the response of the nominal interest rate

is much shorter-lived and leads to a small, but significant, decrease in the unemployment rate

and a small, but significant increase in inflation. Both of these counter-intuitive movements

are short-lived. As mentioned above, our preferred interpretation is that the third regime

effectively serves as an endogenous removal of periods characterised by unusual policy and

outlier observations.

To summarize, once we allow for dependence on the level of inflation, we find that mone-

tary policy has meaningful effects on inflation except when inflation is very high. Addition-

ally, it also has substantial effects on labor market outcomes when inflation is not too low

(higher than 5.5 percent). These results have important implications for policymakers, since

the timeline and tradeoffs they face are different depending on the underlying level of infla-

tion. The lack of impact on labor market outcomes when inflation is not high can, at least

partially, explain the recent U.S. experience whereby inflation was brought down without a

substantial increase in the unemployment rate (recall that this episode is not in our sample;

so our model can produce “out-of-sample” conjectures for this period, since it has not been

fitted to those observations). Importantly, not only do the effects of policy surprises differ

on impact but they also have very different dynamics and transmission across regimes, with

the total effects being much larger but also taking much longer to realize when inflation

is in the medium regime, implying that after inflation increases beyond the threshold, the

timing of policy surprises’ impact on macroeconomic outcomes changes and policy effects
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Figure 5: Regime-dependent impulse responses - posterior median and 68 percent posterior
bands.

take considerably longer to realize.

In addition, we compute time-specific IRFs, which highlight further the nonlinearities of

the model. In particular, different starting points, as well as the size and sign of the policy

shock, could result in different responses, since all these three considerations may switch the

model to different regimes at different horizons. We compute these period-specific IRFs to a

δ that may embed the sign and size of the shock as the difference between the h−step ahead

forecast implied by the model when there is a single policy shock at period t and no other

shocks and the h−step ahead forecast in the absence of any shocks:

IRF δ
t (h) = E (yt+h|Ft−1, η1,t = δ, ηj,t+h = 0 for ∀j ̸= 1 ∪ ∀h ≥ 1)

−E (yt+h|Ft−1, ηj,t+h = 0 for ∀ j and h) .

The algorithm to compute these period-specific shocks can be found below.
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Period-Specific IRF Algorithm

Step 1. Given the posterior of B and Σ in (8) and the chosen period of interest t,

determine the regime i at t and set ino shock
t = ishockt = i. Set ŷshockt−1:t−p = ŷno shock

t−1:t−p = yt−1:t−p.

For each posterior draw k for Bk and Σk iterate between Steps 2-4 below.

Step 2. For h = 1, given the initial period regime ishockt = ino shock
t , determine the

regime-specific coefficients and compute the one-step ahead projections:

ŷshockt+1 = Bk
0,ishockt

+
∑p

j=1
Bk

j,ishockt
ŷshockt+1−j + Σ

k,1/2

ishockt
[δ, 0, ..., 0]′

ŷno shock
t+1 = Bk

0,ino shock
t

+
∑p

j=1
Bk

j,ino shock
t

ŷno shock
t+1−j ,

where δ contains the size and sign of shock (ordered first in our application) and Σ
1/2

ishockt

encodes our (regime-specific) identification scheme.

Step 3. For h = 2, ..., H, given the previous period regimes ishockt+h−1 and ino shock
t+h−1 ,

determine the regime-specific coefficients and compute the projections:

ŷshockt+h = Bk
0,ishockt+h−1

+
∑p

j=1
Bk

j,ishockt+h−1
ŷshockt+h−j

ŷno shock
t+h = Bk

0,ino shock
t+h−1

+
∑p

j=1
Bk

j,ino shock
t+h−1

ŷno shock
t+h−j ,

and determine the regimes ishockt+h and ino shock
t+h at t+ h.

Step 4. Given ŷshockt+h and ŷno shock
t+h , compute and store the corresponding posterior draw

for the IRF as IRF δ
t (h) = ŷshockt+h − ŷno shock

t+h .

Figure 6 contain the IRFs for selected periods14. From Figure 6, it is clear that as the

economy switches between regimes, the effects that a policy shock has can be very different.

We find very similar responses in 1973 (and before) as in 1984 (upto 1991) and any period

after 1995; since for all these periods, given that the shock is not large enough to cause

a switch, the dynamics is governed by the coefficients in the low inflation regime. On the

other hands, in periods such as 1978 and 1984, we have dynamics guided by the high inflation

regime, and in addition, we have a large uncertainty around the responses, since switching is

allowed from one horizon to another for each posterior draw. Finally, 1991 (as well as some

periods in the late 1970s and early 1980s) is a period of medium regime inflation, and this

results in unemployment and inflation responses that are considerably more persistent than

14We found no serious asymmetries between the responses of positive and negative, as well as big and
small shocks, so we focus on the normalized 50 basis points responses. In the case of very large shocks, such
asymmetries are expected to be exacerbated since large shocks have the power to switch regimes.
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Figure 6: Impulse responses for selected periods - posterior median and 68 percent posterior
bands.

responses from the low inflation regime that takes place after 1991.

4.3 How Different Are the Regimes?

We now provide some reduced-form analysis based on our estimated regime-dependent VAR

model. This analysis is useful to assess whether there are further differences in the economic

environment across regimes, but also to provide a background for the uncovered regime-

dependence in the monetary policy effects in Section 4.2. Given the stationarity restriction

that we impose in each regime, we can estimate regime-specific unconditional first and second

moments. In this section, we focus on the correlation between unemployment and inflation

and persistence of variables across regimes; we provide evidence for other first and second

moments in Appendix G.

Figure 7 displays the posterior median and the posterior 25th and 75th percentiles for the

correlation between inflation and unemployment across the three inflation regimes. While the

long-run correlation between inflation and unemployment does not have a structural (Phillips

curve slope) interpretation, it does measure the unconditional reduced-form relationship
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between the two, which can provide a summary of the inflation-unemployment relationship.

From the figure, we find that this correlation in the low-inflation regime has a negative sign, as

expected from a New Keynesian model, but it becomes considerably stronger as the economy

moves into the medium-inflation regime. The stronger inverse relation in the medium regime

is consistent with our finding of policy shocks having larger effects on unemployment in that

regime. Finally, in the high regime, the correlation between inflation and unemployment

switches sign and becomes positive, consistent with the periods of stagflation in that regime,

implying that in high-inflation settings, inflation is actually harmful rather than beneficial

to employment.
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Figure 7: Unconditional correlations if each regime was in place indefinitely. Central lines in
the boxes are the posterior medians, and the edges are the posterior 25th and 75th percentiles.
The whiskers extend to most extreme data points not considered outliers.

Since we found different transmission of the policy shock, with some effects lasting con-

siderably longer while others disappearing within a few months, we investigate whether

variables have different persistence across inflation regimes (see Appendix G for details on

how this measure is computed).s

Figure 8 presents the posterior medians and the posterior 25th and 75th percentiles for

the persistence measure of inflation, unemployment, and FFR across the three regimes over

horizons of 1, 6, 12, and 48 months. It is clear from the figure that there is considerable

regime-dependence in the persistence of the series. The estimated persistence of inflation

varies dramatically across regimes and is low when inflation is low. When the economy is
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in a medium inflation regime, the persistence of inflation is dramatically higher even at very

distant horizons. This finding has important policy implications, since it is evident that

inflation persistence depends on the level of inflation and that whenever inflation finds itself

above the estimated threshold of around 5.5 percent, its dynamics slows, making inflation a

more persistent process and hence considerably altering the lags required to achieve policy

objectives. The same is true for unemployment, which also has implications for how effective

policy is and how long it takes to achieve policy targets related to unemployment across

regimes.
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Figure 8: Persistence of our variables if each regime was in place indefinitely. Central lines in
the boxes are the posterior medians, and the edges are the posterior 25th and 75th percentiles.
The whiskers extend to most extreme data points not considered outliers.
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5 Conclusions

In this paper, we build a self-exciting threshold Bayesian VAR model to investigate whether

monetary policy depends on inflation levels. The econometric contribution of the paper is

twofold. First, we allow for regime-dependence in the variance of the series for full likelihood-

based identification of the threshold parameter, which is particularly relevant for macroeco-

nomic series that have been documented to undergo volatility regimes over time. Second,

we combine two-step frequentist estimation with Bayesian regularization using priors on the

VAR parameters, resulting in a parsimonious nonlinear time-series model. This method sim-

plifies and accelerates estimation compared to fully Bayesian threshold parameter treatments,

while maintaining interpretability relative to Markov-switching models, where regimes are

driven by unobserved latent processes.

Using our self-exciting threshold Bayesian VAR, we find that the effects of monetary policy

vary substantially with the underlying level of inflation in the economy. For most of our

post-WWII sample, inflation has been less than 5.5 percent in the U.S., which our model

identifies as a period during which monetary policy has no meaningful effects on labor mar-

kets. Even though our sample ends in 2007 due to the availability of the instrument series

used to identify the effects of monetary policy, our results are consistent with the recent

“soft landing” of the U.S. economy. On the other hand, when inflation is between 5.5 and

11 percent, the effects of monetary policy are larger and longer-lasting, since variables are

much more persistent in this regime, and the effects of monetary policy on unemployment

are sizable and significant.

29



References

Alessandri, Piergiorgio, and Haroon Mumtaz. 2017. “Financial conditions and density

forecasts for US output and inflation.” Review of Economic Dynamics 24 66–78.

Alessandri, Piergiorgio, and Haroon Mumtaz. 2019. “Financial regimes and uncer-

tainty shocks.” Journal of Monetary Economics 101 31–46.

Aruoba, S Borağan, and Thomas Drechsel. 2022. Identifying Monetary Policy Shocks:

A Natural Language Approach. Centre for Economic Policy Research.
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A Grid Construction

For the estimation of the threshold vector γ, we consider a fine grid of Nγ equidistant points

Γ = (γ, . . . , γ) for all the elements in γ, and perform a grid search over Γk−1, which denotes

the (k − 1) Cartesian product of Γ; in our case k = 3 and γ = [γ1, γ2]
′. In particular, to

consider all of the possible observed values of the state variable, we fix γ = min{st} and

γ = max{st}. In the sample we analyze, min{st} = 1.07 and max{st} = 14.76. The number

of grid points Nγ is chosen to accommodate the trade-off between fineness of the grid and

computational efficiency. For our application, we choose Nγ = 500, which implies increments

in the state variable of approximately 0.03 across grid points. The posterior evaluation is

performed imposing the condition that: (i) γ2 > γ1 always, and (ii) the distance across the

points over which we compute the posterior is constant. The grid search works as follows:

1. For a grid point gi in Γ, set γ1 = gi;

2. For each grid point γ2 = {gi, gi+1, . . . , γ}, evaluate the posterior (equation 6);

3. Set gi = gi+1 and repeat 1-2 until γ1 = γ2 = γ;

4. Search for the maximum value of the posterior over the two-dimensional grid Γk−1.

The corresponding value of the threshold vector is γ̂.

Figure A-1 displays the posterior objective function against the two-dimensional grid.

A-2



B Additional Results

Figure A-1: Objective function
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Figure A-2: IRFs with st = πt−6
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C Model with BAA Spread

As an additional exercise, we estimate a larger SET-VAR(12) with three regimes that also

includes a measure of financial conditions. In particular, we follow Caldara and Herbst

(2019) and use the BAA spread. This is the Moody’s seasoned BAA corporate bond yield

relative to the yield on ten-year treasury constant maturity. Using the same state variable

and methodology as in the main specification of the paper, we find the threshold estimates

to be γ̂ = (5.26, 11.12), which are in line with our main results. The corresponding IRFs can

be found in Figure A-5.

Figure A-4: Objective function
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Figure A-5: Regime-dependent impulse responses - posterior median and 68 percent posterior
bands.

D Model Using Data Up to 2017

We also estimate a SET-VAR(12) with three regimes including data up to December 2017.

To account for the zero-lower bound (ZLB, or effective lower bound) period in this sample,

we use a measure of the shadow interest rate constructed by Wu and Xia (2016) instead of

the federal funds rate when available. This series is available starting in 1990 and updated to

2023. For the years prior to 1990, we use the federal funds rate as in the main specification

in the paper. Due to the Romer & Romer proxy series ending in 2007, we employ a similar

measure provided by Silvia Miranda-Agrippino. Then, using the same state variable and

methodology as in the paper, we find the threshold estimates for this longer sample to be

γ̂ = (5.95, 11.03), very close to those in the paper. The resulting IRFs can be found in Figure

A-7.
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Figure A-6: Objective function
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Figure A-7: Regime-dependent impulse responses - posterior median and 68 percent posterior
bands.
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E Model Imposing Two Regimes

To understand the value of the third regime, we estimate a SET-VAR(12) with two regimes,

using the same data, state variable and priors as before. The threshold is now considerably

different γ̂ = 8.26, in-between the two values we find when including a third regime. The

associated IRFs are plotted in Figure A-8 and are also different. The implied IRFs for the

high regime look like a mix between the medium and high regimes of the main specification

while the IRFs for the low regime look like a mix of the low and medium regimes, which is

undesirably since the unusual periods of the third regime contaminate the estimates of the

model with two regimes; we use this as a justification for the inclusion of a third regime.
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Figure A-8: Regime-dependent impulse responses - posterior median and 68 percent posterior
bands.
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F SSR Based Threshold Estimation - Constant Vari-

ance

To address the relevance of incorporating regime-dependence in the variance of the model for

the threshold estimation, we perform an additional exercise in which we follow the standard

approach in the literature for estimating our model. That is, we estimate the thresholds from

the SSR objective function as the first estimation step, and then estimate the VAR imposing

constant variance across regimes for the second step. Following the same approach of the

main specification, we evaluate the SSR at the posterior modes for the regime-dependent

βi’s over the threshold grid and look for its minimum. The implied thresholds in this case

are γ̂ = (6.97, 11.28), the first being quite different from what we find using our proposed

estimator. The associated IRFs are plotted in Figure A-9.
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Figure A-9: Regime-dependent impulse responses - posterior median and 68 percent posterior
bands.
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The difference we observe in the IRFs could be not just due to the constant variance,

but also from the different estimated thresholds. To further investigate the implications

of the former, we also show in figure A-10 the regime-specific unconditional correlations,

as we do for the main specification. Since the model now has constant covariance matrix

and this matters for the computation of the correlations, one of our main results on the

trade-off between inflation and unemployment changes. We use this as a justification for the

likelihood-based model with regime-dependence in the covariance.
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Figure A-10: Unconditional correlations if each regime was in place indefinitely. Central
lines in the boxes are the posterior medians, and the edges are the posterior 25th and 75th

percentiles. The whiskers extend to most extreme data points not considered outliers.

G Further Evidence on Differences Across Regimes

For the results presented in this section, we work with the companion form of model (9) :

zt =
∑k

i=1
(µi + Aizt−1 + εi,t) I(γ̂i−1 < πt−1 ≤ γ̂i), (A-1)
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where

zt :=


yt
yt−1
...

yt−p−1

 , µi :=


B0,i

0
...
0

 , Ai :=


B1,i B2,i . . . Bp,i

IM 0 . . . 0
...

. . .
...

0 IM 0

 , εi,t :=


Σ

1/2
i ηt
0
...
0

 .

Given the stability condition max1≤i≤k ρ (Ai) < 1 where ρ (.) denotes the spectral radius, we

can compute the implied regime-specific unconditional means τi and unconditional variances

Ui for each variable from the vector MA(∞) representation (assuming each regime remains

in place indefinitely) as

τi = (I − Ai)
−1µi

Ui =
∑∞

j=0
Aj

iΩi(A
j
i )

′,

where Ωi = E[εi,tε′i,t]. Figure A-11 displays the estimated posterior densities for τi and Ui for

each regime.

The results in Figure A-11 confirm the existence of differences across regimes. This is

evident not only when looking at the long-run trends but also when looking at the volatility

of the series, which is a further justification for our modeling choice to allow for the threshold

estimation to also depend on the second moment of the variables included in the model.

To investigate the persistence across regimes, we compute the regime-specific persistence

h steps ahead for each variable, using the measure proposed by Cogley et al. (2010):

R2
i,h,k = 1−

e′k(
∑h−1

j=0 A
j
iΩi(A

j
i )

′)ek

e′k(
∑∞

j=0 A
j
iΩi(A

j
i )

′)ek
(A-2)

where ek is the k
th standard basis vector for RMp, which selects the kth variable in the system.

This measure accounts for the fraction of the total variance of each variable explained by

past shocks at different horizons. It takes values between 0 and 1, with numbers closer

to 1 indicating higher model-implied autocorrelation for the variable, suggesting that its

dependence on past shocks dies out more slowly, and, hence, implying a more persistent

variable.
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Figure A-11: Posterior distribution of unconditional means and standard deviations if each
regime was in place indefinitely.
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