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Abstract
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1 Introduction

What are the effects of monetary policy on the economy? Although this question has long
been a cornerstone of macroeconomic research (see (Christiano et al| (1999) and the refer-
ences therein), it has recently become extremely pertinent again, as, after the COVID-19
pandemic, most major economies experienced inflation rates not seen since the early 1980s.
In this paper, we investigate whether the effects of monetary policy and the tradeoffs that
policymakers face depend on the level of inflation that prevails in the economy. Policymakers
rely on economic models to decide their course of action, but much of the research on the
effects of monetary policy is based on linear models with constant parameters, disregard-
ing any potential state-dependence, for example on the underlying level of inflation. There
are reasons to expect that economic agents’ behavior is different when inflation deviates
considerably from its target. For example, [Weber et al. (2023)), in a series of randomized
controlled trials (RCTs), show that both consumers and firms react to information and form
expectations differently when inflation is high. Households might start to pay more attention
to inflation, in line with rational-inattention-based theories (Sims| (2003)) and [Weber et al.
(2023)); firms change their price-setting behavior in high-inflation environments (Golosov
and Lucas, [2007)); and the central bank might adjust its behavior to more aggressively
combat inflation. Ascari and Haber| (2021) also document nonlinearities in the response of
inflation and real activity to monetary policy shocks. [[| Historical evidence from the oil
price crises of the 1970s also indicates that high inflation is associated with more persistent
macroeconomic variables and greater volatility. Ignoring this state-dependence can lead to
flawed empirical conclusions.

In this paper, we address this problem by building a parsimonious and computationally
tractable nonlinear vector autoregressive (VAR) model, a self-exciting threshold (SET-)
Bayesian VAR model that delivers easily interpretable nonlinearities and allows the data
to identify the inflation regimes as well as the regime-dependent parameters. We identify
the effects of monetary policy using an instrument for monetary policy shocks, an approach
commonly used in the literature. As such, our identification strategy within each regime is
the same as that in many papers that focus on linear models.

We find that our approach estimates regime changes at high levels of inflation, thus endoge-
nously separating periods where inflation rates are not representative of most of the sample.

Seventy-five percent of our sample falls into one inflation regime where year-over-year CPI-

!They find that inflation reacts stronger in high inflation setups, which is consistent with our empirical
findings.



based inflation is less than 5.5 percentﬂ In this regime, the persistence of macroeconomic
variables is low, and hence the effects of shocks are short-lived. Monetary policy can reduce
inflation, but it has no meaningful effect on the unemployment rate, thus providing a ratio-
nale for the recent “soft landing” of the U.S. economy, at least once year-over-year inflation
became lower than 5.5 percent. This recent episode is not included in our sampleEL so it is
not the case that our model simply fits these recent data. Instead, this result is driven by the
different reduced-form relationships that we uncover between inflation and unemployment
when inflation levels are low and stable. Once inflation becomes larger, monetary policy has
larger and more persistent effects on prices and a significant effect on the unemployment rate.
Finally, we find that the persistence and the effects of policy shocks do not monotonically
change with the level of inflation, and once the underlying inflation rate becomes double-digit
(larger than 11 percent), the policy effects disappear and we find a price puzzle. A standard
linear VAR model, applied to our sample, would incorrectly suggest that monetary policy
has no effect on prices or unemployment, as it averages effects across the distinct regimes.
Part of the contribution of the paper is methodological. We built a self-exciting threshold
Bayesian VAR model, allowing for regime-dependence in the variance of the series for full
likelihood-based identification of the threshold parameter, which is particularly relevant for
macroeconomic series that have been documented to undergo volatility regimes over time.
This is novel relative to existing approaches based on sum-of-square-residuals (SSR) mini-
mization which either assume a constant variance or only allow for variance regimes in the
second stage estimation, but do not utilize volatility regimes to aid the threshold parameter
identification. We demonstrate in a small Monte Carlo exercise that when regime-dependence
in the volatility is present, not taking this into account in the first stage threshold estimation
can lead to inconsistent threshold estimates.

Our second methodological contribution is computational: we combine two-step frequentist
estimation procedures with Bayesian regularization via the use of priors on the VAR param-
eters in order to deliver a parsimonious nonlinear time series model. We can ignore posterior

uncertainty on the threshold parameters without distorting posterior inference on the VAR

2Using a different modeling approach and only allowing for two regimes, |(Canova and Pérez Forero| (2024)))
discover a strikingly similar threshold of 5.3 percent.

3We use the updated Romer and Romer| (2004) monetary policy shock series as our instrument, which is
based on staff forecasts from the Board of Governors before each FOMC meeting. These forecasts are made
public with a five-year lag, preventing us from extending our analysis to the most recent period. Similar
issues arise with the instrument proposed by |Aruoba and Drechsell (2022). Other instruments based on
high-frequency variation in asset prices are available for more recent periods, but these samples start in the
late 1980s, missing the high inflation periods of the 1970s and early 1980s.



parameters since the contraction rate of the posterior of the threshold parameters is faster
and hence conditioning on the entire posterior of the threshold or just on a consistent point
estimate is equivalent when the sample is large. The main advantages of our econometric
approach are: (i) it can handle a large number of variables allowing for standard Bayesian
treatment on the large dimensional regime-dependent VAR parameters, (ii) it is considerably
easier and faster to estimate than the model with a fully Bayesian treatment of the thresh-
old parameters, and (iii) it provides a simple and easily interpretable source of nonlinearity,
relative to Markov-switching models widely used in the literature, where the regimes are
driven by an unobserved latent process.

The remainder of the paper is organized as follows. Section 2| presents a stylized example to
highlight the pitfalls of disregarding nonlinearities when estimating impulse responses/causal
effects of monetary policy and motivate the usefulness of the threshold model. Section |3|es-
tablishes in detail the econometric methodology and explains the novelties of our model
relative to existing threshold models in the literature. Section presents a small Monte
Carlo exercise that demonstrates the merits of our novel approach relative to existing ap-
proaches. Section {| contains our empirical application to monetary policy in the US across
inflation regimes. Section [5| concludes and the supplementary Appendix contains some ad-

ditional results.

2 The Pitfalls of Disregarding Inflation Regimes - An

Example

To highlight that the causal effects of monetary policy can change dramatically once we
allow for nonlinearities, which can endogenously remove outliers/unusual periods of high
inflation, we present a stylized Monte Carlo exercise to illustrate this issue in a controlled
environment. For simplicity, we focus on one endogenous variable z;, one shock of interest m;
and a variable u; that summarizes the persistent effects of all other variables in the economy.
Our data-generating process is:

Ut = PUt—1 + V¢
By + pzpq +up if 21 < Z (1)
21 =
' ymy + pzi—1 + u; otherwise (2)

where v; and m; are zero-mean i.i.d. Gaussian random variables, and Z is the threshold

value, which we calibrate so that z; infrequently exceeds the threshold and so the model is
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more often in the first regime. We assume opposing effects of the shock in the two regimes:
B < 0 and v > 0. The exact calibration is p = 0.8, 2 =13, 8 = —0.5, v =7, my ~ N(0,1),
and v; ~ N(0,1.5). We simulate 5,000 samples of size 500 each. For each sample, we
run two ordinary least squares regressions to estimate the policy effect of m; on z;: one
regression for the entire sample and another where we run the same regression, but only for
the observations where z;_; < Z so that we do not consider the outliers. This is equivalent to
estimating the threshold model that we present later with knowledge of the true threshold

value.
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Figure 1: Histogram of OLS coefficients with and without outliers (top panel) and frequency
of outliers (bottom panel). Black lines are kernel estimates of the densities associated with
each histogram.



Even with infrequent outliers in each sample (the frequency of outliers across the sample
is around 5 percent), the outliers substantially contaminate the results if regime-dependence
is ignored, as expected. We argue that although the blue histogram in the top panel of Figure
would ultimately collapse to the total pooled effect of the shock across the two regimes,
this is not a value that most economists would be interested in. Instead, they would be
interested in the causal effects of m; on z; for most of the sample, which is -0.5 and well
approximated by the light blue histogram in the top panel, as well as in the different and
possibly relevant causal effects in the extraordinary periods when z; exceeds the threshold.
Pooling the regimes together by fitting a linear model can cause a bias that does not vanish

as the sample size increases and can lead to erroneous empirical conclusions.

3 Methodology

In this section, we describe our econometric methodology. This methodology is set up to
identify regime-specific causal effects as outlined in the previous section. Modeling nonlin-
earities is a challenging task, especially in environments with dependent data. The modeling
choices we make in this paper are guided by three main goals: (i) parsimony, (ii) transparency
and (iii) computational speed. We prefer a simple model in which the factors determining
the nonlinearities are clear and easily interpretable. Moreover, our model is set up so that
inference is computationally fast and straightforward, while at the same time allowing for
regularization via the use of priors, opening up the use of our nonlinear model for applica-
tions with many observables. In a nutshell, our model is a Bayesian self-exciting threshold
VAR: a piecewise-linear VAR model where breaks in the model’s parameters are governed by
lagged observables and, within each regime, defined by the model’s threshold parameters, the
model is linear and inference is standard. We make two important departures from existing
models in the literature. First, we allow the regimes to be identified via regime-dependence
in the conditional variance in addition to regime-dependence in the conditional mean of the
series. Such an extension is relevant for macroeconomic applications where series undergo
different volatility regimes over time and hence information from regime-dependence in the
second moment may be useful to exploit in order to identify and estimate more precisely
the threshold parameters. The second novelty of our approach relative to existing models in
the literature is the use of Bayesian inference on the VAR parameters while maintaining fast
and efficient Bayesian estimation of the threshold without the need for a computationally

expensive MCMC step. The remainder of this section provides a detailed technical descrip-



tion and justification of our modeling approach.

We first provide a brief discussion of the standard practice of estimation of threshold VAR
(T-VAR) models in the literature before we outline how we depart from it and then estab-
lish the novel estimation methodology that we adopt. The univariate TAR model was first
introduced by [Tong (1977) and generalized in various directions by [Tong and Lim (1980)),
Chan (1993), and [Tong| (2011), among others. Here we consider a multivariate generalization

given by an M x 1 T-VAR model of order p, characterized by k regimes:

k
Y = Zi: <Bo7, + Z BJ Ui ]> ()(70) Ly, ne|Fi1 ~ (0, Ins) (3)

where the index i = {1, ..., k} refers to each regime, By, is a vector of state-dependent inter-
cepts, B;; are state-dependent autoregressive matrices with all the roots of the associated
characteristic polynomial outside the unit disk for each i, 3 is a positive definite covariance
matrix and 7, are martingale difference innovations with F; denoting the natural filtration of
n, containing information up to t. The choice of matrix square root to obtain ¥'/2 will encode
the identification restrictions that we use to identify the effects of monetary policy in our ap-
plication; we discuss the details of our choice later. The parameter 7° is a (k—1)x 1 threshold
parameter vector which defines the regimes, with 7 < 79 < --- < 49, and \Ify) (7°) is an
indicator function equal to one whenever a threshold condition associated with regime i is
satisfied at period ¢. It is standard to assume that the regimes are driven by an underlying
state variable s; which is J;_;-measurable, which can be either internal or external to the
model. The i regime is defined as all periods ¢ such that U\” (1) = 1(%_, < s, < 9) (with
T (40) = 1(s, < 49) and TP (40) = I(s, > 40_,) for the first and last regimes respectively),
where | is the indicator function.

Next, we discuss the choice of the state variable s;. Whenever s; is a lagged variable
from the vector y, with lag d € {1, ...,p}, the model is called a self-exciting T-VAR (SET-
VAR) model. A SETAR model and its multivariate extensions have two important desirable
properties: (i) the nonlinearity through the indicator functions makes the model piecewise
linear, which facilitates simple estimation relative to more complex nonlinear models; (ii)
while simple, the self-exciting mechanism can capture important nonlinearities that are par-
ticularly relevant in cyclical data and SETAR models can generate statistical phenomena
ranging from jump resonance, nonlinear vibrations, jump cycles, harmonic distortions and
even chaos (see [Tong and Lim| (1980) for a discussion and examples). Consistency and the
resulting asymptotic distributions of the LS estimators in SETAR models are established
in (Chan| (1993), and the associated limit theory in this literature is established by typically



showing that the Markov chain defined by the companion form of the process is geometrically
ergodid]

Letting B; = (Bo,, B1i...,Bp;) and f; = vec(B]), conditional on the true threshold
parameter 7°, the estimation of the regime-dependent parameter vector f3; is standard. In
particular, conditional on the true value of v, the OLS estimator of ;, for each regime 1, is
v/n—consistent and asymptotically normal (see, e.g. [Tong (2011)). Since 7 is unknown in
most empirical applications, a consistent estimator of « is required for the estimation of ;.
This is typically done via a numerical minimization of the sum of squared residuals (SSR)
as a function of v (see Hansen! (1997)). In practice, the vector 8 = (f1, ..., 5;)" is estimated
via OLS for a grid of values of the threshold. Then, 3 = (Bi, . BA,’f)’ is used to compute the
residuals for all possible values of the grid for the threshold parameter v and an estimator

for v is given by the value that attains the minimum SSR:

n n
~ . NN . . /
Y = arg min E €64 = argmin | min E €1E¢
v t=1 Y BB t=1

where ¢; = <yt S Iy ) 8,0 (7)), £ = (yt -3 Iy R (7)) and z; =
(1, Yi_1s ...yg_p)/. The minimizer 4 of the above minimization is equivalent to the estimator

4 coming from joint minimization of the sum of squared residuals function:

~ n
(% ﬁ) —argmin}  sier

The standard identification assumption in the literature is that for all regimes i € {1,... k},

the following condition holds:

in other words, at least one of the elements in the parameter vector [ is required to differ
across any pair of regimes. Super-consistency of 4 to the true threshold value can be es-
tablished under regularity conditions (e.g. (Chan (1993)) with a faster rate of convergence
to the true 7° (n instead of the usual parameteric y/n). Inference in this model is typically
conducted in two steps: (i) 7y is estimated and the estimator ¥ is set as the threshold in the

subsequent analysis, and (ii) conditional on 4, inference on f3; is standard, consistent and

4This requires stability conditions on the autoregressive parameters across regimes, such as max; p (F;) <
1, where p (.) denotes the spectral radius and F; is the companion matrix based on the autoregressive matrices
B;; in regime 1.



asymptotically normal. The super-consistency for 4 implies that estimation uncertainty of
v does not have a first-order effect on inference (e.g. limit distribution) for ; and hence
can be ignored, providing a justification for the two-step plug-in procedure described above
and widely used in the literature. A similar two-step estimation method can be found in
Samia and Chan| (2011)), where the objective function considered for 7 is a likelihood function
instead with error covariance constant across regimes. While in some papers the variance
is allowed to be regime-specific (e.g. |Chan (1993)) and Tsay (1998)) in the second estima-
tion stage, estimation of the threshold « is identified only through regime-dependence in the
conditional mean of the series. This could be a drawback of existing methods if additional
information on the regimes contained in the second moments is ignored when estimating the
threshold parameter v in the first step. Since such additional information on the volatility
of the series may be useful for identifying ~, particularly in macroeconomic data where we
know that some regimes were characterized not just by mean but also by volatility changes,
we extend the estimator of Samia and Chan| (2011)) by proposing a novel way to estimate -
by including the parameters in ¥ in the regime-dependent parameter vector. Our approach
is based on the use of a likelihood function, and, crucially, we allow for the variance param-
eters X to switch across regimes (that is, ¥; may differ across 7) in both estimation stagesﬂ
enabling us to exploit additional information contained in the second moment of the series.
Such an extension is economically relevant, since it allows us to identify regimes even when
there may not be an associated break in the conditional mean but only in the conditional
variance of the data. There is ample empirical evidence for the importance of allowing for
the volatility of the series to change over time to properly capture the behaviour of the
macroeconomy (see, e.g. |Cogley and Sargent| (2005, Primiceri (2005)).

The second novelty of our estimation procedure relative to existing frequentist and
Bayesian approaches is that we allow for a Bayesian treatment of the model’s autoregres-
sive parameters and covariance matrices across regimes as well as for a prior distribution
on the threshold parameter while maintaining computational efficiency. We achieve such
computational gains and the proper Bayesian treatment for the regime-dependent VAR pa-
rameters by using a Bayesian point estimator for . Since such a point estimator converges
at a faster rate than the VAR parameter estimates, the two-step procedure that we propose

is well-justified, since the posterior uncertainty of v does not affect the posterior of the VAR

5 A semi-parametric equivalent to our parametric likelihood approach would amount to considering a GLS
rather than an OLS objective function, i.e., minimization of the Mahalanobis instead of the Euclidean norm
of the innovations in the first stage.



parameters for large samplesﬁ. In other words, letting §; = [3!,vech (%;)'] where vech(.)
denotes the half-vec operator, the difference between the scaled posterior centered around
the true value 9 of the VAR parameters for regime 7 conditional on posterior values of the

threshold v and conditional on a super-consistent estimator 4 satisfies:

This approach is in contrast to a fully Bayesian treatment of the threshold parameter -,
(see, e.g. (Chen and Lee| (1995), and Alessandri and Mumtaz (2017) and |Alessandri and
Mumtaz| (2019) for applications), which requires approximating the posterior of v through
an expensive Metropolis stepﬂ A Bayesian treatment of the VAR parameters is particularly
relevant in the context of the SET-VAR model, since a large number of variables and lags
can result in frequentist procedures overfitting, especially after splitting the observations of
the sample into regimes, and a prior distribution can be extremely useful to penalize and
regularize the estimation procedure.

We now turn to describing in detail the methodology we use in this paper. The VAR

model with regime-dependent conditional mean and covariance is given by:

k p i
Ye = Zi:l <BO,z‘ + Zj:l Bjiyi-j + 23/27%) T (1), mol Fimy ~ (0, Iny).

We assume a prior density for the VAR parameters p (5;, 3;) for each regime i = 1,...,k as
well as a prior density for the threshold parameter p(v) independent from p (f;,3;). For
the sake of generality, we allow here for different priors p(f;, %;) across regimes. In our
empirical application, we use the same prior for all regimes to ensure that the uncovered
differences across regimes are coming from the data rather than from prior beliefs. We
consider a fine grid of IV, equidistant points I' = (1, ...,7) for each element of ~, which
corresponds to a discrete uniform prior for each element i: p(y;;) = 1/N, for v; € I' for
each gridpoint j = 1, ..., N,. Since we need distributional assumptions in order to write down

a likelihood function, we proceed by making a Gaussianity assumptionﬂ on the innovations

6 Alternatively, one can view v as a hyperparameter, whose value is determined in a preliminary estimation
step, which is a common approach in Bayesian inference (Giannone et al., [2015)).

"Broemeling and Cook| (1992) and |Geweke and Terui (1993) provide earlier Bayesian treatment of + in
TAR models, obtaining a posterior through (numerical) integration.

8Such a distributional assumption is required for full information Bayesian estimation; however, posterior
inference on the conditional mean parameters B; continues to be valid for large samples even if the distri-
bution of the innovations is non-Gaussian, as long as the first two conditional moments of the innovations
are correctly specified (see, e.g. [Petroval (2022)).
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ne| Fi—1 ~ N (0, Ip). The log-posterior density of the model’s parameters (except constants)

is given by:

In(p (8,211, ) = £(5,5,7) + 3. wilnp (B, 5) +lnp (1),

where the log-likelihood of the sample ¢ (3,3, ) is given by the sum of the log-likelihoods

across each regime:

(3.5 = Y. 6557

(B8, y) = —% In (27) — % Indet (3;) — %Z;l el X ey,
the innovations for each regime ¢;; are defined as ¢;; = (y; — (I ® x}) 5;) \Ifgi) (7v) and the
weights w; depend on the contribution of each regime in the sample, satisfying w; = =+, with
S w; = 1, where n; is the effective sample sizes in each regime 7, n; = Y7, g (7). The
problem can be equivalently rewritten in a more compact way as a reweighting scheme of
the likelihood of the observations (yi,...,y,) with flat (zero-one) weighting given by the
regimes: for each regime ¢ € {1, ...k}, observations that satisfy the threshold condition for
the corresponding regime (i.e. \Ilgi) (7°) = 1(7?_; < s <4?)) are given weight one to evaluate
the regime-specific likelihood ¢; (3,3, 7), with the remaining observations receiving weight

zero. For each regime ¢ € {1, ..., k}, we denote the weights for the likelihood as
we; = 1(Fim1 < 8¢ <Hi) (5)

and further define the matrices Y = (y1,...,y,), X = (21, ..., 2)) and W; = diag(wy 4, ..., wy,;).
The resulting “weighted” log-likelihood for each regime i of the sample y = vec(Y) can be
written as:

V) 1 (der ) - % (v = (Iw @ X)B:) (27" @ Wi) (y = (In ® X)),

41(57277) x =

where tr(W;) = n; gives the “effective” regime sample sizes. Next, we consider joint maxi-

mization of the log-posterior density

(&7/37 2) = arggn;“%lng) (ﬁ7 277|y17 7yn))7
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where the maximizer 4 can be equivalently obtained through

4 = argmax [ max In(p (B, %, v|y1, ,yn))} = arg mVaXIn <p(ﬁv, i,7|y1, ,yn)>

0l B1sees Byt 5002k
(3% Y inp (6,3 6
= arg max (B.59) +> winp (B, %) (6)

where B and Y are the posterior modes (the maximizers of the posterior density), as a
function of the threshold parameter v, IT*7! is the (k — 1) Cartesian product of the grid T’
and, in the last line, we have used the fact that our uniform prior for the threshold does not
affect the maximizer 4 other than through the set over which the maximization is performed
v € T*=L Tt is straightforward to use our procedure with an informative continuous prior
on 7. We choose the discrete uniform prior since: (i) it simplifies and streamlines the
estimation through the grid search maximization, (ii) the threshold is a low-dimensional
parameter which does not require penalization, and (iii) we prefer to let the data speak on
the threshold values and choose not to impose any informative prior beliefs ex ante.

Next, we evaluate the corresponding log-posterior density at the posterior mode of the
entire vector 0; = |3, vech (%;)']' over the T*~!-dimensional grid of values for v and estimate
the threshold v as the maximizer over the grid.

Conditional on the threshold estimator 4, we proceed with standard Bayesian estimation
for #;. Since the VAR model can be over-parameterized, especially when the number of
variables M and the number of lags p is large and the sample size n is small, we follow a
standard conjugate Bayesian methodology for the conditional inference on #; with standard

Minnesota prior on B; and Wishart prior on ;! for each regime i € {1, ..., k} of the form
BilZi, 4 ~ N (Boi, (57 @ koi) 1), Z7HA ~ W (i, Aos) (7)

where f[y; is a vector of prior means, kg; is a positive definite matrix controlled through a
scalar overall shrinkage parameter, ayg; is the Wishart distribution scale parameter, and Ay,
is a positive definite matrix. While our methodology allows for the use of priors that differ
across regimes, as mentioned before, for the empirical application of the paper, we set the
same priors for each regime, since we do not want to impose regime-dependence ex ante.

In this way, our piecewise-linear Gaussian model with Normal-Wishart prior distribution
for B; and X7 ' for each regime i € {1, ..., k} yields a closed-form conjugate Normal-Wishart

expression for the posterior density across each regime, conditional on the threshold ~ of the

12



form:

5Z|217§/7X7Y~N(817(2;1®’%1)71)7 2;1|’?NW(&275\Z>7 (8)

where the posterior parameters 3;, k;, &;, A\; for each regime i are given by

B = (Iy @& ") [([M @ X'W,X)6; + (Iy @ HDi)ﬁOz} ;
Ri = koi + X' W, X, @a; = ag +ny, Xz = Xoi +Y'W3Y + Boiroi By, — El%léi’

where 3; is the threshold OLS estimator for each regime 7 :
B = (I © X'W,X) ™ (I © X'Wy)y,

W; is the diagonal matrix containing the zero-one weights for each regime defined in (j))
through the estimated threshold 4, X = (#,...,2%) and B; and By, satisfy f3; := vec(B))

and [y, 1= vec(By;). The full details of our estimation algorithm can be found below.

3.1 Our Estimation Algorithm

Step 1. For each grid point in I'*~!, compute the posterior modes for 3; and ¥;, which in
our Normal-Wishart setup are given by ﬁuz = BZ and %; = (QJF’\—MH)

Step 2. Evaluate the log-likelihood of the sample ¢ (B , i, fy) and the weighted prior density
Zle w; Inp (ﬂvu f]l> at the posterior modes B and ¥ for each grid point in I'*~1,

Step 3. Numerically maximize the log-posterior p (B, 3, Yy, - yn> with respect to v over
the (k — 1)-dimensional grid and store the estimate 4.

Step 4. Given 4 from Step 3, make draws (3; and ¥; from the posterior distribution in ({g]).

3.2 Monte Carlo Exercise

In this section, we design a small Monte Carlo exercise to study the properties of the proposed
estimator and how it compares to existing threshold estimation approaches. In particular, we
simulate data from four data generating processes (DGPs) with sample sizes n € {200, 1000}.

In all cases, we generate observations from the following univariate process

Yr = pe + orey, €0 ~N(0,1),

13



with the following specifications: (i) DGP I: constant mean and constant volatility p; = 0
and o = 1 for all ¢; (ii)) DGP II: regime-dependent mean and constant volatility p; =
il {ye—r <} 4+ pol{yi—1 >~} with uy = =1, up = 1 and o, = 1 for all ¢; (iii) DGP
III: constant mean p; = 0 for all ¢ and regime-dependent volatility o, = o11{y;—1 <~} +
ool {yt—1 >~} with 0y = 1, 0o = 2; and (iv) DGP IV: regime-dependent mean as in (ii)
and regime-dependent volatility as in (iii). For all the DGPs with regime-dependence, we
set v = 0. We estimate four models for each DGP: (i) a constant parameter model; (ii)
a regime-dependent threshold model based on SSR minimisation with constant variance;
(ili) a version of (ii) allowing for regime-dependence in the variance in the second stage (as
in |Chan| (1993) and [T'say| (1998)), and (iv) a regime-dependent threshold model based on
likelihood maximisation proposed in the previous section where both mean and variance
regime-dependence enters in both stages of estimation. In each case, we compare root mean
square errors (RMSEs) for the estimated parameters of each specification and each DGP in
Table 1 below.

Several conclusions emerge from the results. First, when there is no regime dependence
as in DGP I, all approaches are valid for inference on the mean and variance parameters,
as implied by RMSEs decreasing as the sample size increases; however, the constant pa-
rameter model is considerably more efficient, as expected in the absence of regimes. Next,
when there is a switch in the mean, as in DGP II, the constant parameter model is in-
adequate and inconsistent not just for the mean but also the variance parameters. The
model with SSR objective function delivers consistent estimator for the threshold param-
eter, as well as for the mean and variance parameters; and this is the case, whether or
not regime-dependence is allowed in ¢ in the second stage, since the DGP has a con-
stant variance. The likelihood-based approach which uses regime-dependence in ¢ to iden-
tify the threshold performs equally well for all parameters, leading to the conclusion that
adding regime-dependence in ¢ in the first stage estimation does not distort inference on
~v when such dependence is absent in the data. In DGP III, on the other hand, where
only regime-dependence in the variance is present, both models without regime-dependence
in ¢ in the first stage deliver inconsistent estimator for the threshold, as implied by the
non-decreasing RMSEs. This in turn does not distort inference on the mean for this model
(since the mean is constant in DGP III, so any sample split based on inconsistent thresh-
old still delivers valid mean estimates). However, estimation of the variance is distorted
if regime-dependence in ¢ is ignored, and even when it is allowed in the second stage, es-

timates across the two regimes are poor, since the threshold is not precisely estimated.
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Average RMSE

Constant Parameter Model

7 H1 H2 01 02
DGP I, n=200 - 0.0572 0.0572 0.0398 0.0398
DGP I, n=1000 - 0.0254 0.0254 0.0177 0.0177
DGP II, n=200 - 0.9975 1.0025 0.4116 0.4116
DGP II, n=1000 - 0.9992 1.0008 0.4138 0.4138
DGP III, n=200 - 0.0899 0.0899 0.5725 0.4275
DGP III, n=1000 - 0.0402 0.0402 0.5796 0.4204
DGP IV, n=200 - 1.0940 0.9060 0.9010 0.1149
DGP IV, n=1000 - 1.0968 0.9032 0.9058 0.0947
SSR Estimation, 01 = 09 in Stage 2
DGP I, n=200 - 0.3784 0.3872 0.0817 0.0817
DGP I, n=1000 - 0.2944 0.3046 0.0356 0.0356
DGP II, n=200 0.0219 0.0817 0.0802 0.0799 0.0799
DGP II, n=1000 0.0090 0.0362 0.0360 0.0357 0.0357
DGP III, n=200 0.4284 0.0920 0.1612 1.4702 0.4826
DGP III, n=1000 0.3643 0.0405 0.0725 1.4945 0.4945
DGP IV, n=200 0.9388 0.1151 0.4360 2.1042 1.1043
DGP IV, n=1000 0.9864 0.0530 0.4404 2.1285 1.1285
SSR Estimation, o1 # 09 in Stage 2
DGP I, n=200 - 0.3784 0.3872 0.1515 0.1513
DGP I, n=1000 - 0.2944 0.3046 0.1042 0.1068
DGP II, n=200 0.0219 0.0817 0.0802 0.0560 0.0567
DGP II, n=1000 0.0090 0.0362 0.0360 0.0251 0.0257
DGP III, n=200 0.4284 0.0920 0.1612 0.1478 0.1624
DGP III, n=1000 0.3643 0.0405 0.0725 0.1172 0.0962
DGP IV, n=200 0.9388 0.1151 0.4360 0.0853 0.0936
DGP IV, n=1000 0.9864 0.0530 0.4404 0.0407 0.0428
Likelihood-based Estimation

DGP I, n=200 - 0.2878 0.2908 0.2670 0.2759
DGP I, n=1000 - 0.2340 0.2394 0.2245 0.2256
DGP II, n=200 0.0221 0.0817 0.0802 0.0567 0.0573
DGP II, n=1000 0.0091 0.0362 0.0360 0.0253 0.0258
DGP III, n=200 0.0740 0.0840 0.1656 0.0599 0.1167
DGP III, n=1000 0.0176 0.0366 0.0717 0.0253 0.0506
DGP IV, n=200 0.0385 0.0861 0.1519 0.0607 0.1084
DGP IV, n=1000 0.0146 0.0380 0.0680 0.0266 0.0479

Table 1: RMSE Results

On the other hand, the likelihood-based model performs well and delivers precise esti-
mates for all parameters, and crucially, it correctly identifies the value of the threshold. In
the case of DGP III, the constant parameter model performs satisfactory for the mean, since

the data have constant mean; however, estimation of the variance is inconsistent, as expected.
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Finally, in DGP IV, where both the mean and the variance are subject to regime-dependence,
the constant parameter model is unsurprisingly inadequate. Moreover, the model based on
SSR minimisation cannot consistently estimate the threshold, suggested by the increasing
RMSE over the sample size. Estimation of both the mean and variance parameters is con-
taminated by the imprecise threshold estimates, and we see increasing estimation errors as
we increase the sample. The likelihood-based approach, by modelling the second moment
regime-dependence in the first stage can consistently and precisely estimate the threshold,
and consequently, delivers precise and consistent estimates for the mean and the variance
parameters in the second stage.

To summarise, this simple simulation exercise demonstrates clearly the advantages of
our proposed approach. The standard approach based on SSR minimisation fails in the
cases when there is regime-dependence in the variance (DGP IIT and 1V), whether or not
such regime dependence in the variance is modelled in the second stage. This is the case,
since it does not use second moment information to identify the threshold parameter; and,
consequently, conditional on the imprecisely estimated threshold parameter, delivers poor
estimates for the mean and variance parameters in the second stage. This problem is not
resolved when we increase the sample size, implying that the threshold parameter estimates
cannot be recovered in these DGPs. On the other hand, the likelihood-based approach,
by allowing additionally for variance regimes in the first stage estimation, performs very
well whether or not there is regime-dependence in either the mean or variance parameters
(DGPs I through IV) and delivers precise estimates for all parameters with estimation errors

decreasing with the sample size.

4 Inflation and the Effects of Monetary Policy

We apply the SET-VAR methodology outlined in the previous section to U.S. data in order
to study the effects of monetary policy at different inflation levels. Given the recent inflation
experience not only in the U.S. but also across the world, an important question is whether
policymakers’ decisions have the same effect when inflation is around the 2 percent target
as when inflation is much higher. The most widely used models in the literature to allow
for possible structural changes in the evolution of the economy are time-varying parameter
(TVP) VAR models. While TVP-VAR models are extremely flexible, an important draw-
back is that all of the model’s parameters are allowed to change at every point in time.

This lack of parsimony leads to two serious issues that hinder the practical implementa-
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tion of TVP-VAR models: (i) they are subject to the curse of dimensionality, and so the
widely used state space approaches (see, e.g. |Cogley and Sargent| (2005)), Primiceri (2005)))
come with large computational costs that grow quickly with the number of parameters and
lags, and (ii) if the true parameters switch only across a finite number of macroeconomic
regimes, allowing parameter changes at each period is unnecessary and can result in a loss
of efficiency; for example, in the TVP-VAR setup, |[Petrova (2019) obtains a nonparametric
consistency rate for the time-varying parameters while the SET-VAR approach obtains the
standard parametric \/n—consistency rate.

Alternative approaches that focus on a small number of distinct regimes (Hamilton|, |1989;
Sims and Zhay, [2006) typically model the regimes as a function of an unobservable variable
that follows a discrete Markov chain. Our choice to model the regime directly as a function
of an observable variable facilitates a more transparent understanding of what drives the dif-
ferent regimes, allows one to focus on the specific nonlinearities characterized by our choice
of state variable, and is computationally substantially less demanding.

Compared to both TVP- and Markov-switching VAR models, our approach provides par-
simony, interpretability, and computational ease. Another class of models related to ours
consists of smooth transition VARs, where VAR parameters are a convex combination of two
sets of VAR parameters and the weights are governed by a smooth function of an observable
variable (Auerbach and Gorodnichenkoj, 2012). Finally, Mavroeidis (2021)) and |/Aruoba et al.
(2022) develop VAR models with occasionally binding constraints that also speak to nonlin-
ear dynamics of macroeconomic outcomes, albeit different nonlinearities from those we are

focusing on.

4.1 Data, Priors, and Our State Variable

We use monthly U.S. data starting in January 1970 through December 2007 on the Federal
funds rate (FFR), the unemployment rate, and inflation (computed as the year-on-year
growth of the consumer price index). All data series are from the Federal Reserve Bank of
St. Louis. In Appendix [C]we show that our findings are robust to including the BAA spread
as an additional observable along the lines of |Caldara and Herbst| (2019)). In addition, we
use a proxy for the unobserved monetary policy shock to identify the effects of exogenous
changes in monetary policy. In particular, we use the updated version of the Romer &
Romer’s monetary policy shock (Romer and Romer| (2004)); (Wieland and Yang (2020)). We
choose the Romer & Romer instrument because it allows us to use data from the 1970s and

1980s to infer about the effects of monetary policy shocks. Alternative instruments based on

17



high-frequency changes in asset prices around monetary policy decisions (Gertler and Karadi,
2015)) are generally only available for much shorter and more recent sample periods. Recent
work by /Aruoba and Drechsel (2022) uses machine learning techniques to incorporate textual
data and nonlinearities to generalize the Romer & Romer approach, but unfortunately for
our purposes, their sample does not contain the high inflation episodes of the 1970s. The
downside of the Romer & Romer proxy is that the sample ends in 2007 because there is
no unique way to extend the measure during periods where the effective lower bound on
nominal interest rates binds. In Appendix [D| we present results for one possible extension
that incorporates the effective lower bound - results are similar to our benchmark analysis
presented heref]

In order to apply the SET-VAR approach, we require a suitable choice for the state
variable that drives the regimes. Given that central banks consider inflation to be the
relevant macroeconomic variable to target, and hence to determine monetary policy choices,
we consider it to be the natural candidate. For measurability (so that the RHS of the model
is not random given JF;_1), we use inflation from the previous period; that is, we set d = 1.
In the notation of Section , this means that s, = Wt,lm. In theoretical macroeconomic
models, a one-period lag of the inflation rate is often an important state variable.

For the estimation of the model, we use a specification with 12 lags and three regimes,
and impose a flat prior on the threshold vector v in the first estimation step. In the notation
of Section , we set 7 and 7 to be the minimum and maximum observed values of the state
variable in the sample, respectively. More details about the construction of the grid I' can
be found in Appendix[A] For the VAR parameters, we use a loose Minnesota-style prior with
overall shrinkage A\ = 1 to ensure flexibility. Since the variables included in our SET-VAR
do not exhibit a clear stochastic trend, we follow standard practice (Banbura et al.| (2010)),
Kilian and Liitkepohl (2017)) and center the coefficient on the first lag of each variable at
zero. We further impose the condition that, in each regime, the companion form of the
SET-VAR only has eigenvalues less than one in complex modulus. The prior for the Wishart
parameters is set following the automatic rule in |[Kadiyala and Karlsson (1997). Importantly,
we impose the same prior in all regimes; that is, our priors are not regime-specific, and hence,

the estimated threshold 4 is not directly affected by our choice of VAR priors. This is not a

9The extended sample ends in 2017, because there is no public access to more recent Tealbook forecasts
prepared by Board staff.

10Gince year-on-year inflation is a very persistent series, different values of the lag d deliver very similar
results. We have performed robustness checks with respect to d; these additional results can be found in
Figure in the Appendix. The Appendix also contains an additional set of empirical results with the
addition of BAA spread to the model.
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necessary feature of the methodology outlined, but rather a choice, in order to avoid imposing
any prior beliefs about the different regimes ex ante.

With the above choice of state variable, lag order, and number of regimes, the SET-VAR
model becomes:

3 12
Yo = Zi:l <B0,i + 23:1 Bjiyi-j + Eﬁ/zm) (Vi1 < m1 < %) (9)

We consider the model @ and estimate the threshold parameter v = (71,72)" using our
novel Bayesian approach, allowing, in addition, for X; to differ across regimes, as explained
in Section . This yields threshold estimates 4 = (5.49,11.02) and the resulting regimes are
defined accordingly:ﬂ

e Low regime: m;_ < 5.49 (74.3% of the sample);
e Medium regime: 5.49 < m;_; < 11.02 (19.6% of the sample);

e High regime: m;,_1 > 11.02 (6.1% of the sample).

Federal Funds Rate Unemployment

I L I I I 0 i I I . I . I 0 I I I . I I
1975 1980 1985 1990 1995 2000 2005 1975 1980 1985 1990 1995 2000 2005 1975 1980 1985 1990 1995 2000 2005

Low Regime Medium Regime High Regime |

Figure 2: Macroeconomic data in our VAR. Light and dark grey areas denote the medium-
and high-inflation regimes respectively.

Figure [2 displays our raw macroeconomic data against the estimated regimes. It is clear
that the high regime (i.e. the regimes in place whenever inflation is higher than 11.02 percent)

represents periods characterized by outliers, that is, observations that are not necessarily

HFigure in the Appendix displays the posterior objective function against the two-dimensional grid
for v, which we maximize to obtain the threshold estimates.
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representative of the vast majority of the sample. Seventy-five percent of our sample is
represented by what we label the low regime. We interpret the third regime, which almost
exclusively covers the short era of non-borrowed reserves targeting by the Federal Reserve,
as effectively removing outliers from our estimation. Only having two regimes, and thus not
removing this outlier period, contaminates the estimates for the first two regimes and leads
to drastically different results, as we show in Appendix[E] This provides a strong justification
for the inclusion of the third regime.

In Figure [3| we perform the following exercise: we estimate as an alternative a fully time-
varying parameter (TVP) VAR model using the same lag order and priors, using the quasi-
Bayesian kernel approach of |Petroval (2019) and display the TVP model-implied long-run
means and variances of the series against the identified regimes of our SET-VAR model[”]
As discussed, this TVP model is more flexible, since it allows the VAR parameters to change
in each period, but on the downside, it is also a highly parameterized model with a slower
nonparametric rate of convergence, and crucially, it can be unnecessarily overparameterized,
especially if it is applied to a setup where the parameters are only a subject to a small
number of regimes changes. It also makes it harder to interpret what drives the resulting
nonlinearities. We conduct this exercise to investigate whether the estimated long-run means
and variances of the flexible TVP model display regime-dependence along the lines of our
identified regimes. As is clear from Figure [3, not only the unconditional means but also the
unconditional variances of the series change with the SET-VAR-identified inflation regimes,
providing a justification for our selection of lagged inflation as the state variable, as well
as for our modeling choice to use regime-dependence in the second moments to identify the
threshold. Furthermore, this figure provides some evidence that the assumption of three
regimes is reasonable for our data set.

A central theme of our findings is that our approach endogenously filters out outliers or
unusual time periods: those with unusually high inflation rates. There is always a tension
about what to do with somewhat unusual periods in empirical analyses. On the one hand,
behavior during those periods might not be representative of most of the sample, resulting
in estimation bias; but on the other hand, periods of high volatility (which turn out to be
periods of high inflation in our sample) help tightly pin down estimates if the underlying
relationships are unchanged. The results in this paper lend credibility to the former view,

while, at the same time, providing a data-driven methodology that can help researchers

12\We define the unconditional or long-run moments as the moments associated with the parameters in
place at each point in time, assuming no further parameter changes, as is common in the literature on
time-varying parameter VARs (Cogley and Sargent|, |2005; |[Primiceri, [2005)).
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TIME-VARYING UNCONDITIONAL MEANS ACROSS REGIMES
Unemployment ) ) _Inflation

Federal Funds Rate

& AL o v or oo e

1975 1980 1985 1990 1995 2000 2005 1975 1980 1985 1990 1995 2000 2005 1975 1980 1985 1990 1995 2000 2005

TIME-VARYING UNCONDITIONAL VOLATILITIES ACROSS REGIMES

Federal Funds Rate Unemployment _Inflation

~= 3

© = N W B wu oA 2

| L L L L L 0 i L " " . . 0 i . " . L "
1975 1980 1985 1990 1995 2000 2005 1975 1980 1985 1990 1995 2000 2005 1975 1980 1985 1990 1995 2000 2005

Figure 3: Time-varying LR means and variances against estimated regimes

decide whether outliers are contaminating results.

4.2 The Effects of Monetary Policy Shocks

In this section, we consider how the transmission and effectiveness of monetary policy can
differ when the economy is in different inflation regimes. We estimate the structural SET-
VAR model with the Romer & Romer instrument as a proxy for the policy shock. Formally,
our identification strategy involves a Cholesky factorization of the regime-dependent covari-
ance matrix, ordering the Romer & Romer proxy first in the vector of observables, following
Plagborg-Mgller and Wolf (2021). We normalize the Cholesky factor to have ones on the
main diagonal; then the first column of the resulting matrix, associated with the policy in-
strument, yields the effect of the monetary shock on impact on all variables, up to scaling.
Given that impulse responses are identified only up to scale in our setting, we further normal-
ize the impact vectors to ensure better comparability across inflation regimes. Namely, we
analyze a monetary policy shock that causes an immediate increase of 50 basis points in the
FFR in every regime. We first look at what happens if we disregard any nonlinearities and
estimate instead a linear Bayesian VAR (using the same priors as in the regime-dependent
case). The posterior median and 68 percent posterior bands of the resulting impulse re-
sponse functions to a 50 basis points monetary policy shock are displayed over a horizon of
90 months in Figure [4 From the figure, we find that there is no statistically meaningful

movement in unemployment and inflation in response to a monetary policy shock if we focus
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on the linear model, a result that few policymakers would take at face value. Many papers
in the VAR literature that study monetary policy shocks and their effects find similar in-
conclusive or even counter-intuitive evidence, which often also depends on the exact sample
used (Bu et al., 2020; Ramey, 2016). One compelling explanation for such discrepancies in
the empirical results could be that if the true underlying effects of policy shocks were in
fact regime-dependent, then fitting a linear model on differing samples that could contain
various proportions of each separate inflation regime would result to large variations in the

empirical findings.

IMPULSE RESPONSE FUNCTIONS
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Figure 4: Fixed-coefficient impulse responses - posterior median and 68 percent posterior

bands.

Next, we demonstrate how these problems can be mitigated by explicitly allowing for
regime-dependence associated with the underlying level of inflation in the economy. While
in the linear model, there is a unique notion of an IRF, in the nonlinear model, due to the
nonlinearities present, there are multiple ways to define an IRF. In particular, we compute
two types of IRFs. The first type is computed as in the linear model, conditional on a
particular regime staying in place. This way of reporting results is common in the nonlinear
VAR literature (Cogley and Sargent, [2005). The IRFs computed this way represent the
responses to a policy shock, given that: (i) inflation at horizon 0 is within each regime
(far from the threshold values), (ii) there are no other shocks, and (iii) the policy shock
is sufficiently small, so that inflation remains in the same regime in all future horizons
considered. Figure |5| presents the IRFs conditional on staying in each regime{ﬂ. The left

column displays the response when inflation in the last period is less than 5.5 percent. There

13The impulse responses of the Romer & Romer instrument can be found in Figure
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is a persistent increase in nominal rates, but it is not associated with any significant increase
in the unemployment rate. On the other hand, inflation falls after around two years, but the
effect is relatively small and short-lived, with no impact after 40 months. When inflation is
between 5.5 percent and 11 percent, we find a response of the short-term interest rates similar
to that in the low-inflation case, but this interest rate change is associated with a substantial
increase in the unemployment rate as well as a more pronounced, but also more delayed, fall
in inflation. In fact, the initial increase in inflation, which is present, but not significant in
the low-inflation regime, is now significant, but short-lived. In this medium-inflation regime,
the responses of unemployment and inflation are much longer-lived and the monetary policy
shock still has effects after 96 months (8 years). These long-lived responses are an outcome
of the larger persistence of the series in this regime, which we discuss further in Section 3.3.
The response of inflation can be explained by price-setters changing prices more quickly in
high-inflation environments, a common result in the literature on state-dependent pricing
(Golosov and Lucas, [2007). Finally, for completeness, the last column of Figure displays the
IRFs in the high-inflation regime, where we find that the response of the nominal interest rate
is much shorter-lived and leads to a small, but significant, decrease in the unemployment rate
and a small, but significant increase in inflation. Both of these counter-intuitive movements
are short-lived. As mentioned above, our preferred interpretation is that the third regime
effectively serves as an endogenous removal of periods characterised by unusual policy and
outlier observations.

To summarize, once we allow for dependence on the level of inflation, we find that mone-
tary policy has meaningful effects on inflation except when inflation is very high. Addition-
ally, it also has substantial effects on labor market outcomes when inflation is not too low
(higher than 5.5 percent). These results have important implications for policymakers, since
the timeline and tradeoffs they face are different depending on the underlying level of infla-
tion. The lack of impact on labor market outcomes when inflation is not high can, at least
partially, explain the recent U.S. experience whereby inflation was brought down without a
substantial increase in the unemployment rate (recall that this episode is not in our sample;
so our model can produce “out-of-sample” conjectures for this period, since it has not been
fitted to those observations). Importantly, not only do the effects of policy surprises differ
on impact but they also have very different dynamics and transmission across regimes, with
the total effects being much larger but also taking much longer to realize when inflation
is in the medium regime, implying that after inflation increases beyond the threshold, the

timing of policy surprises’ impact on macroeconomic outcomes changes and policy effects
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IMPULSE RESPONSES ACROSS REGIMES
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Figure 5: Regime-dependent impulse responses - posterior median and 68 percent posterior
bands.

take considerably longer to realize.

In addition, we compute time-specific IRF's, which highlight further the nonlinearities of
the model. In particular, different starting points, as well as the size and sign of the policy
shock, could result in different responses, since all these three considerations may switch the
model to different regimes at different horizons. We compute these period-specific IRFs to a
0 that may embed the sign and size of the shock as the difference between the h—step ahead
forecast implied by the model when there is a single policy shock at period ¢ and no other

shocks and the h—step ahead forecast in the absence of any shocks:

IRE)(h) = E(Yetn|Fim1,Mis = 6, njapn = 0 for Vj # 1UVR > 1)
—E (Y440 Fi—1,mjt+n = 0 for V j and h).

The algorithm to compute these period-specific shocks can be found below.
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Period-Specific IRF Algorithm

Step 1. Given the posterior of B and ¥ in and the chosen period of interest ¢,
determine the regime ¢ at ¢ and set if-*"°* = j5hock — i Set gk = Groprot = yy_qy .

For each posterior draw k for B* and X* iterate between Steps 2-4 below.

Step 2. For h = 1, given the initial period regime i3"o* = jno-shock = determine the
regime-specific coefficients and compute the one-step ahead projections:

~shock k P k ~shock k1/2 !
yt+1 - BO,if’“’Ck + Zj—l B] ifhockyt_i'_l_j + Zi?hock [6, O, ceey 0]

)

p

~no_shock __ k k ~no_shock
yt+1 - Boyi?o,shock + =1 Bj7i?o,shockyt+1—j 9
. : . : o 1/2
where § contains the size and sign of shock (ordered first in our application) and Eis/h,,ck
t
encodes our (regime-specific) identification scheme.
Step 3. For h = 2,..., H, given the previous period regimes z'fi?ffl and i?i;fff{c’f,
determine the regime-specific coefficients and compute the projections:
~shock __ k p k ~shock
BT = By, T2, Bl 5
~no_shock k p k ~no_shock
Yi+n = Bo’i?iﬁsi“l)c,c + g i1 Bj’izlﬁ;lsle)ckyt—l-h—j )
: : -shock ‘no_shock
and determine the regimes ;9 and }';, at t + h.
Step 4. Given g)fjfzc’“ and g)ff;fh“k, compute and store the corresponding posterior draw

for the IRF as IREY (h) = g5hock — gposshock,

Figure [6] contain the IRFs for selected period{™] From Figure 6, it is clear that as the
economy switches between regimes, the effects that a policy shock has can be very different.
We find very similar responses in 1973 (and before) as in 1984 (upto 1991) and any period
after 1995; since for all these periods, given that the shock is not large enough to cause
a switch, the dynamics is governed by the coefficients in the low inflation regime. On the
other hands, in periods such as 1978 and 1984, we have dynamics guided by the high inflation
regime, and in addition, we have a large uncertainty around the responses, since switching is
allowed from one horizon to another for each posterior draw. Finally, 1991 (as well as some
periods in the late 1970s and early 1980s) is a period of medium regime inflation, and this

results in unemployment and inflation responses that are considerably more persistent than

14We found no serious asymmetries between the responses of positive and negative, as well as big and
small shocks, so we focus on the normalized 50 basis points responses. In the case of very large shocks, such
asymmetries are expected to be exacerbated since large shocks have the power to switch regimes.
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Figure 6: Impulse responses for selected periods - posterior median and 68 percent posterior
bands.

responses from the low inflation regime that takes place after 1991.

4.3 How Different Are the Regimes?

We now provide some reduced-form analysis based on our estimated regime-dependent VAR
model. This analysis is useful to assess whether there are further differences in the economic
environment across regimes, but also to provide a background for the uncovered regime-
dependence in the monetary policy effects in Section [£.2] Given the stationarity restriction
that we impose in each regime, we can estimate regime-specific unconditional first and second
moments. In this section, we focus on the correlation between unemployment and inflation
and persistence of variables across regimes; we provide evidence for other first and second
moments in Appendix [G]

Figure [7] displays the posterior median and the posterior 25" and 75" percentiles for the
correlation between inflation and unemployment across the three inflation regimes. While the
long-run correlation between inflation and unemployment does not have a structural (Phillips

curve slope) interpretation, it does measure the unconditional reduced-form relationship
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between the two, which can provide a summary of the inflation-unemployment relationship.
From the figure, we find that this correlation in the low-inflation regime has a negative sign, as
expected from a New Keynesian model, but it becomes considerably stronger as the economy
moves into the medium-inflation regime. The stronger inverse relation in the medium regime
is consistent with our finding of policy shocks having larger effects on unemployment in that
regime. Finally, in the high regime, the correlation between inflation and unemployment
switches sign and becomes positive, consistent with the periods of stagflation in that regime,
implying that in high-inflation settings, inflation is actually harmful rather than beneficial

to employment.

UNCONDITIONAL CORRELATION ACROSS REGIMES
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Figure 7: Unconditional correlations if each regime was in place indefinitely. Central lines in
the boxes are the posterior medians, and the edges are the posterior 25" and 75" percentiles.
The whiskers extend to most extreme data points not considered outliers.

Since we found different transmission of the policy shock, with some effects lasting con-
siderably longer while others disappearing within a few months, we investigate whether
variables have different persistence across inflation regimes (see Appendix |G| for details on
how this measure is computed).s

Figure 8] presents the posterior medians and the posterior 25" and 75" percentiles for
the persistence measure of inflation, unemployment, and FFR across the three regimes over
horizons of 1, 6, 12, and 48 months. It is clear from the figure that there is considerable
regime-dependence in the persistence of the series. The estimated persistence of inflation

varies dramatically across regimes and is low when inflation is low. When the economy is
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in a medium inflation regime, the persistence of inflation is dramatically higher even at very
distant horizons. This finding has important policy implications, since it is evident that
inflation persistence depends on the level of inflation and that whenever inflation finds itself
above the estimated threshold of around 5.5 percent, its dynamics slows, making inflation a
more persistent process and hence considerably altering the lags required to achieve policy
objectives. The same is true for unemployment, which also has implications for how effective
policy is and how long it takes to achieve policy targets related to unemployment across

regimes.
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Figure 8: Persistence of our variables if each regime was in place indefinitely. Central lines in
the boxes are the posterior medians, and the edges are the posterior 25" and 75" percentiles.
The whiskers extend to most extreme data points not considered outliers.
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5 Conclusions

In this paper, we build a self-exciting threshold Bayesian VAR model to investigate whether
monetary policy depends on inflation levels. The econometric contribution of the paper is
twofold. First, we allow for regime-dependence in the variance of the series for full likelihood-
based identification of the threshold parameter, which is particularly relevant for macroeco-
nomic series that have been documented to undergo volatility regimes over time. Second,
we combine two-step frequentist estimation with Bayesian regularization using priors on the
VAR parameters, resulting in a parsimonious nonlinear time-series model. This method sim-
plifies and accelerates estimation compared to fully Bayesian threshold parameter treatments,
while maintaining interpretability relative to Markov-switching models, where regimes are
driven by unobserved latent processes.

Using our self-exciting threshold Bayesian VAR, we find that the effects of monetary policy
vary substantially with the underlying level of inflation in the economy. For most of our
post-WWII sample, inflation has been less than 5.5 percent in the U.S., which our model
identifies as a period during which monetary policy has no meaningful effects on labor mar-
kets. Even though our sample ends in 2007 due to the availability of the instrument series
used to identify the effects of monetary policy, our results are consistent with the recent
“soft landing” of the U.S. economy. On the other hand, when inflation is between 5.5 and
11 percent, the effects of monetary policy are larger and longer-lasting, since variables are
much more persistent in this regime, and the effects of monetary policy on unemployment

are sizable and significant.
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A Grid Construction

For the estimation of the threshold vector 7, we consider a fine grid of NV, equidistant points
['=(y,...,7) for all the elements in +, and perform a grid search over I'*=1 which denotes
the (k — 1) Cartesian product of I'; in our case k = 3 and v = [y, 7). In particular, to
consider all of the possible observed values of the state variable, we fix v = min{s;} and
7 = max{s;}. In the sample we analyze, min{s;} = 1.07 and max{s;} = 14.76. The number
of grid points N, is chosen to accommodate the trade-off between fineness of the grid and
computational efficiency. For our application, we choose N, = 500, which implies increments
in the state variable of approximately 0.03 across grid points. The posterior evaluation is
performed imposing the condition that: (i) 72 > ;1 always, and (ii) the distance across the

points over which we compute the posterior is constant. The grid search works as follows:
1. For a grid point g¢; in I'; set v = g;;
2. For each grid point vo = {g;, gi+1,...,7}, evaluate the posterior (equation [f]);
3. Set g; = g;+1 and repeat 1-2 until v, = v =7;

4. Search for the maximum value of the posterior over the two-dimensional grid I'*~1

The corresponding value of the threshold vector is 4.

Figure displays the posterior objective function against the two-dimensional grid.
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B Additional Results

POSTERIOR OBJECTIVE FUNCTION OVER THE THRESHOLD GRID
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Figure A-1: Objective function
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C Model with BAA Spread

As an additional exercise, we estimate a larger SET-VAR(12) with three regimes that also
includes a measure of financial conditions. In particular, we follow (Caldara and Herbst]|
and use the BAA spread. This is the Moody’s seasoned BAA corporate bond yield
relative to the yield on ten-year treasury constant maturity. Using the same state variable
and methodology as in the main specification of the paper, we find the threshold estimates

to be 4 = (5.26,11.12), which are in line with our main results. The corresponding IRFs can
be found in Figure

POSTERIOR OBJECTIVE FUNCTION OVER THE THRESHOLD GRID - MODEL WITH BAA SPREAD

Figure A-4: Objective function
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Figure A-5: Regime-dependent impulse responses - posterior median and 68 percent posterior

bands.

D Model Using Data Up to 2017

We also estimate a SET-VAR(12) with three regimes including data up to December 2017.
To account for the zero-lower bound (ZLB, or effective lower bound) period in this sample,
we use a measure of the shadow interest rate constructed by Wu and Xiaj (2016) instead of
the federal funds rate when available. This series is available starting in 1990 and updated to
2023. For the years prior to 1990, we use the federal funds rate as in the main specification
in the paper. Due to the Romer & Romer proxy series ending in 2007, we employ a similar
measure provided by Silvia Miranda-Agrippino. Then, using the same state variable and
methodology as in the paper, we find the threshold estimates for this longer sample to be
4 = (5.95,11.03), very close to those in the paper. The resulting IRF's can be found in Figure
[A-7

>
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POSTERIOR OBJECTIVE FUNCTION OVER THE THRESHOLD GRID - MODEL UP TO 2017

600 —_
500

oAl
b

i

s

i i “\\\\\\\i'\" )

."M‘
| i
H‘\rw“‘\“\’f‘w“ﬁ“‘

)
1

Figure A-6: Objective function



IRFs LOW REGIME
Shadow Interest Rate

-0.5
-1
10 20 30 40 50 60 70 80 90
03 ‘Unemployment
0.2
o~ -
or [N S _
o
d N
" -7
-0.1 N - -
202 \ -
\ Pid
~
0.3 ~ = -~
~_ -
-0.4

10 20 30 40 50 60 70 80 90

Median

10 20 30 40 50 60 70 80 90

Figure A-T:
bands.

Regime-dependent impulse responses - posterior median and 68 percent posterior

0.3

0.2

0.1

o

IMPULSE RESPONSES ACROSS REGIMES
IRFs MEDIUM REGIME
Shadow Interest Rate

10 20 30 40 50 60 70 80 90

10 20 30 40 50 60 70 80 90

Inflation

10 20 30 40 50 60 70 80 90

03

02

0.1

-0.1
021
-0.3
-0.4

IRFs HIGH REGIME
Shadow Interest Rate

10 20 30 40 50 60 70 80 90
Unemployment
10 20 30 40 50 60 70 80 90
Inflation
10 20 30 40 50 60 70 80 90




E Model Imposing Two Regimes

To understand the value of the third regime, we estimate a SET-VAR(12) with two regimes,
using the same data, state variable and priors as before. The threshold is now considerably
different 4 = 8.26, in-between the two values we find when including a third regime. The
associated IRF's are plotted in Figure and are also different. The implied IRF's for the
high regime look like a mix between the medium and high regimes of the main specification
while the IRFs for the low regime look like a mix of the low and medium regimes, which is
undesirably since the unusual periods of the third regime contaminate the estimates of the
model with two regimes; we use this as a justification for the inclusion of a third regime.
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Figure A-8: Regime-dependent impulse responses - posterior median and 68 percent posterior
bands.
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F SSR Based Threshold Estimation - Constant Vari-

arnce

To address the relevance of incorporating regime-dependence in the variance of the model for
the threshold estimation, we perform an additional exercise in which we follow the standard
approach in the literature for estimating our model. That is, we estimate the thresholds from
the SSR objective function as the first estimation step, and then estimate the VAR imposing
constant variance across regimes for the second step. Following the same approach of the
main specification, we evaluate the SSR at the posterior modes for the regime-dependent
B;’s over the threshold grid and look for its minimum. The implied thresholds in this case
are 4 = (6.97,11.28), the first being quite different from what we find using our proposed
estimator. The associated IRFs are plotted in Figure [A-9]

IMPULSE RESPONSES ACROSS REGIMES

IRFs LOW REGIME IRFs MEDIUM REGIME IRFs HIGH REGIME
Federal Funds Rate Federal Funds Rate Federal Funds Rate
15 15
1 1
0.5 0.5
0 0
0.5 -0.5
1 -1 1
20 40 60 80 20 40 60 80 20 40 60 80
04 Unemployment 04 Unemployment 04 Unemployment
03 T 03 03
/ N
02 / ~ 02 02
/ T~
0.1 Vi 0.1 0.1
0 et =~ 0 0
/
0.1 M/ N - 0.1 0.1
—_——_ -
02 N7 02 02
-0.3 -0.3 -0.3
20 40 60 80 20 40 60 80 20 40 60 80
Inflation Inflation
v, -
0.4 / \ 0.4 0.4
N
02 \ —— 0.2 0.2
Ny - —_ -
0 = 0 0
»
-0.2 \ === -0.2 -0.2
\ -7
0.4 \ - 04 04
N Ve
0.6 4 0.6 0.6
\ b
- -

-0.8 -0.8 -0.8
20 40 60 80 20 40 60 80 20 40 60 80

Figure A-9: Regime-dependent impulse responses - posterior median and 68 percent posterior
bands.
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The difference we observe in the IRFs could be not just due to the constant variance,
but also from the different estimated thresholds. To further investigate the implications
of the former, we also show in figure the regime-specific unconditional correlations,
as we do for the main specification. Since the model now has constant covariance matrix
and this matters for the computation of the correlations, one of our main results on the
trade-off between inflation and unemployment changes. We use this as a justification for the

likelihood-based model with regime-dependence in the covariance.

UNCONDITIONAL CORRELATIONS ACROSS REGIMES
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Figure A-10: Unconditional correlations if each regime was in place indefinitely. Central
lines in the boxes are the posterior medians, and the edges are the posterior 25™ and 75"
percentiles. The whiskers extend to most extreme data points not considered outliers.

G Further Evidence on Differences Across Regimes

For the results presented in this section, we work with the companion form of model @ ;

k
%= Zizl (i + Aizeer + i) 1(Fim1 < Tt <), (A-1)
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where

Yt BO,z’ Bl,i Bgﬂ' .. Bp,i Ezl/QUt
Yi—1 0 Iy 0 - 0
At = : ’ Hi = : ) Az = : .. . , Eit = :
Yt—p—1 0 0 Iy O O

Given the stability condition max;<;<x p (4;) < 1 where p (.) denotes the spectral radius, we
can compute the implied regime-specific unconditional means 7; and unconditional variances
U; for each variable from the vector MA(oo) representation (assuming each regime remains

in place indefinitely) as
= (I —A) '
Ui = Zj:() A (A7),
where §; = E[g; 7 ]. Figure displays the estimated posterior densities for 7; and U; for
each regime.

The results in Figure confirm the existence of differences across regimes. This is
evident not only when looking at the long-run trends but also when looking at the volatility
of the series, which is a further justification for our modeling choice to allow for the threshold
estimation to also depend on the second moment of the variables included in the model.

To investigate the persistence across regimes, we compute the regime-specific persistence
h steps ahead for each variable, using the measure proposed by [Cogley et al.| (2010):

e (30725 Al (AD) ey

R2  =1- A-2
ke = S (A e (A-2)

where e}, is the k™" standard basis vector for RMP, which selects the £ variable in the system.
This measure accounts for the fraction of the total variance of each variable explained by
past shocks at different horizons. It takes values between 0 and 1, with numbers closer
to 1 indicating higher model-implied autocorrelation for the variable, suggesting that its
dependence on past shocks dies out more slowly, and, hence, implying a more persistent

variable.
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Figure A-11: Posterior distribution of unconditional means and standard deviations if each
regime was in place indefinitely.
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