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Abstract 

A selective recall model predicts how inflation expectations should change with current cues. Data from 
the New York Fed’s Survey of Consumer Expectations and the University of Michigan’s Consumer Survey 
confirm these predictions, yielding two new insights. First, households’ expectations are rigid when 
inflation is anchored but highly unstable when surges in inflation trigger the retrieval of forgotten high-
inflation episodes. This effect quantitatively accounts for the post-pandemic rise in inflation expectations, 
particularly among the elderly. Second, cued recall explains a striking failure of rationality: a state-
dependent discrepancy between people’s point and density-based expectations of future inflation. The 
structure of memory offers new tests and insights on inflation expectations and their measurement. 
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1. Introduction 

Inflation expectations play a central role in macroeconomics. They shape wage and price setting, 

durable good consumption, investment decisions, and the conduct of monetary policy. How are they 

formed? Current research views these expectations as sticky and slow moving, due to gradual learning, 

which can be either adaptive (Evans and Honkapohja 2001) or restricted by inflation experiences 

(Malmendier and Nagel 2011, 2016, 2021), or to rational inattention (Sims 2003, Woodford 2009, Coibion 

and Gorodnichenko 2015). The evidence also shows that households rely on recent prices of groceries 

and gasoline (d’Acunto et al. 2022, 2023, 2024, Cavallo et al. 2017, Coibion and Gorodnichenko 2015, 

Gelman et al. 2016, Binder 2018). While amplifying disagreement, the dependence of beliefs on these 

local signals also creates rigidity by reducing the sensitivity of expectations to aggregate inflation changes.   

Evidence from the recent inflation surge however suggests that, contrary to the above models, 

inflation expectations de-anchor quickly, not slowly. Figure 1, Panel A, reports US inflation expectations 

from 2019 to 2023 in the Survey of Consumer Expectations by the New York Fed. Around April 2021, these 

expectations increased from around 3%, where they hovered for years, to above 5% and then continued 

rising to 7%.  Over the same period, actual inflation rose from 1.4% in January 2021 to 5.3% in June 2021, 

reaching 9% in June 2022. “De-anchoring”1 occurred for all age groups, but the elderly (blue line) reacted 

faster and more strongly than the young (green line).  This pattern, which we later document in other 

datasets and countries, is surprising: in standard accounts, the elderly should react to recent events less 

than the young, because a recent experience has less impact on their large database than on the smaller 

database of the young. Deepening the puzzle, the elderly de-anchor despite the fact, shown in Panel B, 

that around April 2021 they experience a smaller increase in their CPI index than do younger consumers. 

 
1 De-anchoring in this paper refers to the state-dependent nature of dynamics of shorter-term inflation expectations. 
In the central banking context, de-anchoring is conventionally understood as movement of inflation expectations at 
longer, 5-year horizons, away from inflation targets. 
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Figure 1 Updating of Inflation Expectations and Experienced Inflation by Age Groups 

  

Panel A (left) shows the 12-month ahead median inflation expectations published by the New York Fed’s Survey of Consumer 
Expectations for respondents 45 years old or younger (lower-envelope red line), 45-65 years old (maroon line) or 65+ years old 
(black line). The vertical line marks April 2021 in both panels.  Panel B (right) shows inflation rates experienced during the last 12 
months by different age cohorts as in Jaravel (2019). Cohorts comprise ages <25, 24 – 34, 35 – 44, 45 – 54, 55 – 64, 65 – 74, and 
75+, with colors reflecting this increasing order going from red to black.  
 

We present a model of mnemonic beliefs showing that these and other patterns can be explained 

based on associative human memory (Baddeley 1997, Kahana 2012). Recall of a past inflation episode 

increases in its similarity with current cues, where cues are shaped by: i) temporal context, and ii) the 

forecasting task. Temporal context yields well-known primacy and recency effects. Ceteris paribus, recent 

inflation is easier to recall because its temporal context is similar to the present. Early experiences are 

also easier to recall because they have been rehearsed often, so they come to mind when thinking about 

inflation. The inflation forecasting task cues recall based on numerical similarity: when a person sees or 

thinks about inflation at 3%, she scans for similar episodes in her database, making 3% episodes easier to 

retrieve. Critically, because different cohorts have lived different histories and thus have different 

databases, the same cue leads them to recall different episodes. People react differently to the same 

current inflation change, causing cohort and state-dependent disagreement. 

Our memory model endogenizes known features of inflation expectations but also yields new 

predictions for their formation.  Due to temporal cues, mnemonic beliefs overweight recent inflation, as 

in constant gain learning models (Marcet and Sargent 1989, Sargent 1999, Evans and Honkapohja 2001).  
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Due to primacy, however, they also overweight early life inflation. The combination of these forces causes 

a strong departure from Bayesian learning: persistently higher expected inflation by a cohort that 

experienced high inflation early compared to a cohort having the same experience later in life. Numerical 

similarity in turn causes two forms of belief instability. The first is cohort-specific state-dependence: an 

inflation surge from 2% to 10% prompts recall of 10% inflation. This effect is especially strong for people 

with more of the 10% experiences (even if remote, like for the elderly during the recent inflation surge). 

The second instability depends on the event a person is thinking about: people put higher weight on a 

rare inflation state when explicitly asked to estimate its probability than when forming overall point 

expectations. Intuitively, the latter task does not describe the rare state, causing its neglect. This instability 

is a stark departure from any model, including Bayesian learning, in which people have a coherent belief 

system. Critically, such incoherence is state-dependent, in a way that we can test. 

We test the model’s predictions using micro data from the University of Michigan’s Survey of 

Consumers (MSC) and the Federal Reserve Bank of New York’s Survey of Consumer Expectations (SCE). 

The data shows that a model of beliefs embedding recall mechanisms that are robustly documented in 

cognitive science greatly improves the account of real-world expectations. We find strong support for the 

role of temporal similarity, so inflation experiences affect expected inflation via primacy and recency 

effects, as well as for the role of numerical similarity. The latter force delivers two key new findings. 

First, it accounts for a striking inconsistency between different belief elicitations we see in the 

data: a household’s point inflation expectation is systematically higher than its expectation computed 

using its separately elicited density forecast. In our model this occurs because households forget rarely 

experienced deflation states when forming point expectations but not when explicitly asked to assess 

such states in density forecast elicitations. Memory predicts that this inconsistency should be state-

dependent: during inflation surges, estimated deflation densities drop sharply, causing density-based 
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expectations to increase faster than point forecasts. We confirm this mechanism in the data, showing that 

underweighting of deflation in point forecasts is key and works through similarity.  

The second key finding is that similarity is qualitatively and quantitatively needed to account for 

de-anchoring of expectations around April 2021 as well as for their subsequent re-anchoring. In seminal 

work, Malmendier and Nagel (2016) documented that people who lived through higher inflation have 

higher inflation expectations today. They explain this finding with a model of Bayesian learning from 

experiences. We show that to understand the role of experiences in belief formation it is necessary to 

explicitly model selective recall. In the context of the 2021 events, learning from experiences cannot 

explain the sharp de-anchoring of expected inflation in April 2021, the stronger reaction by the elderly, 

and the subsequent re-anchoring by all cohorts. Memory is needed to capture incoherence and instability.  

The literature on household inflation expectations is large and also points to the role of 

demographics (Manski 2004, 2018; d’Acunto et al. 2021a, 2021b, Bruine de Bruin et al. 2010 and 

Armantier et al. 2013).2 Hajdini et al. (2024) confirm the role of experiences in recent and in international 

data while Goldfayn and Wohlfart (2020), Braggion et al. (2024), and Salle et al. (2024) provide evidence 

on historical experiences and inflation expectations. Andre et al. (2022) stress mental models and Zuellig 

(2022) quantifies them for inflation expectations. Carroll (2003), Carroll et al. (2020), and Bracha and Tang 

(2022) study belief rigidity due to inattention.  

Following Bordalo et al. (2023, 2025a) we build a model of selective recall based on the cognitive 

structure of cues and similarity, and quantify its effects. Bonaglia and Gennaioli (2025) formalize and study 

the long run properties of a general mnemonic learning model, and Bonaglia et al. (2025) use it to study 

investor inflation expectations and their link to excess interest rate volatility.  Compared to diagnostic 

expectations models of over-reaction in Bordalo et al. (2018), Maxted (2024), L’Huillier et al. (2023), or 

 
2 Afrouzi et al (2015), Afrouzi (2024), Kumar et al. (2023), and Coibion et al. (2018, 2020) study firms’ expectations. 
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Bianchi et al. (2024a, 2024b), modeling selective recall expands explanatory power. Selective recall based 

on frequency and similarity helps account for assessments of novel risks (Bordalo et al. 2025a), expected 

stock returns (Jiang et al. 2025), and the effects of idiosyncratic experiences on beliefs about the 

macroeconomy (Cenzon 2025, Butera et al. 2024). In our context, they reconcile pre-pandemic rigidity 

with the volatility of expectations in 2021 and explain the inconsistency between point expectations and 

density forecasts.  Our mechanism accounts for the broader role of cues in eliciting inflation expectations 

(Armantier et al. 2013), including the role of survey response scales documented in Becker et al. (2023). 

The paper is organized as follows. Section 2 starts by providing additional evidence, coming from 

other surveys and countries, that older households reacted more swiftly to the recent inflation surge than 

younger respondents.  We then present our memory model and derive its key predictions.  In Section 3 

we test the model’s predictions about point inflation expectations using the MSC and SCE surveys. In 

Section 4 we test the model’s predictions for forecast densities and for their inconsistency with point 

expectations. Section 5 shows the importance of memory for explaining the evolution of expected 

inflation in the US, in and out of sample, also compared to experience-based learning. Section 6 concludes. 

 

2. The Model 

Before presenting our model, we offer additional evidence – from the US and other countries – 

showing the robustness of two key features of inflation expectations during the post-pandemic inflation 

surge: i) older households de-anchored faster than younger ones, but ii) younger households caught up 

quickly. For the US, we use the monthly Michigan Survey of Consumers (MSC). For the UK we use the 

quarterly Bank of England’s Inflation Attitudes Survey (IAS), for the EU the European Central Bank’s 

monthly Consumer Expectations Survey (CES), for Japan the Cabinet Office’s monthly Consumer Trend 

Survey (CTS). The first three data sets report 12-month ahead point expectations, in the CTS expectations 
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are constructed by integrating forecast densities. Figure 2 reports three-month moving averages of beliefs 

for different age groups, normalized to 1 in January 2019 and June 2020 for the CES. The IAS is already at 

quarterly frequency, so we do not smooth it further. 

The path of expectations varies across countries due to differences in inflation dynamics:  Inflation 

surged earlier in the US in 2021 perhaps due to a stronger fiscal stimulus, it rose later in 2021 in Europe, 

and only in mid-to-late 2022 in Japan.  However, and crucially, the pattern in Figure 1 is robust across 

survey measurements and countries. Older cohorts (yellow, gray and black lines) de-anchored their 

inflation expectations faster than the younger cohorts (orange lines).  The divergence in the speed of 

updating is most striking for the US and the UK, but also evident in the EU and Japanese series.  As in 

Figure 1, younger households eventually catch up, usually around the time in which older households’ 

expectations reach their peak. 

Why did the elderly de-anchor faster as inflation rose, but then the young fairly quickly caught 

up? This behavior is inconsistent with Bayesian (including experience-based) adaptive learning, in which 

inflation expectations are rigid and, if anything, the young should react more quickly than the elderly. 

Perhaps the data is consistent with a Bayesian regime-switching model in which the elderly hold a “high 

inflation” regime in their mind due to past experiences. This is prima facie unsatisfactory, for it requires 

the young to form a “high inflation” regime right after seeing a few high inflation datapoints. But even if 

that were the case, a Bayesian regime-switching (or any other rational) model would be at odds with the 

belief inconsistency across different belief elicitations, another feature of survey expectations (see Section 

4). We next present a model of beliefs based on well-established and domain general regularities of 

human recall. This model accounts for the pattern of Figures 1 and 2 as well as the observed inconsistency 

of beliefs.  It rules out learning models and yields several new testable predictions that we test. 
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Figure 2: Inflation Expectations Internationally  

  

Panel A: Michigan Survey of Consumers (US) Panel B: Inflation Attitudes Survey (UK) 

  

Panel C: Consumer Expectations Survey (EU) Panel D: Consumer Trend Survey (Japan) 

Note: This figure shows inflation expectations by age group, for the US from the University of Michigan Survey of Consumers (MSC, 
monthly), for the UK from the Bank of England’s Inflation Attitudes Survey (IAS, quarterly), for the Euro area from the European 
Central Bank’s Consumer Expectations Survey (CES, monthly) and for Japan from the Japanese Cabinet Office’s Consumer Trend 
Survey (CTS, monthly).  In the IAS, ages 15-24, 25-34 and 35-44 are combined into “under 45”; ages 45-54 and 55-64 into “45 to 
65”. Age brackets are preset in the CES, and set to the NY Fed brackets in the MSC. In the CTS, age-specific inflation expectations 
are constructed by integrating over range-midpoints of age-specific average forecast densities; age groups <29 and 30-39 are 
combined into “Under 40”; age groups 40-49 and 50-59 into “40 to 60” using 2022 population weights from Japan’s National 
Institute of Population and Social Security Research. Panels display three-month backward-looking moving averages for the MSC, 
CES and CTS. Series are normalized to 1 in January 2019, and June 2020 for the CES. 

 

2.1 Selective Recall and Inflation Expectations 

At each time 𝑡, the agent forms her beliefs by sampling past inflation experiences in her memory 

database based on their similarity to the inflation cue.  
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The Database, Cues, and Similarity. The database Π! = (𝜋!"#)#$%,…,(!  collects the inflation levels 

observed by the agent in the past, starting from 𝑎! periods ago. 𝑎! is the “effective age” of the agent at 𝑡, 

namely the age of her inflation records. The cue is a signal prompting recall from Π! by similarity (Baddeley 

1997, Kahana 2012). In free recall experiments, people retrieve words from a previously studied list. One 

regularity is that the first (primacy) and last (recency) words studied are recalled best. These effects are 

explained by similarity between a person’s current context (her thoughts about the list, her mood etc.) – 

which acts as a spontaneous cue – and her context when the word was studied. The last word’s context 

was similar to the present. The first word is often rehearsed, so it is similar to the context of the list the 

person is thinking about. In both cases, similarity is higher and recall easier.  

Similarity is also shaped by the task itself, as shown by cued recall experiments (e.g. Anderson 

1974). Here cues are explicitly manipulated. If asked to recall “things in the kitchen”, people may retrieve 

“plates” because they are often seen in kitchens. If asked to recall “white things in the kitchen”, they may 

recall “milk” and forget plates, due to color. Here the cue is the question\event (kitchen, white) that must 

be assessed, which prompts retrieval of similar experiences (plates, milk). An object in the environment 

can also act as a cue (e.g. a glass of milk in the person’s desk while doing the task). 

We capture these forces by assuming that, when evaluating future inflation, the agent is cued by 

the current temporal and numerical inflation contexts. Temporal context captures the idea that inflation 

levels experienced in conditions (economic, political, etc.) similar to the present or rehearsed for a long 

time are more likely to be retrieved, as in recency and primacy effects.  Numerical context captures the 

idea that inflation levels similar to the one the agent is currently experiencing or thinking about are more 

likely to be retrieved, as in cued recall experiments. 

Formally, the cue at time 𝑡 when forecasting inflation event 𝐸 ⊆ ℝ at 𝑡 + 1 is denoted by 𝜋!,). 

The cue has three features, embedded in vector 𝜋!,) ≡ .𝑡, 𝜋! , 𝜋0),!1: i) the time 𝑡 at which the forecast is 
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made, the ii) numerical inflation level 𝜋! the agent is currently experiencing, and iii) a numerical level 𝜋0),! 

representative of the inflation event 𝐸 ⊆ ℝ the agent is currently thinking about. We specify 𝜋0),! later. 

Vector 𝜋!,)  ignites retrieval based on its similarity with past inflation 𝜋!"#. The latter is stored in Π! as a 

three-dimensional trace reporting temporal and numerical features (𝑡 − 𝑠, 𝜋!"#, 𝜋!"#).  Similarity falls in 

the distance between the features of this vector and those of the cue 𝜋!,)  as we describe next.  

Absolute temporal distance between 𝜋!"# and the cue 𝜋!,)  is 𝑠 years.  For the agent’s similarity 

perception, this distance is normalized by effective age 𝑎!, because an experience of 𝑠 = 20 years ago is 

“early” – and hence distant - for a person of 𝑎! = 30 years, but “mid-life” – and hence not so distant – for 

a person of 𝑎! = 60  years. Perceived temporal dissimilarity is modelled using the inverse U-shaped 

quadratic 𝛽(𝑠/𝑎!) = −𝛽% ∙ (𝑠/𝑎!)* + 𝛽* ∙ (𝑠/𝑎!) where 𝛽%, 𝛽* ≥ 0 respectively capture the strength of 

primacy and recency. When thinking about future inflation, early inflation experiences (𝑠 = 𝑎!) are similar 

and hence likely to be recalled, because they have often been rehearsed. But yesterday’s inflation (𝑠 = 1) 

is also similar and hence likely to be recalled because its personal or social context is similar to the present. 

Temporal similarity may depend on macroeconomic states, so that during war or economic depression 

we more easily recall wartime or depression inflation.  Here we adopt a parsimonious time function and 

see how far we can go with it.   

Consider numerical similarity next. Episode 𝜋!"#  is less similar to 𝜋!,)  if it differs from current 

inflation, which we approximate by the quadratic discrepancy (𝜋!"# − 𝜋!)* .  Intuitively, if current 

inflation is 𝜋! = 3%, episode 𝜋!"# = 10% is less similar and hence harder to recall than 𝜋!"#+ = 2%.  

Numerical similarity also acts based on the event 𝐸 the agent is estimating and in particular falls in the 

quadratic distance .𝜋!"# − 𝜋0),!1
*

. The reference 𝜋0),! is the average inflation the agent has lived in event 

𝐸 , namely 𝜋0),! =
∑ -!"#$∩&!
|)∩0!|

. Intuitively, when assessing 𝐸  the agent is spontaneously cued to recall 
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episodes similar to her experiences with this set.3  For instance, if the agent is estimating the probability 

of inflation in 𝐸 = [2%, 3%], she finds it easier to retrieve 𝜋!"# = 2.5% than 𝜋!"#+ = 10%. This effect is 

key to generating belief incoherence: an agent may have rare deflation experiences, e.g. in the range 𝐸 =

[−2%, 0%] , but thinking about deflation selectively cues them, increasing the belief that they may 

happen again in the future. 

Numerical similarity may act on additional features, e.g. it may retrieve states that followed 

conditions similar to current ones, or it may depend on inflation changes.  These features could allow to 

capture the temporal contiguity of past episodes, including inflation persistence.  Again, here we adopt a 

parsimonious similarity structure and show that it suffices to obtain significant explanatory power. In fact, 

both recency and numerical similarity already cause beliefs to embed inflation persistence. 

Put together, temporal and numerical cues imply that similarity decreases in the discrepancy: 

𝑑"𝜋!"#, 𝜋!,%% = 𝜎1 ∙ "𝜋𝑡−𝑠 −𝜋𝐸,𝑡%
2 +𝜎2 ∙ (𝜋𝑡−𝑠 −𝜋𝑡)2 +𝛽(𝑠/𝑎),																														(1) 

where 𝜎% and 𝜎* are nonnegative weights on numerical similarity to the target event 𝐸 and to current 

inflation, respectively.  In what follows we assume that 𝜎% = 𝜎 ∙ (1 − 𝑞) and 𝜎* = 𝜎 ∙ 𝑞, with 𝑞 ∈ [0,1] 

capturing the relative weight of each dimension and 𝜎 reflecting the strength of numerical similarity. In 

psychology similarity weights reflect attention (Nosofsky 1992), in our case to inflation and its specific 

features. In our analysis, these weights are fixed across people and over time, and we estimate them from 

the data. Link et al. (2025) measure attention to inflation and find that it systematically varies across 

people, based on past experiences, and over time, based on inflation changes. In the interest of 

 
3 One foundation is that an agent thinking about 𝐸 randomly recalls an experience in it, which then acts as a cue for 
subsequent retrieval, as in free recall models (see Kahana 2012).  In our quadratic structure, this process can be 
approximated using the certain equivalent 𝜋)%,! (abstracting from changing variance in 𝐸). Taking the average as a 
reference implies that different people may recall slightly different events when thinking about 𝐸 = [2%, 3%]. An 
agent who only experienced 3% inflation will be cued by 𝜋)%,! = 3% while an agent with uniform experiences would 
be cued by 𝜋)%,! = 2.5%.  These differences are arguably small, so we abstract from them in our analysis.  
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parsimony, we abstract from this effect, focusing on objective distance in the feature space.  In the 

conclusion we argue that these forces can be naturally embedded in our cognitive approach. 

Recall.  The agent forms her expectation by recalling past experiences based on their similarity to 

the cue. Similarity decreases exponentially with distance, 𝑆.𝜋!"#, 𝜋!,)1 = 𝑒"78-!"#,-!,$9 , a common 

assumption in models of recognition and recall (Nosofsky 1992).  Furthermore, similarity extends to sets 

additively, so the similarity of 𝐵 ⊆ Π! to the cue is 𝑆.𝐵, 𝜋!,)1 = ∑ 𝑆.𝜋!"#, 𝜋!,)1-!"#∈;∩0! . The likelihood 

of recalling 𝜋!"# based on 𝜋!,)  then satisfies: 

Pr.𝜋!"#|𝜋!,)1 ∝ 𝑆.𝜋!"#, 𝜋!,)1,																																																										(2) 

where the normalization constant is set so that, in the current forecasting task, probabilities add up to 

one. Normalization captures interference. From the cue-stimulus, different experiences compete in recall. 

Ceteris paribus, it is easier to retrieve a specific inflation level, say 𝜋 = 10%, compared to another, say 

𝜋+ = 2%, if the former is relatively more similar to the cue 𝜋!,)  both along temporal and numerical 

context, and if it occurs relatively more frequently in Π!. 

The agent samples her database Π! sufficiently many times that the distribution of recollections 

can be approximated by (2). Critically, a change in the available cues, including a normatively irrelevant 

change in the way the forecasting task is described, affects recall and forecasts. In particular, two 

alternative such descriptions are important for our purposes. The first elicits the point expectation. Here 

the agent recalls past episodes based on a broad cue, capturing any possible inflation level, 𝐸 = ℝ. By 

Equation (1), then, in this task similarity depends on the average inflation in the agent’s database 𝜋ℝ,! =

𝜋!. The agent’s point forecast is then equal to the average recollection under features 𝑡, 𝜋! and 𝜋!: 

𝔼.𝜋!=%|𝜋!,ℝ1 =N Pr.𝜋!"#|𝜋!,ℝ1 ∙ 𝜋!"#
-!"#∈0!

.																																														(3) 
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The agent weights past inflation using the probabilities obtained by normalizing Equation (2) in the entire 

database, so that Pr.𝜋!"#|𝜋!,ℝ1 = 𝑆.𝜋!"#, 𝜋!,ℝ1/𝑆.Π! , 𝜋!,ℝ1. Using this probability, we can define an 

implicit estimate for event 𝐸 ⊂ ℝ as  Pr.𝐸|𝜋!,ℝ1 = ∑ 𝑆.𝜋!"#, 𝜋!,ℝ1/𝑆.Π! , 𝜋!,ℝ1-!"#∈)∩0! . The value of 

Pr.𝐸|𝜋!,ℝ1 is not observed because in this task the agent only reports the point estimate. It however 

provides a benchmark for understanding how different forecasting tasks influence beliefs. 

The second description of the forecasting task entails estimating a forecast density. Here the 

agent estimates the probabilities of the explicitly described cells of a partition 𝐸%, … , 𝐸> of future inflation 

(so ∪? 𝐸? = ℝ). There are now multiple and narrower cues: the agent samples each range 𝐸?  by thinking 

about 𝐸?  itself. She then normalizes across the different ranges, estimating the probability of a specific 

range 𝐸?  by its relative self-similarity compared to the other elicited ranges: 

Pr R𝐸?|𝜋!,)(S =
𝑆 R𝐸? ∩ Π! , 𝜋!,)(S

∑ 𝑆.𝐸@ ∩ Π! , 𝜋!,))1@$%,…,>
.																																																								(4) 

This density forecast entails an implicit point expectation 𝔼.𝜋!=%|𝜋!,)* , … 𝜋!,)+1 = ∑ Pr R𝐸?|𝜋!,)(S ⋅?$%,…,>

𝜋)(, where 𝜋)(  is the similarity weighted average inflation lived in range 𝐸?  (namely across experiences in 

𝐸? ∩ Π!).  The cue for ranges is more specific compared to ℝ, so recall from the same database differs 

compared to recall when a point forecast is elicited. Differences in recall in turn produce a gap between 

the density-based forecast 𝔼.𝜋!=%|𝜋!,)* , … 𝜋!,)+1 and the explicit point forecast in Equation (3).4 

The role of the forecasting task (point expectation versus forecast density) in shaping recall and 

beliefs is a striking new implication of selective memory. It distinguishes this mechanism from any rational 

model in which the agent holds a consistent belief system, including highly flexible Bayesian learning 

 
4 Equation (4) follows Bordalo et al. (2023) in having the agent sample different hypotheses separately, but adopts 
a simpler form of normalization.  If an agent is asked to assess only one strict subset 𝐸 ⊂ ℝ we intuitively assume 
that she also samples based on its unmentioned alternative −𝐸 = ℝ\𝐸.   
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structures. The inconsistency of beliefs elicited under different cues is well documented in work on 

judgment and known as the “disjunction fallacy”: people attach a higher probability to an event if its 

description is broken down into constituent parts, which facilitates retrieval of instances (Fischoff et al. 

1978).  Using our model and the SCE elicitation of point expectations and range probabilities, we can 

assess this inconsistency in the key field context of household inflation expectations. 

We next derive the model’s predictions for point expectations in Equation (3), then for forecast 

densities in Equation (4), and finally for the inconsistency between point and density-based expectations. 

These predictions underscore a structured dependence of these objects on changing current inflation 𝜋!, 

on cohort differences in the database Π! , and on the interaction between the two.  This structure 

organizes our empirical tests in Sections 3 and 4. 

 

2.2 Model Predictions 

The model’s predictions rely on: i) the database Π! , which varies across respondents with 

different ages 𝑎! and over time due to realized inflation 𝜋!, and on ii) the features of the cue, 𝜋!,), which 

include the estimation task. These elements interact because following Equation (2) the cue ignites 

retrieval of past episodes 𝜋!"# based on the distance in Equation (1), but critically the retrieval is restricted 

by the database. Thus, the same cue affects beliefs differently across databases, producing systematic 

belief disagreement.  We derive testable implications of this interaction for the common belief elicitations 

in household surveys: point forecasts and density forecasts of future inflation.  

Point Expectations. This is the most common elicitation of expectations, available in the University 

of Michigan’s Survey of Consumers (MSC) and the Federal Reserve Bank of New York’s Survey of Consumer 

Expectations (SCE), and concerns expected inflation 12 months ahead or farther. When forming a point 
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forecast the cue is broad, 𝐸 = ℝ, which facilitates retrieval of episodes near the respondent’s average 

experienced inflation, 𝜋0),! = 𝜋0!.  The model then implies the following result.  

Proposition 1 The linear approximation of a respondent’s point inflation expectations at time 𝑡  with 

respect to 𝛽%, 𝛽* and 𝜎 around 𝛽% = 𝛽* = 𝜎 = 0, is given by: 

𝔼.𝜋!=%|𝜋!,ℝ1 ≈ 𝜋! + 𝛽% ∙ 𝑐𝑜𝑣[(𝑠/𝑎!)*, 𝜋!"#] − 𝛽* ∙ 𝑐𝑜𝑣(𝑠/𝑎! , 𝜋!"#) 

−𝜎 ∙ (1 − 𝑞) ∙ 𝑐𝑜𝑣[𝜋!"#, (𝜋!"# − 𝜋!)*] − 𝜎 ∙ 𝑞 ∙ 𝑐𝑜𝑣[𝜋!"#, (𝜋!"# − 𝜋!)*].																				(5) 

The first determinant of expectations is a respondent’s average experienced inflation 𝜋! when 

entering time 𝑡.  This term reflects the database Π!: people who have experienced higher inflation during 

their lifetimes, higher 𝜋!, ceteris paribus expect higher future inflation, whatever cue they face. 

The other terms reflect the interaction between cues and the database: covariances are in fact 

computed using the features of the cue and the distribution of experiences in the database. The first two 

covariances 𝛽% ∙ 𝑐𝑜𝑣[(𝑠/𝑎)*, 𝜋!"#] and  −𝛽* ∙ 𝑐𝑜𝑣(𝑠/𝑎, 𝜋!"#) encode primacy and recency, respectively. 

Holding a person’s average experience constant, the first term implies that people whose above average 

inflation experiences occurred early in life persistently estimate higher inflation compared to people with 

the same average experience but who lived above average inflation later in life (the former people have 

higher 𝑐𝑜𝑣[(𝑠/𝑎!)*, 𝜋!"#]). By the second term, a person whose above average inflation experiences 

occurred recently expects higher inflation compared to a person whose above average inflation 

experiences occurred when she was middle aged (the former people have lower 𝑐𝑜𝑣(𝑠/𝑎! , 𝜋!"#)). 

Primacy is a stark departure from Bayesian models: it implies that a person’s early experiences 

are more heavily weighted in beliefs than recent ones, as if they were objectively “more informative”.  

Recency is more standard: it is embedded in constant gain learning models (Marcet and Sargent 1989, 

Sargent 1999, Evans and Honkapohja 2001) and in time-decaying experience-based learning models 
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(Malmendier and Nagel 2011, 2016, Nagel and Xu 2022). In our model, these two forces act at the same 

time and pull beliefs in different directions. Ceteris paribus, recency dominates if and only if 𝛽* > 𝛽%, in 

which case the very last episode has a higher weight than the very first one. 

The two remaining covariances reflect numerical similarity, and their strength is modulated by 

𝜎 > 0 .  They imply that – for a given database Π!  – a surge in current inflation 𝜋!  tends to boost 

expectations by prompting selective retrieval of high inflation experiences compared to low inflation ones. 

Critically, this effect is cohort-specific. The second covariance term implies that – holding average prior 

experiences constant – higher current inflation 𝜋! especially boosts the belief of a person whose above 

average inflation experiences are similar to 𝜋!  compared to a person whose such experiences are 

different from it (the former person has lower 𝑐𝑜𝑣[𝜋!"#, (𝜋!"# − 𝜋!)*] ). The first covariance term 

captures changes in the database.  If the inflation surge is persistent so that the average experience 𝜋! 

increases, inflation expectations also increase, especially for people whose above average experiences are 

similar to 𝜋! (for them 𝑐𝑜𝑣[𝜋!"#, (𝜋!"# − 𝜋!)*] is lower).  

 Numerical similarity thus implies that higher current inflation 𝜋! can trigger strong de-anchoring, 

and especially so for people who have lived through many high inflation episodes similar to 𝜋!, regardless 

of how remote they are in the past. Pointing to the richness of memory effects, this heterogeneity is time 

varying: during an upward trend in inflation, the expectations of “low inflation” cohorts quickly catch up 

because their database gets filled with high inflation as they live it, sharply boosting their recall by 

similarity. As we will show, these forces allow our model to quantitatively account for the key patterns in 

Figure 1: the faster de-anchoring by the elderly and the subsequent catch up by the young.   

A large body of work shows the importance of inflation, stock market, and other experiences for 

belief formation in macro-finance.  What are the mechanisms and consequences?  A cognitive approach 

based on human memory highlights the importance of similarity and cues.  If memory only works through 
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the average record of experiences (the first term), older people should exhibit a relatively muted reaction 

to an inflation surge because their average database 𝜋! is affected by recent events less than the database 

of the younger cohorts, and differences eventually fade with temporal discounting/recency effects. 

Well established regularities in selective recall run against this force. On the one hand, primacy 

effects imply that belief differences between older and younger people tend to persist if these cohorts 

lived their above average inflation experiences in different phases of their lives (early vs middle aged). 

Numerical similarity in turn creates sharp state and cohort dependence in belief updating. The beliefs of 

the elderly change faster than those of the young, despite the elderly’s slow-moving database, when high 

inflation cues the elderly to recall a temporally remote yet numerically similar high inflation episode, 

which remained “dormant” – due to dissimilarity – during low-inflation times. This prediction of selective 

memory can be tested using Equation (5). 

Cohort-specific state dependence can be generated by a Bayesian model in which people allow 

for “switching” across the inflation regimes they experienced in life.  In Figure 1, upon seeing high inflation, 

the elderly sharply revise up the probability of switching to the “high inflation” regime they experienced 

in their youth, while the young react less because they do not have this regime in the set of models they 

entertain.  This account has three problems. First, it cannot explain the quick catch up by the young unless 

one implausibly assumes that they form a “high inflation” model right after seeing a few months of high 

inflation.  Second, a Bayesian account cannot explain primacy effects. Third, and crucially, it cannot explain 

the inconsistency between density and point forecasts, which we investigate next. 

Density Forecasts. As described in Section 4, the SCE asks people to report the probability of ten 

inflation ranges: inflation greater than 12%, 8% to 12%, 4% to 8%, 2% to 4%, 0% to 2%, and deflation 0 to 

-2%, -2% to -4%, -4% to -8%, -8% to -12% and less than -12%.  To study belief formation about these finer 

events, assume for simplicity that peoples’ databases are concentrated at the inflation ranges’ midpoints 
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𝜋?  for 𝑗 = 1, . . ,10 (we later test empirical robustness of this). Cohort differences are then captured by the 

experienced frequencies of different ranges. When assessing the probability of range 𝑗, the respondent is 

cued by the corresponding event, 𝜋0!,)( = 𝜋?, and by current realized inflation 𝜋!.  

Proposition 2 Let 𝑛?  be the database frequency of 𝜋?. The linear approximation of a respondent’s estimate 

for the odds of 𝜋?  versus a base 𝜋A at 𝑡 with respect to 𝛽%, 𝛽* and 𝜎 around 𝛽% = 𝛽* = 𝜎 = 0, is given by: 

Pr.𝜋?|𝜋? , 𝜋!1
Pr(𝜋A|𝜋A , 𝜋!)

≈
𝑛?
𝑛A
+ 𝛽% ∙

𝑛?
𝑛A
∙ .𝑠?

* − 𝑠A
*1/𝑎!* − 𝛽* ∙

𝑛?
𝑛A
∙ .𝑠? − 𝑠A1/𝑎! 

−𝜎 ∙ 𝑞 ∙
𝑛?
𝑛A
∙ ^.𝜋? − 𝜋!1

* − (𝜋A − 𝜋!)*_.																																													(6) 

The same memory forces affecting point forecasts influence the estimated relative probability of 

different ranges.  The first term in Equation (6) captures a pure database effect: the relative probability 

attached to range 𝑗 relative to range 𝑏 increases in its relative experienced frequency 𝑛?/𝑛A. The other 

terms capture the interaction between time varying cues and the database, which produce cohort specific 

belief instability. There is a primacy effect: when 𝛽% > 0, range 𝑗 is deemed more likely than range 𝑏 if it 

is experienced on average more remotely than the latter, 𝑠?
* 	> 𝑠A

*	. There is also a counterbalancing 

recency effect: when 𝛽* > 0 range 𝑗 is deemed more likely compared to 𝑏 if it was experienced more 

recently compared to the latter 𝑠? < 𝑠A .  Critically, the strength of primacy and recency effects are 

mediated by the database: they are both stronger if range 𝑗 is experienced relatively more frequently than 

𝑏, higher 𝑛?/𝑛A. This is the interaction between the temporal cue and the database. 

When 𝜎 > 0 there is also a numerical similarity term: range 𝑗 is deemed more likely if current 

inflation is closer to it compared to range 𝑏, the more so if range 𝑗 experiences were more frequent 

relative to range 𝑏, higher 𝑛?/𝑛A.  If inflation increases from 2% to 10%, the judged probability of the 10% 
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range should go up for everybody, but especially so for people who have lived more 10% inflation 

episodes. Beliefs about ranges are state-dependent in the same way point expectations are. 

A key difference between point expectations and density forecasts is that, when forming the 

latter, the average inflation cue 𝜋0!  plays no role, namely it is absent from Equation (6). This occurs 

because, when people estimate an explicitly described range 𝐸?, they are directly cued to think about the 

inflation state 𝜋?  corresponding to it, even if it was rarely experienced (namely, even if it is different from 

𝜋0!). Thus, the forecast density Pr R𝐸?|𝜋!,)(S in Equation (4) differs systematically from the implicit belief 

Pr.𝐸?|𝜋!,ℝ1 over the same ranges formed implicitly when making point expectations.  

Empirical work on surveys has documented several “anomalies” associated with density forecasts 

for inflation and other outcomes. These anomalies include smearing of probabilities across events or 

outsized probability attached to events elicited before the others, and they are typically explained using 

“frictions” such as rounding of probabilities (Binder 2018), order effects (Tversky and Kahneman 1974, 

Hogarth and Einhorn 1992), and the 1/n heuristic (Benartzi and Thaler 2001).  Compared to these findings, 

we rely on a structured memory mechanism which offers precise predictions on how cues and a person’s 

database interact in order to shape density forecasts and their discrepancy with point forecasts. To see 

this, note that Equations (3) and (4) imply: 

𝔼.𝜋!=%|𝜋!,ℝ1 =N 𝑤?,! ∙ Pr R𝐸?|𝜋!,)(S ∙ 𝜋??
.																																																(7) 

That is, memory-based point expectations are given by a weighted sum of ranges’ expected values, where 

the weight on range 𝑗 identifies the ratio between the implicit estimate of 𝐸?  used for making the point 

forecast and the directly elicited estimate for the same range, 𝑤?,! =
	CD8)(|-!,ℝ9

	CDE)(|-!,$(F
.   
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If the two estimates are consistent, which should be the case in any rational model, then 𝑤?,! =

1. A respondent’s point expectation should then be equal to the average inflation computed using her 

separately elicited forecast density. This is not the case with selective memory.  Rarely experienced ranges 

are unlikely to be retrieved when forming point expectations and so 𝑤?,! < 1.  For instance, if people 

rarely experienced deflation, the lowest ranges elicited in the SCE, then when forming a point forecast 

they will underweight deflation scenarios compared to when estimating forecast densities, because in the 

latter case deflation ranges are cued. The opposite occurs if people rarely experience high inflation.  

Critically, our model predicts that this inconsistency between point and density-based forecasts 

can be systematically tied to changing current inflation 𝜋! and the average experience 𝜋!.    

Proposition 3 Let 𝔼(𝑋>|DF) = ∑ Pr.𝐸>|𝜋!,)+1 ∙ 𝑋>>  be the expectation of 𝑋>  based on the density 

forecast. Let 𝑑?,! = .𝜋? − 𝜋!1
*

 be the distance between range 𝑗 and a respondent’s average experienced 

inflation, and 𝑑̅! the average distance of ranges based on their experienced frequencies. Then, a linear 

approximation of 𝑤?,!  with respect 𝛽%, 𝛽*  and 𝜎 around 𝛽% = 𝛽* = 𝜎 = 0 implies that the respondent’s 

point estimate at 𝑡 satisfies: 

𝔼.𝜋!=%|𝜋!,ℝ1 ≈ 𝔼(𝜋!=%|DF) + 𝜎 ∙ 𝑞 ∙ 𝔼i𝜋? ∙ .𝑑! − 𝑑?,!1|DFj.																														(8) 

Point and density-based expectations differ only if numerical similarity matters, 𝜎 > 0. If so, the point 

expectation is higher than her density-based one whenever high inflation ranges are relatively more 

similar to her average experience than deflation ones (i.e. 𝑑?,! is below average at positive inflation levels 

𝜋? > 0). People who experienced lots of high inflation will insufficiently account for deflation scenarios 

when forming point expectations, even though they partially correct themselves when assessing deflation 

ranges. These people will then exhibit a positive gap between point and density-based expectations.  
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Critically, memory implies that the belief inconsistency should be time varying.  When inflation 

rises sharply, both the point and the density-based forecasts will increase. However, the point forecast 

𝔼.𝜋!=%|𝜋!,ℝ1 will increase less in proportion to the density-based one 𝔼(𝜋!=%|DF). Intuitively, observing 

high inflation triggers a sharp upward revision of high inflation ranges and a sharp downward revision of 

deflation ranges in the density forecast (while the point expectation remains more anchored to the slow-

moving average experience 𝜋! compared to the density based one).  This state-dependent discrepancy 

between point and density-based expectations is a clear test of memory and can have important real-

world implications. If different consumption and investment decisions are made under the influence of 

different cues that make inflation or some of its realizations more or less salient, beliefs and decisions will 

change across contexts. The same person may buy gold after hearing about the risk of high inflation, but 

prefer a cheap over an expensive car because the car dealer’s context does not cue high inflation risk. The 

role of experiences is mediated by ambient cues. 

 

3. Testing the Model’s Predictions for Point Expectations 

In this section we examine point expectations in Equation (5)  using the Michigan Survey of 

Consumers, MSC, and the New York Fed’s SCE.  

 

3.1 Data 

The MSC is a rotating survey panel conducted at the monthly frequency by the University of 

Michigan starting from January 1978. Six months after the interview, about 40% of the sample is 

interviewed again, and each respondent could be interviewed up to three times.  The MSC collects several 

socio-demographics and expectations about a range of economic indicators.  On inflation, each 
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respondent is asked whether he/she believes that prices will go up, down, or stay the same in the 

following 12 months, and by which percentage.  The latter estimate is our point expectations proxy, which 

we winsorize at the bottom and top 1th percentiles at -7% and 30% expected inflation.  Before 1978, the 

survey was delivered quarterly, respondents were fewer, and the questions were slightly different. For 

this reason, we focus on the post-1978 period until June 2022. 

The New York Fed’s SCE is also a rotating panel. It comprises about 1,300 nationally representative 

US respondents who are interviewed every month over a 12-month period. Our data cover the period 

from the inception of the survey in June 2013 until June 2022.  Similar to the MSC, the SCE collects socio-

demographic characteristics and a wide array of expectations.  The point expectations question asks 

respondents whether they expect an increase or decrease of inflation, and then to specify their estimates, 

which we winsorize at the bottom and top 5th percentiles at -4% and 25% expected inflation. 

Current and experienced realized inflation comes from the Shiller (2005) database, which reports 

the monthly CPI back to 1871.  We measure experiences at a quarterly frequency, using the annualized 

quarterly growth rate of the CPI. Quarterly inflation is a reasonable compromise between the high 

volatility of monthly inflation, whose fluctuations may fail to be noticed by households, and the stability 

of annual inflation, which may create a false impression that most households have never experienced 

significant price increases or deflation. In each month of forecast, the respondent’s database consists of 

all experienced inflation rates before the current quarter, starting at age 16, so for testing the model in 

each period we compute a respondent’s effective age as 𝑎! = (actual years of age at 𝑡 −16) ∗ 4. Results 

remain robust if we allow for an earlier starting point of the memory database at age 12. 

Consistent with the construction of the database, we measure the current cue, 𝜋! in the model, 

as the annualized quarterly inflation rate realized in the three months before the forecast (the forecast 

month is included).  We adopt the same method to construct the database and cues in the SCE dataset. 
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We take realized inflation to be perfectly observed by households. Relaxing this assumption does not 

radically change our qualitative results if the mapping between true and perceived inflation is monotonic.5  

We also use data on professional CPI inflation forecasts from the Survey of Professional Forecasters (SPF). 

 

3.2 Cues and Point Expectations  

We test Equation (5) by estimating: 

𝜋G,!H = 𝛾I + 𝛾% ∙ 𝜋!"% + 𝛾* ∙ 𝑐𝑜𝑣[(𝑠/𝑎)*, 𝜋!"#] + 𝛾J ∙ 𝑐𝑜𝑣[(𝑠/𝑎), 𝜋!"#] 

+𝛾K ∙ 𝑐𝑜𝑣[𝜋!"#, (𝜋!"# − 𝜋!)*] + 𝛾L ∙ 𝑐𝑜𝑣[𝜋!"#, (𝜋!"# − 𝜋!)*]																																	 

+𝛾M ∙ 𝜋NOP,!H + 𝜹%+𝑿G + 𝜹*+ 𝒁! + 𝑢G! ,																																				 

where 𝜋G,!H  is the point expectations at time 𝑡  by respondent 𝑖 , 𝑿G  controls for 𝑖 ’s gender, education, 

income brackets, and marital status, and 𝒁!  captures year dummies, which are included in most 

specifications to control for common shocks and to assess the ability of memory related regressors to 

account for cross cohort variation in beliefs. In some specifications we include the SPF forecast 𝜋NOP,!H , 

because professional inflation forecasts are prominent in the media, so the respondent may combine 

them with her memory-based estimate (see Bordalo et al. 2025a). 

The key parameters linked to Equation (5) are 𝛾%, which should be positive if experiences matter, 

𝛾* and 𝛾J, which jointly determine the temporal context-driven primacy (𝛾* > 0) and recency (𝛾J < 0) 

effects, with the former dominating the latter when 𝛾* + 𝛾J > 0, and 𝛾K and 𝛾L, which should be negative 

if numerical similarity matters. Table 1 reports the regression estimates for the MSC (Panel A) and the SCE 

 
5 In particular, the current analysis goes through under a linear approximation in which perceived inflation is affine 
in true inflation, so that 𝜋6! = 𝑎 + 𝑏 ∙ 𝜋!. In this case, parameter 𝑎 would affect the level of beliefs but not similarity, 
and the slope 𝑏 would enter quadratically in the numerical similarity weights.     
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(Panel B). We include different memory effects in progression from columns (1) to (4). In column (5) we 

exclude year dummies to assess the explanatory power of memory alone, without accounting for 

unobservable time varying factors. 

Column (1) confirms that respondents who experienced higher average inflation report higher 

inflation expectations compared to the others, 𝛾% > 0.  Holding the average 𝜋! constant, does selective 

retrieval matter?  Column (2) assesses temporal context. Estimates in the SCE support the predicted U-

shaped pattern of higher expected inflation if a respondent’s above average inflation experiences are 

either early or recent., 𝛾* > 0 and 𝛾J < 0, in the MSC estimates are directionally consistent but not 

statistically significant.   

In Column (3) we include numerical similarity, running the full-fledged specification of Equation 

(5).  Consistent with selective memory, the estimated coefficients on numerical similarity are negative, 

𝛾K < 0 and 𝛾L < 0: holding average experience constant, the respondent overweighs her above average 

inflation experiences when these are more similar to current inflation as well as to the average inflation 

experienced during her lifetime, which both act as cues. Now primacy and recency effects become robust 

predictors of beliefs, and show up significantly also in the MSC. We thus find strong evidence for the three 

leading memory effects: primacy, recency, and numerical similarity. These effects are robust to adding 

the SPF forecast, Column (4), and to dropping year dummies, Column (5). In fact, year dummies have a 

fairly small impact on the R*, showing the ability of memory to account for cohort and time variation in 

beliefs.  As we shall see in Section 5, standard models with time dependent weights, including experience-

based learning (Malmendier and Nagel 2016) cannot account for these patterns.   
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Table 1. Inflation Expectations, Experience and Selective Recall 

Notes: The table reports the estimates of the first-order approximation of learning from experience model, augmented with similarity and a 
quadratic recency term, given by the regression specification 𝜋!,#$ = 𝛾% + 𝛾& ∙ 𝜋#'& + 𝛾( ∙ 𝑐𝑜𝑣[(𝑠/𝑎)(, 𝜋#')] + 𝛾* ∙ 𝑐𝑜𝑣[(𝑠/𝑎), 𝜋#')] + 𝛾+ ∙
𝑐𝑜𝑣[𝜋#'), (𝜋#') − 𝜋#'&)(] + 𝛾, ∙ 𝑐𝑜𝑣[𝜋#'), (𝜋#') − 𝜋#)(] + 𝛾- ∙ 𝜋./0,#$ + 𝜹&′ 𝑿! + 𝜹(′ 𝒁# + 𝑢!#. Demographic characteristics include sex, education, 
income quintile and marital status. The database of inflation experiences includes the quarter-on-quarter experienced inflation rate and is 
updated each month. Inflation experience stops at the quarter before the quarter in which the forecast is made. Current inflation is the inflation 
experienced during the three months before the forecast. We assume that for each cohort, learning starts when 16. Observations are weighted 
using survey weights. Standard errors clustered at the cohort and forecast date level in parentheses. 

 

  
One-Year-Ahead Inflation Expectation 

(1) (2) (3) (4) (5) 
Panel A. MSC 
Average Experienced Inflation:  𝜋)!"&: 0.280*** 0.324*** 0.554*** 0.562*** 0.319*** 

 (0.027) (0.062) (0.069) (0.064) (0.058) 
Temporal Context Quadratic Component :  Cov(s2,πt-s) /a2  -0.056 2.255*** 1.947*** 1.814*** 

  (0.526) (0.589) (0.518) (0.527) 
Temporal Context Linear Component:  Cov(s,πt-s)/a  -0.202 -3.095*** -2.617*** -1.769*** 

  (0.699) (0.775) (0.696) (0.644) 
Dissimilarity average inflation:  Cov((πt-s-𝜋'!"&)2,πt-s)   -0.003*** -0.002** -0.002* 

    (0.001) (0.001) (0.001) 
Dissimilarity current inflation:  Cov((πt-s- πt)2,πt-s)   -0.002*** -0.004*** -0.006*** 

   (0.001) (0.000) (0.001) 
SPF inflation forecast    -0.041 0.234*** 

    (0.102) (0.062) 
Constant 3.019*** 2.849*** 2.145*** 2.111*** 2.321*** 

 (0.122) (0.248) (0.256) (0.360) (0.104) 
      

Observations 229,495 229,495 229,495 217,818 217,818 
R-squared 0.091 0.091 0.093 0.060 0.044 
Panel B. SCE 
Average Experienced Inflation:  𝜋)!"&: 0.212*** 0.464* 1.046*** 0.931** 2.175*** 

 (0.074) (0.242) (0.392) (0.395) (0.374) 
Temporal Context Quadratic Component :  Cov(s2,πt-s) /a2  5.292** 7.218** 6.371** 19.083*** 

  (2.555) (2.853) (2.835) (2.790) 
Temporal Context Linear Component:  Cov(s,πt-s)/a  -6.543* -9.608** -8.351** -26.657*** 

  (3.564) (4.061) (4.040) (3.942) 
Dissimilarity average inflation:  Cov((πt-s-𝜋'!"&)2,πt-s)   -0.010 -0.009 -0.001 

    (0.007) (0.007) (0.007) 
Dissimilarity current inflation:  Cov((πt-s- πt)2,πt-s)   -0.002*** -0.002*** -0.008*** 

   (0.001) (0.001) (0.001) 
SPF inflation forecast    0.646* 0.937*** 

    (0.354) (0.306) 
Constant 5.699*** 5.263*** 3.810*** 2.639** -0.163 

 (0.216) (0.452) (0.884) (1.061) (0.959) 
      

Observations 139,583 139,583 139,583 139,583 139,583 
R-squared 0.114 0.115 0.115 0.115 0.104 
Demographic Characteristics YES YES YES YES YES 
Year Fixed Effect YES YES YES YES NO 
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Estimated coefficients are economically meaningful. Consider temporal context first.  As Appendix 

Table A2 shows for the MSC, in our preferred specification (Table 1, Column 4) a one-standard deviation 

increase in the first covariance term (second row) implies a 0.82 percentage point increase in inflation 

expectations while the second covariance term (third row) is associated with -1.04 percentage points 

decrease.  This suggests that frequency is marginally stronger but comparable to primacy (they are 

statistically indistinguishable, in fact). Based on point estimates, the temporally harder experiences to 

recall – those for which temporal distance 𝛽(𝑠/𝑎!)  is maximized – are those occurring at  𝑠/𝑎 =

𝛽*/2𝛽% = 0.685, which is approximately one third into a person’s effective age. 

Consider numerical similarity next.  The effect of this force is not only present but strong, which 

is needed to explain de-anchoring. A one-standard deviation increase in the dissimilarity of experienced 

above average inflation episodes to average inflation (fourth row), and to current inflation (fifth row), is 

associated with decreases of 0.11 and 0.29 percentage points, respectively.  

Similar conclusions apply to the SCE (Appendix Table A3). Here, a one-standard deviation increase 

in the primacy term (second row) leads to an increase in inflation expectations by 1.42 percentage points 

while a one-standard deviation change in the recency term (third row) is associated with a decrease in 

inflation expectations of 1.66 percentage points. Similarly to the MSC, the peak of temporal distance is 

reached at 𝑠/𝑎 = 0.655.  As for numerical similarity to the database and current inflation, a one-standard 

deviation higher covariance decreases expectations by 0.18 and 0.20 percentage points, respectively. 

We assess robustness to using different measures and methods. We estimate our regression using 

longer term inflation expectations (between 24 and 36 months ahead), which are available from the New 

York Fed’s SCE, not for the MSC. These expectations are highly relevant for individual decisions as well as 

for monetary policy. Our results on temporal context and numerical similarity carry over to them, 

buttressing the explanatory power of selective memory, with one interesting nuance: for longer term 
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expectations similarity to the experienced mean inflation rate is more important than similarity to the 

current inflation rate, which is the opposite of what we found for short term beliefs. Intuitively, long-term 

expectations are shaped by longer-term experiences, so that different cohorts have different long-run 

inflation anchors. The results hold if we apply robust regressions (Appendix Table A1) or if we define 

inflation experiences annually rather than quarterly (Appendix Table A5). 

Overall, selective memory holds significant explanatory power for point expectations.  Well 

established regularities in recall improve on adaptive models in which cues play no role and only recency 

matters, as well as on Bayesian models that exhibit no primacy effects.  In Section 5 numerical similarity 

proves crucial to accounting for the swift de-anchoring by the elderly as well as for the quick catch up by 

the young in Figure 1.  We next compare point and density forecasts in the data.  This analysis rejects any 

standard model, in which people hold a coherent belief system which they use for different elicitation and 

allows us to test additional predictions of memory.    

 

4. The Model’s Predictions for Forecast Densities and Belief Inconsistency 

Section 4.1 shows that forecast densities are also influenced by temporal and numerical cues 

based on estimates of Equation (6). Section 4.2 shows that a household’s density-based and point 

expectations are inconsistent, in a way that can be explained by our model, based on Equation (8). 

 

4.1.  Temporal and Numerical Similarity in Forecast Density Estimation 

Recall that the forecast density elicitation in the SCE asks households to report their probability 

estimates of inflation falling into each of 10 ranges: greater than 12%, 8% to 12%, 4% to 8%, 2% to 4%, 0% 

to 2%, and deflation 0 to -2%, -2% to -4%, -4% to -8%, -8% to -12% and less than -12%. Consider the 
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average estimates of young (<45, red), middle-aged (45-65, orange), and older (>65, blue) cohorts, 

aggregated over the lowest (𝜋!=%< -4%), middle (𝜋!=% ∈ [−4,4%]), and top (𝜋!=% > 4%) ranges. Figure 3 

reports their evolution between 2019 and 2022, the same window as our motivating Figure 1.  

Figure 3 Cohort Specific State-Dependence in Range Estimation 

 
Notes:	This	figure	shows	the	mean	probability	that	respondents	assign	in	the	NY	Fed	SCE	to	the	bottom,	middle	and	top	ranges	of	future	
inflation.	Bottom	ranges	span	<-12%,	-12%	to	-8%	and	-8	to	-4%	future	inflation;	middle	ranges	-4%	to	-2%,	-2%	to	0%	,	0%	to	2%	and	
2%	to	4%	future	inflation;	top	ranges	4%	to	8%,	8%	to	12%	and	>12%	future	inflation.	Means	are	computed	using	survey	weights. 

 

Consistent with Figure 1, upon seeing the inflation surge older respondents increase the 

probability of the top ranges (𝜋!=% > 4%) more sharply than younger ones and correspondingly revise 

more sharply downward the probability of the middle ranges (𝜋!=% ∈ [−4,4%]).  The probability attached 

to the lowest range (𝜋!=% < - 4%) is much smaller and economically quite similar across cohorts: The young 

place a probability of 7.16% on this deflationary range, the middle-aged 6.5% and the older 6.76%.  

This evidence is consistent with the interaction between cues and the database in Equation (6): 

the effect of changing inflation 𝜋! in range 𝐸?  estimation is mediated by its experienced frequency 𝑛?/𝑛A.  

Across cohorts, as the elderly see high inflation, they more sharply increase their estimate probability 

Pr(𝜋!=% > 4%) due to their higher frequency 𝑛?/𝑛A  compared to the young, who did not experience 
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many such episodes. Over time, much action in forecast densities comes from middle and high inflation 

ranges; The probability attached to deflation is statistically different than zero but moves much less than 

the other ranges. This is again consistent with an interaction between cues and databases: changes in the 

inflation cue 𝜋! affects deflation ranges less, due to their lower frequency 𝑛?/𝑛A, for all cohorts. 

We next present a structured test of our model, which also allows for additional forces, including 

recency and primacy. We take the model-implied Equation (6) to the data, which we implement by 

estimating several variants of the specification: 

𝜋dt G,!
𝜋Au G,!

= 𝜃I + 𝜃% ∙
𝑛?,G,!
𝑛A,G,!

+ 𝜃* ∙
𝑛?,G,!
𝑛A,G,!

∙ R𝑠?G,!
* − 𝑠AG,!

* S /𝑎!* + 𝜃J ∙
𝑛?,G,!
𝑛A,G,!

∙ R𝑠?G,! − 𝑠AG,!S /𝑎! +																	 

𝜃K ∙
𝑛?,G,!
𝑛A,G,!

∙ ^.𝜋? − 𝜋!1
* − (𝜋A − 𝜋!)*_ + 𝝎%

+𝑹𝒋 × 𝑿G +𝝎*
+𝑹𝒋 × 𝒁! +𝝎J𝜋NOP,!H + 𝑣G?! ,																				 

where the left-hand side are the odds of a range j over a baseline range 𝑏 ≠ 𝑗 , selected for each 

respondent as the range with the lowest non-zero probability assessment. On the right hand side, 

𝑛?,G!/𝑛A,G!  captures the corresponding relative experience frequency, R𝑠?G,!
* − 𝑠AG,!

* S /𝑎!*  and R𝑠?G,! −

𝑠AG,!S /𝑎!  the corresponding relative recency, ^.𝜋? − 𝜋!1
* − (𝜋A − 𝜋!)*_  the corresponding relative 

dissimilarity, 𝑿G  contains demographic fixed effects to account for individual-specific characteristics, 𝒁! 

captures year dummies, 𝜋NOP,!H  the SPF inflation forecast, and 𝑹?  contains indicators for range j which we 

interact with 𝑿G  and	 𝒁! .  Including range*date-specific dummies allows us to assess state*cohort 

differences in the assessment of a specific range.  To avoid creating fat tails in experience ratios and to 

use Huber-robust weights, we aggregating tail ranges to >8%, 4% to 8%, 2% to 4%, 0% to 2%, -2% to 0%, -

4% to -2%, and <-4% and we exclude single-valued density forecasts. 

Key parameters in the specifications include 𝜃%, which should be positive if the relative experience 

𝑛?/𝑛A with the target range 𝑗 matters, 𝜃*, which should be positive if greater primacy of the target range 
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𝑗 boosts its estimated odds, 𝜃J, which should be negative if more recently experienced ranges are more 

likely, and 𝜃K, which should be negative if the higher similarity of the target range 𝑗 to the current inflation 

cue boosts its estimated odds.  All effects here are relative to the benchmark range 𝑏. 

Results from the estimation, shown in Table 2, confirm the importance of selective memory.  First, 

a pure database effect is at work, as shown by the positive coefficient on “frequency ratio” in the first 

row.  Cohorts that have experienced a higher relative frequency of inflation in, say [2%,4%], report a 

relatively higher probability for this range compared to cohorts that have experienced it less frequently, 

under any given temporal or numerical cue. 

Second, cues also matter. Temporally, we see a recency effect: the [2%,4%] range is deemed as 

relatively more likely if it was experienced recently, captured by the negative coefficient on “time delay.”  

We also see a primacy effect: the same [2%,4%] range is also deemed relatively more likely by a cohort 

that experienced it early in life, as captured by the positive coefficient on “time delay squared”. These 

effects interact with the database: a temporal cue favoring a range is particularly strong if the range was 

experienced relatively frequently in the past.  An occasional [2%,4%] episode is forgotten even if it 

occurred recently or early in life.  These temporal effects are consistent with the evidence from point 

estimates and inconsistent with Bayesian or adaptive models (primacy, in particular). 

Crucially, numerical cues also matter, see column (4): a target range is deemed more likely if it is 

relatively more similar to current inflation (see the negative coefficient on “relative dissimilarity”), 

especially if the household experienced this range more frequently. This is the key force behind the cohort 

specific state dependent de-anchoring in Figure 3: upon seeing high inflation in 2021, the elderly sharply 

increase their high-inflation range estimates compared to the young, who have fewer high inflation 

experiences. This is memory-driven instability, shaped by the interaction between the database and cues. 

Regularities in selective recall shed light on both point and density forecasts.  
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Table 2. Memory and Range Probabilities 

 

4.2 The Inconsistency between Point Expectations and Forecast Densities 

A rational respondent would use her prior and the data to derive a probability density over future 

inflation rates. She would then use this density both to estimate the probabilities of various ranges and 

to form a point forecast. Average inflation computed using the respondent’s density forecast would then 

be equal to her point expectation. This is not the case under selective memory: the elicitation of ranges 

cues recall of rarely experienced ranges that are neglected when thinking about a point forecast. By 

affecting the cue, different estimation tasks create belief inconsistencies across elicitations.  We next 

show that this property of memory has empirical bite: there is a systematic inconsistency between the 

  

Odds Ratio 

(1) (2) (3) (4) (5) 

       
Frequency Ratio 0.0162*** 0.0230*** 0.0242*** 0.0230*** 0.0242*** 

 (0.000682) (0.00131) (0.00131) (0.00131) (0.00132) 
Relative Frequency Ratio x  Relative 
Time Delay Squared 0.104*** 0.0251*** 0.0350*** 0.0251*** 0.0350*** 

 (0.00464) (0.00728) (0.00755) (0.00728) (0.00755) 
Relative Frequency Ratio x Relative 
Time Delay  -0.106*** -0.0731*** -0.0866*** -0.0731*** -0.0866*** 

 (0.00412) (0.00629) (0.00687) (0.00629) (0.00687) 
Relative Frequency Ratio x Relative 
Dissimilarity  -2.26e-05*** -8.20e-06** -1.06e-05*** -8.23e-06** -1.06e-05*** 

 (2.38e-06) (3.43e-06) (3.87e-06) (3.42e-06) (3.87e-06) 
SPF    0.000858 0.00814 

    (0.00615) (0.00521) 
Constant 0.0453*** 0.171*** 0.173*** 0.171*** 0.173*** 

 (0.00251) (0.00293) (0.00280) (0.00305) (0.00272) 

      
Observations 491,072 567,767 570,799 567,775 570,822 
R-squared 0.255 0.295 0.307 0.295 0.307 
Demographic x Range Fixed Effects No Yes Yes Yes Yes 

Year x Range Fixed Effects No No Yes No Yes 
Notes:	This	table	reports	estimated	coefficients	and	standard	errors	from	estimating	

1!2",$

1%2 ",$
= 𝜃% + 𝜃& ∙

3&,"$
3%,"$

+ 𝜃( ∙
3&,"$
3%,"$

∙ E𝑠4!,#
( − 𝑠5!,#

( F /𝑎( +

𝜃* ∙
3&,"$
3%,"$

∙ E𝑠4!,# − 𝑠5!,#F /𝑎 +	𝜃+ ∙
3&,"$
3%,"$

∙ g8𝜋4 − 𝜋#9
( − (𝜋5 − 𝜋#)(h +𝝎&

6𝑹𝒋 × 𝑿! + 𝝎(
6𝑹𝒋 × 𝒁# + 𝝎* 𝜋./0,#$ + 𝑣!4# where the data come from the 

New York Fed SCE. Columns 2 and 3 include interactions of inflation range indicators 𝑅4 with demographic fixed effects 𝑋! as well as year fixed 
effects 𝑍#, while Columns 4 and 5 additionally include an indicator variable for the SPF forecast falling in the range, captured by the SPF entry. 
Regressions use Huber-robust survey weights. Standard errors clustered at the cohort-range and forecast-range date level in parentheses. 
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beliefs formed under point and density forecast elicitations, also reported in Bruine de Bruin et al. (2011), 

which varies over time in line with the interaction between cues and databases. 

For each household 𝑖 and time period t, we compute the density-based inflation estimate 𝜋G,!,opH  

using the reported range probabilities by household i at time 𝑡 and the 1931-2020 historical average 

experienced inflation rate in each range. The latter choice addresses the difficulty of assigning a numerical 

value to unbounded ranges >12% and <-12%, resulting in estimates of 16.19% and in -14.95%. The choices 

for the other ranges at the same time align quite well with range midpoints and are also consistent with 

how we assign values at the tails. We assign 9.80% to the 8% to 12%, 5.50% to the 4% to 8%, 3.02% to the 

2% to 4%, 1.25% to the 0% to 2%, -0.42% to the -2% to -0%, -2.90% to the -4% to -2%, - 5.55% to the -4% 

to -8% and -10.32% to the -8% to -12% inflation ranges. In order to not mechanically create a gap between 

reported point and density-based expectations, we also winsorize reported point estimates at the same 

choices for the upper and lower ranges, at 16.19% and -14.95%. Our results are robust to using average 

personal experiences over ranges (complemented with midpoints or population averages if the 

respondent has zero experiences with a range). 

Figure 4 reports in Panel A (left) the distribution of point and density-based expectations in the 

SCE and in Panel B (right) the binned scatterplot of a univariate regression of a respondent’s point 

expectation on her density-based expectation.  In Panel A we see a systematic discrepancy between the 

two measures: the distribution of density-based expectations is shifted to the left compared to that of 

point forecasts, so the point expectation tends to exceed the density-based one. The survey-weighted 

mean (median) point expectation is 5.01% (4%) while the survey-weighted mean (median) density-based 

expectation is 3.98% (3.08%), with differences that are highly statistically significant. 
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Figure 4: Systematic State-Dependent Discrepancy 

  
Notes:	Panel	A	(left)	plots	the	distribution	of	point	forecasts	and	density-based	means.	The	dashed	black	line	marks	0,	the	dashed	blue	
line	the	survey-weighted	mean	of	the	point	estimates,	and	the	red	line	the	survey-weighted	mean	of	the	density-based	means.	Panel	B	
(right)	binscatter-plots	point	estimates	against	range-based	inflation	expectations	and	associated	regression	estimates.	The	data	come	
from	the	NY	Fed	SCE	and	are	winsorized	at	-14.95%	and	16.19%	as	discussed	in	the	text 

 

The regression of point expectations on density-based expectations in Panel B confirms that point 

expectations elicit higher expected inflation than forecast densities: there is a positive intercept of 1.6 

percentage points.  In addition, Panel B shows that point expectations exhibit stunted sensitivity to 

density-based ones.  The slope coefficient is 0.86, significantly smaller than 1 (p-value =< 0.001). This 

means that a 1 p.p. higher density-based expectation is associated with a less than 1 p.p. increase in the 

point expectation.  This result is robust to controlling for respondent and time fixed effects, so it neither 

reflects a constant bias of specific respondents nor an anomaly of specific time periods. 

Panel B shows that the discrepancy between point and density forecasts is state-dependent.  A 

unit increase in density forecasts results in a (1-0.86) = 0.14 closing of their gap with point forecasts. Put 

differently, density-based forecasts appear to be more sensitive to the time-varying inflation state than 

point expectations.  When inflation increases, people attach a sharply higher weight to high inflation 

ranges (as in Figure 4) and density-based expectations increase.  Point expectations also increase, but less 

in proportion to density-based ones. As a result, the gap between the two narrows.  This is consistent with 

a memory mechanism, which anchors point expectations to the slow-moving average experience 𝜋!.     
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   Methodological work on surveys documents various distortions in density elicitations. These 

distortions are typically explained by “frictions” such as: i) the order effect, whereby the first elicited 

ranges are overestimated, ii) rounding of probabilities, whereby the density is imprecisely “discretized”, 

or ii) the 1/n heuristic, whereby the probability of ranges is smeared toward 1/n.  These mechanisms may 

play a role but cannot explain Figures 3 and 4. With order effects, people should systematically 

overestimate top ranges, which are elicited first, compared to point expectations, in which no order is 

present.  This, however, counterfactually implies that density-based expectations should be higher than 

point expectations. Rounding of probabilities or smearing should create attenuation in density forecasts. 

This mechanism does not however explain why point expectations are systematically higher and more 

sluggish than density-based ones. It also fails to explain the cohort specific state-dependence in Figure 3.  

Our model describes a different mechanism. Both elicitations are cued by current inflation 𝜋!, but 

they yield different answers for a given 𝜋!  because density forecasts cue the possibility of all ranges, 

including infrequently experienced ones, while point forecasts cue a person’s average experience 𝜋G,!, 

causing neglect of infrequent experiences (which are far from 𝜋G,!). 

This logic explains why point expectations are systematically above density-based ones.  Density 

elicitations explicitly cue the possibility of deflation, which is rarely experienced, and hence neglected 

when making point forecasts. Such relative overweighting of deflation, then, systematically reduces the 

density-based expectation below the point expectation. Looking at respondents’ databases we indeed see 

both that deflation is experienced rarely, and that the average inflation experienced by respondents is far 

from it: In January 2020, just before COVID and the recent inflation surge, 89.7% of the population 

inflation experiences are positive, a share that increases from the young (83.6%) to the middle-aged 

(90.4%) to the old (92.5%). Slightly negative inflation rates just below 0% account for much of the 

importance of deflation as Figure A1 in the Appendix illustrates. Moreover, no respondent in the data has 

a negative lifetime average inflation experience while the experienced lifetime average inflation is 
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distributed bi-modally, at slightly above 2% and slightly below 4%. Figure A2 illustrates this distribution. 

Under selective memory, these patterns are consistent with higher point compared to density-based 

expectations, and also with the difference between scenario-based and density-based inflation 

expectations documented in Boctor et al. (2024). 

To directly test the memory mechanism, we regress a respondent’s point expectation on the 

elicited probability Pr R𝐸?|𝜋!,)(S she attaches to different inflation ranges 𝐸? .  In a rational model, as 

evident from Equation (7), the regression coefficient on each such probability should equal to expected 

inflation 𝜋?  conditional on the range. With selective memory, by contrast, the regression coefficient also 

reflects imperfect retrieval, as captured by weights 𝑤?,! in Equation (7).  Ranges that are “neglected” or 

“forgotten” when making point expectations will see their estimated coefficient shrunk toward zero 

compared to the normative benchmark, while ranges that are recalled when making point expectations 

will see their regression coefficient increase in magnitude compared to the normative benchmark.  

Table 3 reports the estimated coefficient from regressing point expectations on the elicited 

probabilities of the ten ranges.  The pattern of coefficients is consistent with the memory model. The 

coefficients on deflation are generally not statistically significant or in some cases are even positive. This 

means that, even if a household estimates a higher probability of a deflation range, this is not reflected in 

a lower point expectation (the point expectation is elicited before the density forecast).     
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Table 3. Inflation Point Expectations and Range Probabilities 

  
Inflation Expectations Point Estimate 

(1) (2) 
Inflation > 12% 0.196*** 0.198*** 

 (0.009) (0.010) 
8% < Inflation < 12% 0.144*** 0.156*** 

 (0.009) (0.010) 
4% < Inflation < 8% 0.088*** 0.114*** 

 (0.009) (0.010) 
2% < Inflation < 4% 0.060*** 0.091*** 

 (0.009) (0.009) 
0% < Inflation < 2% 0.048*** 0.080*** 

 (0.009) (0.009) 
-2% < Inflation < 0% 0.021** 0.054*** 

 (0.009) (0.009) 
-4% < Inflation < -2% 0.014 0.038*** 

 (0.010) (0.010) 
-8% < Inflation < -4% 0.005 0.012 

 (0.011) (0.010) 
-12% < Inflation < -8% 0.002 -0.025* 

 (0.012) (0.013) 
Constant -2.879*** -5.165*** 

 (0.918) (0.932) 

   
Observations 138,769 135,518 
R-squared 0.382 0.615 
Individual Fixed Effects No Yes 
Year Fixed Effects No Yes 
Notes: This table reports estimated coefficients and standard errors from estimating 𝜋!,#$ =
𝛽% + ∑ 𝛽&8 ∙ 𝑃𝑟𝑜𝑏(𝜋#9& = 𝑏8)8 + 𝑒!,#  where 𝜋!,#$  denotes respondent i’s point expectations 
and 𝑃𝑟𝑜𝑏(𝜋#9& = 𝑏8) their reported probabilities for inflation range k. Data come from the 
NY Fed SCE. Regressions use survey weights and standard errors in parentheses are clustered 
at the cohort and date level. 

 

Consequently, we see that - when forming point expectations - households overweigh the positive 

inflation ranges, especially the frequently experienced intermediate ranges with 𝜋 ∈ [0,2%] ∪ [2%, 4%].  

In these cases, the estimated coefficients lie substantially above the highest possible inflation in the range, 

indicating overweighting.  This is consistent with the memory model, where point expectations tend to 

be anchored to the average inflation experience 𝜋G,!, which for many respondents is close to the [0,2%] −

[2%, 4%] ranges and certainly far from deflation. 
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Memory explains why point expectations are systematically above density-based ones, the first 

anomaly in Figure 4, Panel A.  We next show that memory also explains why the discrepancy between 

point and density-based expectations shrinks as the latter increase, the second anomaly in Figure 4 Panel 

B.  The mechanism comes from the model prediction embedded in Equation (8).  When current inflation 

𝜋! increases, similarity prompts households to sharply increase the probability of high inflation ranges, as 

shown in Figure 3 for 2021.  This in turn sharply increases density-based expectations.  Point expectations 

also increase when current inflation increases, but less so, because they remain anchored to slow moving 

average experiences 𝜋G,!. Thus, the proportion between the two measures gets closer to one. To test for 

this mechanism, embedded in Equation (9), we estimate the following specification:  

𝜋G,!H = 𝜇I + 𝜇% ∙ 𝜋G,!,opH + 𝜇* ∙ [𝜋 ∙ 𝑑]G,!,opH +𝝋%+𝒁G +𝝋*+ 𝒁! + 𝑒G,! , 

where the left-hand side is the point estimate by respondent 𝑖 ,  𝒁G  denote respondent demographic 

characteristics and 𝒁! year dummies. The first regressor, 𝜋G,!,;H , is the range-based point expectation. The 

second regressor, [𝜋 ∙ 𝑑]G,!,opH , is a measure of the relative similarity of high inflation ranges to the 

respondent’s database of experiences up to the previous quarter.  It is computed by implementing the 

formula in Equation (8).  If the database 𝜋G,! is more similar to high inflation ranges, point expectations 

(which anchor to the database) are more inflated compared to density-based ones, so 𝜇* > 0.   Parameter 

𝜇% should instead be positive and equal to one if point expectations and range beliefs are formed using 

the same database of experiences.  Table 4 reports the regression estimates, including first separately and 

then jointly, the different fixed effects.  In columns (2) and (4) we also add squared and cubed similarity 

terms.  These higher order terms can help capture the exponential similarity function, where similarity 

increases in a convex way as distance shrinks. 
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Table 4: Inflation Point Expectations, Density-Based Expectations and Similarity 

 
One-Year-Ahead Inflation Expectation 

 
(1) (2) (3) (4) 

Range-based inflation expectations 1.094*** 1.078*** 0.981*** 0.919*** 

 
(0.024) (0.029) (0.024) (0.024) 

Similarity of high inflation ranges to personal experiences 0.001*** 0.001*** 0.001*** 0.000 

 
(0.000) (0.000) (0.000) (0.000) 

(Similarity of high inflation ranges to personal experiences)^2 
 

0.000*** 
 

-0.000*** 

  
(0.000) 

 
(0.000) 

(Similarity of high inflation ranges to personal experiences)^3 
 

-0.000 
 

0.000*** 

  
(0.000) 

 
(0.000) 

Constant 0.873*** 0.858*** 1.258*** 1.455*** 

 
(0.102) (0.111) (0.090) (0.086) 

     

Observations 140053 140053 136794 136794 

Year fixed effects No No Yes Yes 

Individual fixed effects No No Yes Yes 

R2 0.3458 0.3470 0.6074 0.6085 

Adj. R2 0.3458 0.3470 0.5556 0.5568 
 

Notes: This table reports estimated coefficients and standard errors from estimating 𝜋!,#$ = 𝜇% + 𝜇& ∙ 𝜋!,#,:$ + 𝜇( ∙ [𝜋 ∙ 𝑑]!,#,:$ + 𝝋&
6𝒁! + 𝝋(

6 𝒁# +
𝑒!,#. The data come from the New York Fed SCE. Regressions use survey weights and standard errors are clustered at the cohort-year level. 

 

The results are consistent with the predictions of our model.  The positive sign of the similarity 

regressor in columns (1) and (3) says that – holding density-based expectations constant – point 

expectations increase when average experiences are more similar to higher inflation ranges.  This is 

precisely what happens when forecast densities attach higher probability to moderately high inflation, 

say in the range 3%-6% which is close to the average experiences 𝜋G!  of many people compared to 

deflation.  When instead inflation sharply increases and forecast densities attach a high probability to very 

high inflation ranges (which are different from average experiences) the similarity term drops. Now point 

expectations increase less in proportion to density-based estimates so the gap between the two shrinks. 
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This effect accounts for the dampened sensitivity of point expectations to density-based ones in 

Figure 4 Panel B. Indeed, once we add the similarity term, in columns (1) and (3) the coefficient on density-

based expectations rises to one, consistent with Equation (9).  As we introduce quadratic and squared 

similarity terms, we see convexity. Point expectations increase sharply as people attach higher 

probabilities to moderately high inflation ranges close to 𝜋G!.  The results are robust to controlling for time 

fixed effects, so they are not due to particular periods. They are also robust to controlling for respondent 

fixed effects. Inconsistencies in survey responses are not due to some respondents who are lazy, have low 

acuity, or numeracy.  They are due, at least in part, to the interplay between cues and experiences. 

These findings rule out any rational model, including highly flexible Bayesian structures, and rule 

in selective memory. Quantitatively, the effects are significant.  Even though the explanatory power of 

the regression improves only marginally when we add the similarity terms6, the economic importance of 

the similarity term is large: a one-standard deviation increase in range-based inflation expectations 

increases reported inflation point forecasts by 3.75 to 4.36 pp (based on Columns 1 and 2). But a one-

standard deviation increase in the similarity of high-inflation ranges around zero similarity is also 

associated with a 0.28 to 1.03 pp. increase in point inflation forecasts (based on Columns 1 and 2). 

Respondents substantially overweight ranges they are familiar with and underweight those they are 

unfamiliar with, resulting in state dependent inconsistencies across different methods of elicitation. 

 

5. How Inflation Expectations De-Anchor and Re-Anchor 

We saw that selective memory deepens our understanding of the role of past experiences in belief 

formation by recognizing the centrality of similarity, which drives recall based on temporal and numerical 

 
6 In Column (1), the adjusted R2 is 34.58% relative to 33.98% in the specification without the linear similarity term 
in Figure 3. Going to a higher cubic order raises the adjusted R2 to 34.70%. 
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context.  Going back to our motivating facts in Figures 1 and 2, we next show that these forces offer a 

good quantitative account for the broad “de-anchoring” of point inflation expectations in April 2021 and 

the especially strong de-anchoring by the elderly.  We then show that the very same model can account, 

out of sample, for the re-anchoring of point expectations following the post-pandemic monetary 

tightening and the associated fall in inflation. To showcase the importance of selective memory, we 

explicitly compare our model to experience-based learning (Malmendier and Nagel 2016), in which agents 

optimally estimate the long run mean and persistence of an AR(1) inflation process using their personally 

experienced inflation history rather than all potentially available data. 

We evaluate our model using the specification in Column 5 of Table 1. We thus focus on MSC 

expectations and include as belief predictors a person’s experienced average inflation, her temporal and 

numerical context covariances, as well as demographic controls. We use neither the SPF forecast nor time 

dummies as belief predictors because we want to isolate the role of a person’s past inflation experiences 

– mediated by cued recall – in generating meaningful time variation in beliefs.  

We compare these predictions from our model to those from the learning-from-experience model 

described by Equations (1) and (2) in Malmendier and Nagel (2016).  We again focus on MSC expectations 

and nonlinearly estimate their gain parameter 𝜃 using these data.  Our estimation of 𝜃 starts in June 2013, 

the date when SCE data also become available. This choice of timeframe allows us to provide a comparison 

across datasets in which no differences are due to inconsistent timeframes. The appendix additionally 

includes with Figure A3 a model comparison based on the full timeframe of the MSC, which shows full 

robustness of the results.  Our analysis in all cases includes survey respondents of all ages, lifting the 

restriction to ages 25 to 75 in Malmendier and Nagel (2016).7 The estimation yields an estimate of 𝜃 equal 

to 0.93. For each respondent 𝑖 and time 𝑡 we thus obtain a learning-from-experiences 𝜋G!H  proxy.  Unlike 

 
7 The results of the estimation are invariant to inclusion of these respondents. 
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the predictions from our model, this proxy does not allow for forgetting and selective retrieval based on 

changing temporal and numerical cues.  To assess de-anchoring, we normalize the initial predictions of all 

cohorts and across models.8   

Results of this model comparison show that our state-dependent selective-retrieval model can 

reproduce the patterns of Figures 1 and 2 while experience-based learning cannot. Panel A of Figure 5 

shows our model’s predictions, and Panel B those from experience-based learning—both for the cohorts 

also displayed in Figures 1 and 2. Panel A reveals that state-dependent cues play a quantitatively 

important role in accounting for both overall de-anchoring and for the stronger initial de-anchoring by the 

elderly.  Panel B fails to capture these dynamics.  With experience-based learning, the elderly are 

somewhat more sensitive to changes than the young, because they experience and hence estimate a 

higher inflation persistence.  But such sensitivity is too small to yield a meaningful de-anchoring.  Due to 

many experiences with stable inflation, the beliefs of older cohorts are too rigid, and barely move from 

the starting point.  The beliefs of the young are also rigid (their cohort only experienced stable inflation), 

and fail to eventually de-anchor as we see in Figures 1 and 2. Experience based learning can capture level 

differences in expectations across cohorts, which are not shown in the figure, but does not deliver 

meaningful experience-based instability. By combining slowly evolving databases with time varying cues, 

selective retrieval can produce level differences as well as instability in beliefs. 

As a second test, we consider the performance of the two models in accounting for the post-2021 

behavior of expectations out of sample.  To do so, we perform an out-of-sample nowcasting exercise in 

which we use the coefficient estimates of the two models in our first quantification exercise, estimated in 

the MSC sample, to predict inflation expectations until February 2024.  In this exercise we predict the 

 
8 Here we report the learning-from-experience proxy 𝜋'!(  directly.  This choice restricts predicted expectations from 
the experience-based model to have a unit loading on 𝜋'!( .  Allowing measured expectations to load on 𝜋'!(   with a 
freely estimated coefficient affects the results little: the experience-based model fails to capture meaningful de-
anchoring and re-anchoring of expectations. 
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beliefs of the average respondent in the MSC because our model does not make clear predictions on 

cohort differences in re-anchoring (because both the young and the elderly have experienced many recent 

low-inflation periods), and neither does the experience-based learning model.9  We then compare model 

predictions with the average inflation expectation observed in the MSC throughout the period, whose 

values in the nowcasting subperiods have not influenced model estimations.10 

 
9 In fact, there are no clear cohort differences in re-anchoring in the data.  
10 The SCE data is released only with a lag so the same nowcasting exercise is not feasible in this dataset. 
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Figure 5. De-Anchoring of Inflation Expectations and the Importance of Similarity 

 

 

 

 

 

 

 

 

 

 

 

 

Panel A: Selective Memory Model 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Panel B: Malmendier and Nagel Model 

Notes: The top panel (Selective Memory Model) shows predicted inflation expectations by cohort from a model which includes as regressors 
experienced average inflation, temporal context and similarity measures as well as demographic controls, as in Column 5 of Table 1 but excludes 
the SPF term to retain consistency with the nowcasting exercise. The bottom panel (Malmendier and Nagel Model) shows predicted inflation 
expectations from the learning-from-experience model described by Equations (1) and (2) in Malmendier and Nagel (2016). All individual-level 
predictions are averaged within each cohort group using survey weights. Data come from the Michigan Consumer Survey. In order to maintain 
comparability, the model is calibrated on the SCE timeframe (June 2013 – June 2022). The actual forecast and the predictions are expressed as a 
fraction of their value in January 2019. The dashed vertical line marks April 2021.  
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The results of this second exercise confirm the importance of selective memory in accounting for 

the data and are reported in Figure 6.  First, just like Figure 5 shows, the predicted aggregate inflation 

expectations under the memory model (black line) are a good match to the actual evolution of inflation 

expectations in the data (blue line). We already saw that, due to similarity, the model generates a rise of 

aggregate inflation expectations in the face of surging inflation.  Critically, the same force allows the model 

to produce re-anchoring of expectations when inflation subsequently declines.  Numerical similarity (not 

just recency) is key to obtaining this pattern: if one uses only the temporal context terms as predictors, 

the rise and fall of predicted inflation expectations is much more attenuated than what we see in Figure 

6.  Notably, similarity does not hinder model performance before 2021, when observed inflation 

expectations are stable and so are the expectations predicted by a memory model.  The reason is that 

with stable inflation similarity produces stability in inflation expectations. 

On the other hand, the experience-based learning model cannot produce realistic anchoring and 

re-anchoring.  This is again due to the fact that in this model past experiences are not selectively recalled 

and forgotten based on current cues, so predicted beliefs are too rigid compared to reality. Standard 

experience effects are an empirically important drivers of cross-sectional differences in beliefs, but do not 

alone offer a satisfactory model of belief formation in the time series. To reproduce realistic expectations 

in the time series, it is important to explicitly characterize the cognitive mechanism whereby experiences 

affect beliefs: selective memory.  
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Figure 6. Nowcasting: Re-Anchoring of Inflation Expectations 

Notes: The figure shows the predictions from the “Full Model” which includes as regressors experienced average inflation, temporal context and 
similarity measures as well as demographic controls, as in Column 5 of Table 1 but excludes the forward-looking SPF term. The “M&N” model 
estimates the learning-from-experience model described by Equations (1) and (2) in Malmendier and Nagel (2016). Nowcasting takes as inputs the 
period inflation rate and the period’s age distribution of all respondents, feeding them into the respective models and regressors to generate nowcasts. 
Nowcasting holds the estimated coefficients constant. All individual-level predictions and nowcasts are averaged using survey weights. In order to 
maintain comparability, the model is calibrated on the SCE timeframe (June 2013 – June 2022). All predictions are expressed as a fraction of their 
value in January 2019. The dashed vertical line marks June 2022, the end of our estimation period and the beginning of the nowcasting period.  

 

6. Conclusion 

Memory models, with their emphasis on similarity, frequency and interference, appear to be a 

promising way to study household inflation expectations. The role of past experiences for belief formation 

has long been documented in social science (see, e.g. Weinstein 1989). In economics, Malmendier and 

Nagel (2011, 2016) showed the importance of inflation or stock market experiences for belief formation 

in these markets. For understanding the world, the key question becomes: what is the mechanism through 

which experiences matter?  

Our analysis shows that regularities in selective recall offer a concrete and promising approach to 

this question.  By featuring a rich interaction between the experience database and time varying cues, 



 46 

they allow us to capture realistic state and cohort dependence in belief formation, as well as a time varying 

inconsistency across different belief elicitations.  These features cannot be explained by full Bayesian 

learning or learning from experiences models.  Recent evidence such as Cenzon (2025) or Butera et al. 

(2024) shows that memory can also help explain why wholly normatively irrelevant personal experience 

shape beliefs about the aggregate economy.  Mnemonic retrieval of future states based on time varying 

cues can also influence learning, causing beliefs to follow a distorted version of the true data generating 

process, “as if” the agent makes forecasts by using a subjective statistical model.  Bonaglia and Gennaioli 

(2025) and Bonaglia et al. (2025) show that this mechanism endogenizes observed forms of belief rigidity 

and overreaction based on measurable features of the DGP and the forecast horizon.   

More broadly, explicitly incorporating cognitive forces in models of belief formation can yield a 

realistic theory of expectations in macroeconomics and finance.  This paper and the work described above 

focuses on memory. Selective attention may also play an important role. In a thought-provoking paper, 

Link et al. (2025) show that German households and firm managers who experienced high inflation tend 

to attend to inflation more and increase more their attention to inflation during the 2021-2 inflation surge, 

thereby revising up their expected inflation more strongly compared to other people. These effects can 

be captured in a cognitive model combining memory with endogenous attention to features, along the 

lines of Bordalo et al. (2025).  Studying the joint roles of memory and attention for belief formation is a 

promising avenue for future work, both theoretical and empirical, given the growing availability of 

measurement of recall (Jiang et al. 2025) and attention (Haaland et al. 2025) together with beliefs.           

   Our approach may also be relevant at a macroeconomic level, for the theory of monetary policy.  

Interest rate policies or announcements that are normatively optimal under rationality may be suboptimal 

under associative memory, for instance because they may cue episodes of market instability, destabilizing 

investor beliefs.  More immediately, the approach to studying household beliefs laid out in this paper may 

be a useful, practical tool for policymakers at central banks. Our now-casting exercise may be replicated 
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to obtain real-time inflation expectations exactly when no real-time expectations measurements are 

available, but desirable to have.  All that is needed, as we illustrated, is knowledge of the current inflation 

rate (and its history), the representative age distribution of consumers, and a theory embedding 

regularities of selective recall.  To develop the theory, it may be useful to explicitly measure household 

recollections, so as to learn which cues are most relevant in the context of interest.  A simple calculation 

can then exploit, for example, releases at different dates of inflation measures (CPI versus PCE), which are 

asynchronous to the release dates of inflation expectations, or even daily online inflation measures such 

as those by the Billion Prices Project, to compute real-time inflation expectations. 
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APPENDIX 

Proofs. 

Proof of Proposition 1.  Using all model ingredients, we can write Equation (4) as: 
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where upper bars denote arithmetic averages, and 
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𝜕𝔼.𝜋!=%|𝜋!,ℝ1
𝜕𝜎

= −
i∑ 𝑞 ∙ (𝜋!"# − 𝜋!)* ∙ 𝜋!"# + (1 − 𝑞) ∙ (𝜋!"# − 𝜋!"%)* ∙ 𝜋!"##$%,…,( j𝑎

𝑎*
 

+
i∑ 𝜋!"##$%,…,( ji∑ 𝑞 ∙ (𝜋!"# − 𝜋!)* + (1 − 𝑞) ∙ (𝜋!"# − 𝜋!"%)*#$%,…,( j

𝑎*
 

= −𝑞 ∙ 𝑐𝑜𝑣[𝜋!"#, (𝜋!"# − 𝜋!)*] − (1 − 𝑞) ∙ 𝑐𝑜𝑣[𝜋!"#, (𝜋!"# − 𝜋!"%)*], 

which yields the desired result. 

Proof of Proposition 2 Using all model ingredients, the probability of bin j obeys: 

Pr R𝐸?|𝜋!,)(S ∝N 𝑒y*E
#
(F

-
"y-E

#
(F"z∙{∙8-("-!9

-

-!"#$-(
, 

so that, given the common normalization the odds of bin 𝑗 compared to a base bin 𝑏 is: 

Pr R𝐸?|𝜋!,)(S

Pr.𝐸A|𝜋!,).1
=
∑ 𝑒y*E

#
(F

-
"y-E

#
(F"z∙{∙8-("-!9

-

-!"#$-(

∑ 𝑒y*E
#
(F

-
"y-E

#
(F"z∙{∙(-."-!)

-
-!"#$-.

, 

which features, at	𝛽 = 𝜎 = 0, the value: 

Pr R𝐸?|𝜋!,)(S

Pr.𝐸A|𝜋!,).1
=
∑ 1-!"#$-(
∑ 1-!"#$-.

=
𝑛?
𝑛A
, 

where 𝑛?  is the experienced frequency of a generic 𝜋?, and first derivatives: 

𝜕
𝜕𝛽

Pr R𝐸?|𝜋!,)(S

Pr.𝐸A|𝜋!,).1
=
𝑛?
𝑛A
∙ .𝑠?

* − 𝑠A
*1/𝑎* −

𝑛?
𝑛A
∙ .𝑠? − 𝑠A1/𝑎, 

and 

𝜕
𝜕𝜎

Pr R𝐸?|𝜋!,)(S

Pr.𝐸A|𝜋!,).1
= −𝑞 ∙

𝑛?
𝑛A
∙ ^.𝜋? − 𝜋!1

* − (𝜋A − 𝜋!)*_, 

which yields the desired result. 
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Proof of Proposition 3 Using all model ingredients, we can write:  
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At 𝜎 = 0, this expressions takes the value: 

𝔼.𝜋!=%|𝜋!,ℝ1 =N Pr R𝐸?|𝜋!,)(S ∙ 𝜋??
= 𝔼(𝜋!=%|DF), 

and first derivatives: 

𝜕𝔼.𝜋!=%|𝜋!,ℝ1
𝜕𝛽

= 0 

and 

𝜕𝔼.𝜋!=%|𝜋!,ℝ1
𝜕𝜎
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𝑎
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, 

which yields the desired result: 

𝔼.𝜋!=%|𝜋!,ℝ1 ≈ 𝔼(𝜋!=%|DF) + 𝜎 ∙ 𝑞 ∙N ^(𝜋| − 𝜋!"%)* − .𝜋? − 𝜋!"%1
*_ ∙ Pr R𝐸?|𝜋!,)(S ∙ 𝜋??

 

= 𝔼(𝜋!=%|DF) + 𝜎 ∙ 𝑞 ∙ 𝔼i𝜋!=% ∙ .𝑑?,! − 𝑑!=%,!1|DFj. 
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Tables and Figures 

Table A1. Robustness: Huber Robust Regressions 

 
Notes: The table reports the estimates of the first-order approximation of learning from experience model, augmented with similarity and a quadratic 
recency term, using the Huber-robust to downweigh outliers. Demographic characteristics include sex, education, income quintile and marital 
status. The database of inflation experiences includes the quarter-on-quarter experienced inflation rate and is updated each month. Inflation 
experience stops at the quarter before the quarter in which the forecast is made. Current inflation is the inflation experienced in three months before 
the forecast. We assume that for each cohort, learning starts when 16. Observations are weighted using survey weights. Standard errors clustered 
at the cohort and forecast date level in parentheses. 
 

  (1) (2) (3) (4) (5) 

 One-year ahead Infl. Exp. 
Panel A. MSC 
Average Experienced Inflation 0.205*** 0.276*** 0.444*** 0.419*** 0.154*** 

 (0.015) (0.033) (0.036) (0.034) (0.028) 
Cov(s2,πt-s) /a2  0.128 1.460*** 1.141*** -0.405 

  (0.273) (0.307) (0.289) (0.286) 
Cov(s,πt-s)/a  -0.481 -2.194*** -1.715*** 0.713** 

  (0.360) (0.400) (0.382) (0.353) 
Cov((πt-s-𝜋'!"&)2,πt-s)   -0.001 -0.000 0.001** 

    (0.000) (0.001) (0.001) 
Cov((πt-s- πt)2,πt-s)   -0.002*** -0.002*** -0.004*** 

   (0.000) (0.000) (0.000) 
SPF    0.533*** 0.139*** 

    (0.069) (0.032) 
Constant 2.453*** 2.190*** 1.649*** 0.035 2.205*** 

 (0.065) (0.128) (0.132) (0.227) (0.054) 
      

Observations 224,223 224,238 224,203 213,299 213,271 
R-squared 0.101 0.101 0.104 0.054 0.030 
Panel B. SCE 
Average Experienced Inflation 0.451*** 0.726*** 1.098*** 0.895*** 2.066*** 

 (0.027) (0.088) (0.142) (0.126) (0.124) 
Cov(s2,πt-s) /a2  1.330 2.923*** 1.432 10.155*** 

  (0.984) (1.055) (0.949) (1.072) 
Cov(s,πt-s)/a  -2.640* -5.100*** -2.881** -15.993*** 

  (1.345) (1.480) (1.316) (1.524) 
Cov((πt-s-𝜋'!"&)2,πt-s)   -0.003 -0.002 -0.006** 

    (0.003) (0.003) (0.002) 
Cov((πt-s- πt)2,πt-s)   -0.002*** -0.002*** -0.005*** 

   (0.000) (0.000) (0.000) 
SPF    1.153*** 1.426*** 

    (0.190) (0.109) 
Constant 2.219*** 1.748*** 0.881*** -1.203** -4.132*** 

 (0.074) (0.164) (0.328) (0.528) (0.347) 
      

Observations 126,595 126,543 126,577 126,580 126,676 
R-squared 0.135 0.136 0.138 0.141 0.121 
Demographic Fixed  Effects YES YES YES YES YES 
Year Fixed Effects YES YES YES YES NO 
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Table A2. Quantification Table, MSC 

  Effect SD Increase Average SD 
Average Experienced 
Inflation 0.72 4.04 1.31 
Cov(s2,πt-s) /a2 0.82 0.07 0.40 
Cov(s,πt-s)/a -1.04 0.08 0.37 
Cov((πt-s-𝜋0123)2,πt-s) -0.11 24.37 38.33 
Cov((πt-s- πt)2,πt-s) -0.29 52.40 98.20 
SPF 0.74 3.03 1.21 

 

Notes: The table reports the effect of a standard deviation increase of each component of the linearized model. Coefficients are obtained using the 
specification in Column 4 of Table 1, panel A. To ease interpretability, for each measure, we also report the values of the mean and the standard 
deviation, computed using survey weights. 

Table A3. Quantification Table, SCE 

  Effect SD Increase Average SD 
Average Experienced 
Inflation 0.74 3.00 0.80 
Cov(s2,πt-s) /a2 1.42 0.28 0.22 
Cov(s,πt-s)/a -1.66 0.27 0.20 
Cov((πt-s-𝜋0123)2,πt-s) -0.18 -3.71 20.29 
Cov((πt-s- πt)2,πt-s) -0.20 11.19 90.36 
SPF 0.21 2.18 0.32 

 

Notes: The table reports the effect of a standard deviation increase of each component of the linearized model. Coefficients are obtained using the 
specification in Column 4 of Table 1, panel B. To ease interpretability, for each measure, we also report the values of the mean and the standard 
deviation, computed using survey weights. 
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Table A4. Medium-Term Inflation Expectations, Experience and Selective Recall 

Notes: The table reports the estimates of the first-order linear approximation of a learning from experience model, augmented with similarity and a 
quadratic recency term. Demographic characteristics include sex, education, income quintile and marital status. The database of inflation 
experiences includes the quarter-on-quarter experienced inflation rate and is updated each month. Inflation experience stops at the quarter before 
the quarter in which the forecast is made. Current inflation is the inflation experienced in three months before the forecast. The dependent variable 
is the inflation expectation of an individual for months 24 to 36 in the future (rather than over the next 12 months). We assume that for each cohort, 
learning starts when 16. Observations are weighted using survey weights. Standard errors clustered at the cohort and forecast date level in 
parentheses. 

  

  (1) (2) (3) (4) (5) 

 Medium-Term Inflation Expectations (t+24, t+36) 
Average Experienced Inflation:  𝜋)!"&: 0.148* 0.259 0.945** 0.940** 1.707*** 

 (0.082) (0.253) (0.359) (0.377) (0.352) 
Temporal Context Quadratic Component :  Cov(s2,πt-s) /a2  0.406 0.585* 0.581 1.397*** 

  (0.334) (0.347) (0.362) (0.333) 
Temporal Context Linear Component:  Cov(s,πt-s)/a  -1.443 -2.375 -2.355 -5.926*** 

  (1.368) (1.431) (1.501) (1.389) 
Dissimilarity average inflation:  Cov((πt-s-𝜋'!"&)2,πt-s)   -0.018*** -0.018*** -0.017** 

    (0.007) (0.007) (0.006) 
Dissimilarity current inflation:  Cov((πt-s- πt)2,πt-s)   -0.000 -0.000 -0.002** 

   (0.001) (0.001) (0.001) 
SPF inflation forecast    0.023 -0.433 

    (0.265) (0.323) 
Constant 5.518*** 5.386*** 3.586*** 3.549*** 3.118*** 

 (0.246) (0.450) (0.803) (0.823) (0.892) 
      

Observations 139,700 139,700 139,700 139,700 139,700 
R-squared 0.079 0.079 0.079 0.079 0.074 
Demographic Fixed Effects YES YES YES YES YES 
Year Fixed Effects YES YES YES YES NO 
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Table A5. Robustness: Annually Recorded Inflation Experiences 

 

Notes: The table reports the estimates of the first-order approximation of learning from experience model, augmented with similarity and a quadratic 
recency term. Demographic characteristics include sex, education, income quintile and marital status. The database of inflation experiences includes 
the year-on-year experienced inflation rate and is updated each quarter. Inflation experience stops at the quarter before the quarter in which the 
forecast is made. Current inflation is the inflation experienced in three months before the forecast. We assume that for each cohort, learning starts 
when 16. Observations are weighted using survey weights. Standard errors clustered at the cohort and forecast date level in parentheses. 
  

  (1) (2) (3) (4) (5) 

 One-year ahead Infl. Exp. 
Panel A. MSC 
Average Experienced Inflation 0.282*** 0.334*** 0.555*** 0.535*** 0.299*** 

 (0.027) (0.062) (0.071) (0.067) (0.052) 
Cov(s2,πt-s)/a2  0.012 2.261*** 1.822*** 1.154** 

  (0.534) (0.606) (0.542) (0.481) 
Cov(s,πt-s)/a  -0.309 -3.126*** -2.495*** -1.052* 

  (0.711) (0.800) (0.726) (0.601) 
Cov((πt-s-𝜋'!"&)2,πt-s)   -0.003*** -0.003** -0.002* 

    (0.001) (0.001) (0.001) 
Cov((πt-s- πt)2,πt-s)   -0.002*** -0.003*** -0.005*** 

   (0.001) (0.000) (0.001) 
SPF    0.679*** 0.261*** 

    (0.136) (0.056) 
Constant 0.282*** 0.334*** 0.555*** 0.535*** 0.299*** 

 (0.027) (0.062) (0.071) (0.067) (0.052) 
      

Observations 238,617 238,620 238,593 226,642 226,607 
R-squared 0.108 0.108 0.111 0.054 0.030 
Panel B. SCE 
Average Experienced Inflation 0.209*** 0.041 0.361 0.264 2.058*** 

 (0.075) (0.370) (0.402) (0.394) (0.363) 
Cov(s2,πt-s)/a2  0.082 0.173 0.053 2.444*** 

  (0.465) (0.457) (0.445) (0.447) 
Cov(s,πt-s)/a  -0.013 -0.384 0.128 -10.016*** 

  (1.986) (1.946) (1.895) (1.868) 
Cov((πt-s-𝜋'!"&)2,πt-s)   -0.011 -0.011 0.000 

    (0.010) (0.010) (0.010) 
Cov((πt-s- πt)2,πt-s)   -0.002 -0.002 -0.010*** 

   (0.001) (0.001) (0.002) 
SPF    0.932** 1.946*** 

    (0.384) (0.327) 
Constant 5.705*** 6.033*** 5.359*** 3.482*** -1.547 

 (0.219) (0.604) (0.706) (1.079) (0.983) 
      

Observations 139,555 139,555 139,555 139,555 139,555 
R-squared 0.115 0.115 0.115 0.115 0.102 
Demographic Fixed Effects YES YES YES YES YES 
Year Fixed Effects YES YES YES YES NO 
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Figure A1. Inflation Experiences by Age 

 

 

 
Notes: This figure presents distribuSons of annualized US quarterly CPI inflaSon rates across inflaSon ranges January 2020 for different age 
groups. Bars in each range show the share of total populaSon experiences that falls into the respecSve range, weighted in each age group 
using respondent survey-weights. The young are of age <45, the middle-age of age 45-65 and the old of age >65.  
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         Figure A2: Average Inflation Experiences 

 
Notes: This figure shows the average lifetime inflation experience in the population for January 2020. 
Inflation is measured by annualized US quarterly CPI inflaSon rates. The verScal red dashed line denotes 0% 
inflaSon. 
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Figure A3: De-Anchoring of Inflation Expectations and the Importance of Similarity, Robustness 

 

 

 

 

 

 

 

 

 

 

Panel A: Selective Memory Model 

 

 

 

 

 

 

 

 

 

 

 

Panel B: Malmendier and Nagel Model 

Notes: The top panel (Selective Memory Model) shows predicted inflation expectations by cohort from a model which includes as regressors 
experienced average inflation, temporal context and similarity measures as well as demographic controls, as in Column 5 of Table 1 but excludes 
the SPF term to retain consistency with the nowcasting exercise. The bottom panel (Malmendier and Nagel Model) shows predicted inflation 
expectations from the learning-from-experience model described by Equations (1) and (2) in Malmendier and Nagel (2016). All individual-level 
predictions are averaged within each cohort group using survey weights. Data come from the Michigan Consumer Survey. The model is 
calibrated for the 1978-2022 period. The actual forecast and the predictions are expressed as a fraction of their value in January 2019. The dashed 
vertical line marks April 2021. 


