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Abstract

What drives inflation — domestic monetary policy or relative price shocks? After decades of
low inflation in advanced economies, large relative price shocks — notably those related to
energy prices — seem to have accounted for the bulk of inflation movements. We illustrate
how even aggregate shocks can generate persistent relative price changes in the presence of
heterogeneity in price flexibility. We then estimate the role of “pure” inflation versus relative
prices, using a flexible Bayesian dynamic factor model on disaggregated, comparable price
data for the euro area and the United States. We find that relative prices substantially
explain the movements of inflation over the past 20 years, with an even more sizeable role
since 2021. We also document the different responses of pure inflation and relative prices to
various aggregate and sectoral shocks in both monetary areas, showing - as expected - that
most shocks will affect inflation via relative prices in periods when inflation expectations are
broadly anchored. Pure inflation was not a material cause of recent inflation dynamics, but
it did show an unusual movement, albeit short-lived. Arguments to the extent that central
banks should not be concerned with purely relative price changes should, we contend, be
cast out.
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1 Introduction

“We may regard price changes, therefore, as partly due to causes arising from the commodities
themselves raising some, lowering others, and all different in degree, and, superimposed upon
the changes due to these heterogeneous causes, a further change affecting all in the same ratio
arising out of change on the side of money. This uniform ratio is the object of our
investigations.” (from The Collected Writing of John Maynard Keynes, volume XI, p. 106).

What is inflation? One definition, as laid out by Keynes above, is that inflation is a
generalised increase in all prices, arising from changes in money. As Friedman, 1963 put it,
“Inflation is always and everywhere a monetary phenomenon.” Yet since the adoption of
inflation targeting starting with the Reserve Bank of New Zealand in 1990 and then more and
more widely adopted throughout the world, central banks now commonly define their targets in
terms of the annual change in the consumer price index. While this annual change does reflect
price developments that are purely down to money, it also is driven by sharp divergences in
relative prices that the former definition of inflation excludes. Yet the range of inflation rates
across different consumption categories can be rather large, both when inflation is high and
when it is low (see Figure 1). There can be two sources of variation in inflation rates across
categories: sectoral shocks and different speed of adjustment to common shocks. Figure 2
shows that the price rigidity of different consumption categories is very heterogeneous,
indicating that not only sectoral, but also common shocks will generate relative price changes,
albeit temporary. Furthermore, not all sectoral price changes are created equal: a growing
literature on the role of production networks shows that, as shown during the inflation surge,
sectoral shocks to the price of goods that are upstream and central in production will be
amplified through the network and generate broader and more persistent inflation. At the same
time, the input-output linkages amplify the stickiness of prices, amplifying the real effects of
aggregate monetary policy shocks (see e.g., Acemoglu et al., 2012,Baqaee and Farhi, 2019,Luo
and Villar, 2023,Afrouzi and Bhattarai, 2023, Ghassibe, 2021, Ghassibe and Nakov, 2024). One
observable outcome of the heterogeneity in price rigidity in the production network will be a
drawn-out change in relative prices following both sectoral shocks to central, upstream sectors
and common aggregate shocks (via demand fluctuations in downstream sectors propagating
upstream).

Should central bankers concern themselves equally in both cases? How important is
disentangling the pure inflation and relative prices components for inflation-targeting central
banks? A very common view is that it does matter, a lot: in the words of Humpage, 2008,
“Strictly speaking, inflation refers only to a drop in the purchasing power of money that results
when a central bank creates more money than its public wants to hold. Inflation manifests itself
as a rise in all prices and wages—not just some subset of prices,” while relative prices signal
the need for resources to be reallocated across economic activities. From this viewpoint, the
central bank needs to disentangle pure inflation and relative price changes to act on the former
and look through the latter, unless they feed into inflation expectations.!

Voices from the other side of the fence could be heard mostly from emerging market
economists, such as Rajan, 2024, protesting that excluding very volatile prices, such as food,

1See also Bryan, 2001 or, very recently, Cochrane, 2025: “I think the “tariffs are going to cause inflation” line is
overblown. Tariffs are a relative price shock. Did I mention not to confuse relative prices with inflation? Again,
inflation is not the sum of a thousand relative price increases and decreases. Inflation always and everywhere
comes from monetary and fiscal policy, directly or from accommodation.”



Figure 1: COICOP-level inflation in the euro area and the United States
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from the index that the central bank targets disregards inflation perceptions by the public -
and, implicitly, an important determinant of inflation expectations.

But under what conditions do relative price changes feed into inflation expectations? The
main approach is to try to establish if supply or demand shocks drive observed inflation. Our
paper addresses the problem in a way that provides policymakers with an empirical tool to assess
the respective contributions to inflation of pure inflation and of the part of relative price changes
that is common and hence more prone to feeding into inflation expectations. In turn, we can
look at the “pure inflation” component as an empirical indicator that inflation expectations are
at risk of de-anchoring. We can perform this decomposition based only on timely data on the
components of inflation, without making assumptions on the sources of current shocks.

We use a model with both aggregate and sectoral shocks for a stylised illustration of the
impact of aggregate and sectoral shocks on pure inflation and relative price changes. We then
estimate the contributions of “pure inflation” and “relative prices” to headline inflation in the euro
area and in the United States: Following Reis and Watson, 2010, we define “pure inflation” as
the unobserved component that moves all prices in the same direction and by the same amount
at the same time; relative prices inflation captures changes due to relative paths of prices. We
adapt their econometric approach to take heterogeneous price rigidity into account.?

Armed with this approach, we also contribute to the debate on the role of aggregate and
sectoral shocks to the sharp spike in inflation at the start of the 2020s: was it driven only
by relative price changes after large relative price shocks due to supply disruptions, re-opening
effects and soaring energy prices? Or was it also driven by monetary (and fiscal) policies, which
had been extraordinarily accommodative in the year prior to the inflation surge? In turn, did
these aggregate shocks affect only relative prices through the mechanism highlighted above,
of heterogeneous price rigidity across the production network, or did they also feed into pure
inflation?

We begin by using a modified version of the model in Ghassibe, 2021 to demonstrate how
underlying shocks pass through input-output linkages to consumer prices. Even aggregate shocks
that may ultimately affect all prices (including permanent money shocks), can affect relative
prices for a number of periods as supply-chain linkages and sticky prices delay some price changes.

To add empirical bite to these findings, we modify the dynamic factor model proposed by
Reis and Watson, 2010 in two ways, to take into account that different product categories
respond at different speeds to aggregate shocks. First, we apply the model to year-on-year
inflation rather than end-quarter-on-end-quarter, to acknowledge that the prices of different
product categories have different nominal flexibility. This is illustrated in Figure 2, which uses
the estimated frequency of consumer price changes for various euro area countries provided by
Gautier et al., 2024: less than 50% of prices can be expected to have changed after 3 months in
any country, while more than 70% will have changed by 12 months in most countries.? Second,
we implement the identification restrictions in a Bayesian framework, which allows some ‘“slack”
to the restrictions pinning down pure inflation, as they are imposed as non-dogmatic priors on
a subset of factor loadings. Based on this updated estimation approach we use comparable
consumer price indices at detailed levels of the COICOP classification in the United States and
the euro area to estimate the relative contributions of pure inflation and a common relative
price factor to headline inflation.

2 Ahn and Luciani, 2021 also apply the approach by Reis and Watson, 2010, with a different econometric focus,
to study the “Phillips correlation” and the role of commodity prices in driving pure and relative price inflation in
the United States

3To allow for even more prices to change we repeat the estimation on 24-month changes of HICP, with results
shown in Figure A5 in Appendix A.



We then analyse the response of the pure and relative inflation components to aggregate and
sectoral shocks in the euro area and in the United States, comparing them to analogous shocks
in the model. Our empirical results suggest that shifts in relative prices played a very substantial
role in determining headline inflation during the low inflation period. During the inflation surge
in 2021-2022, while relative price changes drove most of the inflation surge, we find evidence that
pure inflation also edged up, especially in the United States.

The recent inflation surge in the euro area, therefore, looks to have arisen overwhelmingly
from large shifts in relative prices following the pandemic and Russia’s invasion rather than
from a common, pure inflation, component. For the United States the very expansive fiscal and
monetary policy mix may have contributed not only to a temporary, though persistent, wave of
relative price changes, but also to a temporary increase in pure inflaton.

The rest of the paper is structured as follows. In the rest of this section we give a brief
overview of the relevant literature. Section 2 illustrates how not only sectoral, but also aggregate
shocks can generate persistent changes in relative prices. Section 3 describes the econometric
approach, Section 4 describes our dataset and how we transform the raw data. Sections 5 and 6
discuss our results and Section 7 concludes.

1.1 Related literature

In the paper that inspires our econometric approach, Reis and Watson, 2010 decompose the US
PCE deflator into 187 individual categories over the period 1959-2006. They find that a pure
measure of inflation — one where each category moves equally and independently from average
relative price movements — accounts for just 15% of inflation volatility at business cycle frequency.
By contrast, relative price changes account for three quarters of inflation volatility over the cycle.

In the following years the literature on global inflation, following from Ciccarelli and Mojon,
2010 also found an important role for relative prices at differing inflation rates. Ciccarelli and
Mojon, 2010 showed that a common, “global”, factor accounted for around 70% of the variance of
inflation rates of OECD economies. Forster and Tillmann, 2014 found that for the same group
of advanced economies, it was the global movements in energy and food prices that accounted
for most of the co-movement. Parker, 2018 confirmed the role of energy prices in generating
comovement in inflation across advanced economies. Conversely, the role played by global relative
price factors diminishes substantially for less developed economies, which typically have less
credible monetary policy and higher average inflation rates.

More recently, in the context of the global inflation surge, Borio et al., 2021 reprise the analysis
of the relative importance of relative prices in driving inflation, again concentrating on the United
States. They show that as aggregate inflation falls to low rates, relative price movements become
a much more dominant source of inflation variation than the pure component. They also show
that monetary policy tends to affect the common component for the most part and that with the
advent of low inflation, policy only affects a small number of prices, mainly in cyclical services.

Borio et al., 2023 extend this analysis to more countries and, among other exercises, look
at the falling importance of the common component of inflation through time and use this
“commonality” to characterise low- vs high-inflation regimes.

Our framework is substantially different, in that we look at two different common components
of category-level inflation: one that we can associate with money - or the depreciation of the
value of the currency numéraire - and one that arises from common relative price changes: either
arising from common shocks and heterogeneous price flexibility, or from sectoral shocks that are
large and “upstream” enough to affect all prices, albeit to different extents and at different
speeds. This requires looking at more than the first principal component of inflation rates across



consumption categories, or by high vs low inflation, to characterise inflation regimes: is high
inflation driven “only” by a few relative price changes that are common to many categories, or
also by monetary inflation, the tide that lifts all boats? Broadly speaking, as monetary policy
successfully anchors the general trend at low rates, movements in relative prices become more
prominent. Indeed, this is one of the textbook benefits of credible monetary policy — permitting
agents to have a clearer view of the extent to which price movements reflect signals of demand
and supply rather than changes in the value of the numéraire.

Recent studies that characterise inflation regimes in terms of the size of the shocks that
hit the economy, with large shocks driving endogenous increases in price flexibility, and draw
conclusions on the impact of monetary policy and on its optimality, offer a useful framework in
this regard: see Karadi et al., 2024 and in particular Ghassibe and Nakov, 2024, which introduce
state-dependent pricing in a model with a production network.

These papers relate to the work by Pasten, Schoenle, and Weber, 2020, who highlighted
the importance of heterogeneous price rigidity and its interaction with input-output linkages in
determining the real effects of monetary policy shocks. Indeed, the strand of literature that
looks at the impact of input-output linkages and sectoral heterogeneity in price rigidity has
been very prolific in recent years, offering a more realistic framework to interpret the impact of
both sectoral, especially supply, as well as monetary policy shocks on inflation. Other notable
examples are La’O and Tahbaz-Salehi, 2022, Ferrante, Graves, and lacoviello, 2023, Luo and
Villar, 2023, Afrouzi and Bhattarai, 2023.

2 Insights on pure inflation and relative prices from an
illustrative model

To better understand how aggregate and sectoral shocks affect individual prices, it is useful
to look at a controlled environment. To this end, we slightly modify the model from Ghassibe
(2021), which studies how input-output production networks and heterogeneity in price flexibility
affect the transmission of monetary policy shocks.* It proposes a New Keynesian, multi-sector
model where sectors differ by use of intermediate inputs and price adjustment frequency. The
model also allows for a monetary policy rule that targets the quantity of money, rather than a
policy rate, which is particularly useful to study how unexpected monetary injections percolate
into relative prices or pure inflation. Besides switching to a monetarist policy rule, we further
modify the model by adding an aggregate technological shock that impacts all sectors in the same
way. In Ghassibe (2021) monetary policy is the only aggregate shock, while in Reis and Watson
(2010) the theoretical model features aggregate productivity shocks, whose effects across sectors
are heterogeneous. We work with the model by Ghassibe because introducing the production
network aligns with the economic reality of production and allows sectoral shocks to generate
common effects on inflation.

We use this modified model to both inform our expectations of how monetary and other
shocks affect pure inflation and relative prices and to test our identification procedure. For an
exhaustive overview of the model, we refer the reader to Ghassibe (2021).

2.1 Propagation of shocks through uniform and relative price movements

In this exercise we consider transitory shocks and price levels: the original model is log-linearised
around a zero inflation steady state, therefore all values are in percentage deviation from such

4We are thankful to Mishel Ghassibe for sharing his code.



state. In single-sector New Keynesian models aggregate shocks affect inflation, as opposed to
generating a one-off price change, because every period only a fraction of firms can adjust their
price. This is equivalent to a multi-sector model where all sectors share the same price stickiness
and firms face only aggregate shocks. Letting sectors differ by the degree of price rigidity implies
that aggregate shocks will trigger relative prices dynamics, even in the absence of input-output
linkages: in stickier sectors a smaller share of firms will adjust their prices, whereas more flexible
sectors will transmit the shock quickly. The model uses the same calibration as in Ghassibe, 2021,
to which we refer for details, with the exception of the sectoral price rigidity parameters, which
are not currently publicly available; for that we relied on a judgmental adjustment to available
estimates of price rigidity at CPI level from Gautier et al., 2024. The input-output network
adds an extra channel of transmission, especially of sectoral shocks: industries producing inputs
to many other sectors will pass on their shocks to the rest of the economy, while downstream
sectors will not be as consequential. To capture this additional propagation channel, we focus
on two opposite sectors. The first is an upstream sector with flexible prices: its prices adjust
rapidly and its output serves as input to many other sectors, while also being relevant in the
final consumption basket. The second sector is downstream and sticky: it features sluggish price
adjustment and has a significant share in the final consumption basket. To provide an example,
one can think of the first industry as the energy sector, and the second one as the health sector.

We first look at how sectoral shocks propagate to each sector, to aggregate consumer prices
and to the gap between the two sectoral prices. Figure 3 shows the reaction to a sector-specific
temporary technological shock in the flexible and upstream sector.” Given the weight of this
sector in the input bundle of many other sectors, the effect is visible in both the sectoral price
and the overall CPI. The sluggish, downstream sector is less affected and its price barely moves,
therefore the price gap is driven almost exclusively by the dynamics of the flexible price sector.
As the shock is temporary, the relative prices go back to their original level (see the right-most
panel of Figure 3). While the duration is lower than the TFP shock, it is easy to see how sectoral
shocks could have effects similar to aggregate shocks, and vice versa.

Next we turn our attention to aggregate shocks. Figure 4 shows the impulse response
functions (IRFs) of the same variables to an aggregate total factor productivity (TFP) shock of
one standard deviation. A positive, common technological shock has the expected effect of
lowering all prices. However the more flexible price responds almost twice as much as the
stickier one, so that the price gap also widens in this case. The gap is relatively persistent, as
the stickier price takes some additional months to revert back to its steady state value. In other
words, a common supply shock leads to both temporary inflation and temporary relative price
changes.

Figure 5 shows the reactions to a temporary monetary policy shock, when an extra unit of
money is added to the stock of money. The CPI index jumps modestly on impact, while the
price gap turns negative before oscillating around the steady state value. This last shock is
remarkable as it affects all prices in a similar way. After a monetary expansion both prices move
up, though at different speeds, opening a price gap that changes sign as the sectoral prices adjust
in sequence. Even in a relatively parsimonious model, aggregate shocks can generate changes in
relative prices.

The model allows for (limited) experiments with quasi-permanent shocks, by letting shocks
be extremely persistent. Most interestingly for this paper, one can study how prices react after
a permanent, unexpected increase of the stock of money. Figure 6 shows such IRFs: Individual
prices increase and settle to their new level, while relative prices show a more persistent

5All the temporary shocks were calibrated to follow m; = 0.65m¢—1 + e



Figure 3: Sector-specific technology shock
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Note: Impulse response functions of a sectoral technology
shock of one standard deviation on the flexible and upstream
sector. The price gap is computed as log difference between two
representative prices: a sticky (log) price less a (log) flexible
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Figure 4: Aggregate technology shock
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Figure 5: Temporary monetary policy shock
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price gap is computed as log difference between the two prices.

Figure 6: Permanent monetary shock
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reaction to a temporary shock. This aggregate shock, closer to our concept of pure inflation,
moves individual prices (and the CPI) to a new level, while also generating some temporary
movements in terms of relative prices. Note that, as shown in Reis and Watson, 2010, only
changes in the ezpected rate of money growth (or of tax rates) can generate a change in pure
inflation, while all shocks discussed in this section can only generate an increase in relative
prices. Another mechanism that could generate a (temporary) change in pure inflation could be
via accommodated unfunded fiscal shocks, as in Bianchi, Faccini, and Melosi, 2023.

3 A Bayesian dynamic factor model to distinguish pure inflation
from relative prices

As these examples from the model illustrate, aggregate shocks can affect relative prices and
sectoral shocks can affect aggregate inflation in the near term, even when the long-run impact
is neutral. This poses a challenge for monetary policymakers in their assessment of how current
economic conditions will translate into persistent aggregate inflation in the medium term.
Distinguishing between relative price shifts that are sector-specific and those which presage
more widespread inflationary pressures that will eventually affect all prices is vital to keep
inflation anchored at target. We revive here the empirical framework proposed by Reis and
Watson, 2010, adapting it to account for heterogeneous price rigidity and for less “dogmatic”
restrictions, using a Bayesian implementation of the restricted dynamic factor model they
proposed to help discern to what extent shocks are affecting the two common components of
inflation: the pure and the relative prices one.

3.1 Method

We adapt the concept introduced by Reis and Watson, 2010 to decompose inflation in each
country into three components: i) “pure inflation”, i.e. the “change affecting all in the same ratio
arising out of change on the side of money” in Keynes’s terms, ii) the common component that
summarises all relative price changes and iii) the part that is idiosyncratic to each component.®

We revisit this question for the United States and also look at the euro area. Unlike Reis and
Watson, 2010, who measure inflation in quarter-on-quarter terms, taking log-differences between
each end-of-quarter month, we use annual inflation. There are two reasons for this choice: the
first, practical one is that we do not need to seasonally adjust every component.” The other is
more fundamental: we want to account for the fact that not all goods and services have the same
price flexibility and imposing an equi-proportional adjustment within a quarter is a stretch for
categories, such as most services, whose prices tend to change less than four times a year (for
an exhaustive review on price rigidity across consumption categories in the euro area and its
countries see Gautier et al., 2024.

This methodology provides a way to identify the pure and relative prices components by
imposing restrictions on the structure of a dynamic factor model. This approach extracts more
information from the data than just looking at the loadings of the first principal component of
the data, as done for example in the papers by Borio et al., 2021 and Borio et al., 2023 cited
above; rather than studying the variation over time of the fraction of variance explained by the

5The Reis and Watson approach has been recently applied also to the concept of “pure wage inflation” by
Ahn, Cen, and Kister, 2024.

"Unlike for the US, HICP data for the euro area at category level are only published in non-seasonally adjusted
terms, requiring the researcher to make parameter choices for the seasonal adjustment of each inflation category.
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first principal component, we project the space of the most important principal components into
a direction where the factor loads uniformly on all prices (the tide that lifts all boats) and a
direction where they load differently (the choppy wakes).

We estimate the Bayesian factor model using a NUTS MCMC sampler implemented in Stan.®

Stan is a probabilistic programming language that employs a variant of the Hamiltonian
Monte Carlo algorithm, called No U-Turn Sampler (NUTS). The advantage of Hamiltonian
Monte Carlo in general, and NUTS in particular, is the adaptive exploration of the posterior
space, drawing at once all parameters, thus leading to more reliable inference with shorter chains
compared to a standard Gibbs sampler (see Carpenter et al., 2017; Gelman et al., 2014; Hoffman
and Gelman, 2014).

For each country, we model the panel of year-on-year inflation rates as a linear factor model
where each of ¢ € N time series m;, representing an inflation sub-category, is a function of
K < N factors F;. In state-space representation, the measurement equation is:

g = AF¢ + e

e; =Ver_ 1 +¢&

(1)

Where 7, is a N x 1 vector collecting all the category-level inflation rates at time ¢ and the
covariance of g; is diagonal. The state equation in K unobservable factors reads:

F,=ZF,_1+mn (2)

where we assume that the distribution of the initial observation for the factor F} is known and
normal and the two error processes are independently and identically distributed and uncorrelated

with each other:
&t .. Qe 0
( " > ~iidN [0, ( 0 v, >] (3)

Also, for simplicity, we assume that the matrix ¥ containing the autoregressive parameters of
the observation errors is diagonal. The structure of the model accounts for the moving average
components induced by computing year-on-year inflation rates.’

Without additional restrictions, the factor model is not identified, since any non-singular
matrix M such that AMM ~'F, would still be admissible. Our identification approach, thus,
relies on a minimal set of restrictions derived by Bai and Wang, 2015. We restrict the covariance
matrix of the factor innovations V;, to be diagonal (and normalised to 1), and restrict the K
square top part of the loadings matrix A to be lower triangular with strictly positive diagonal
elements. More formally

V, =1k (4)
A= [ Aﬁﬂ (5)

8See https://github.com/stan-dev/stan, https://mc-stan.org/; also, see Geweke and Zhou, 1996 for an
early application of Bayesian factor models.

9In fact the moving average parameter of the VARMA representation induced by the year-on-year
transformation is known, while the lag-length of the underlying month-on-month autocorrelation structure is
not; in practice, by estimating ¥ we aim at capturing the persistence of the residuals in a parsimonious manner.
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with diag(Ax) > 0 and its elements )\l{{j = 0 Vi < j. This set of restrictions is sufficient to
identify the factors and avoid label switching or sign permutations in the dynamic factor model,
but is not innocuous for the interpretation of the estimated factors. Eq. 4 implies that the
only source of co-movement between the factors is captured by the VAR structure of the state
equation, while eq. 5 allows the first factor to load on all N inflation rates, while the second
factors only loads on N — 1, and so on until the last factor only affects N — K series. Sorting
the inflation rates within 7r; thus imparts some block structure and somewhat tilts the factors
towards clusters of category-level inflation rates.'’

In addition to the identifying restrictions on A and V;,, we also need to ensure that one of
the factors captures as closely as possible our concept of pure inflation. Along the lines of Reis
and Watson, 2010, we identify pure inflation by separating the common factors into a factor that
loads equiproportionally into all inflation categories and some relative price ones by specifying
the factor structure as:

AF, = la; + TRy, (6)

where a; is the pure inflation factor and R; summarises the information from the remaining
K — 1 common factors. From a Bayesian perspective, the natural porting of this approach is
to specify tight priors on one of the factors, thus imposing over-identifying assumptions. In a
nutshell, while all the free elements \; ; are given a fairly loose prior around 0, we assign to the
first column of A a prior centered at 1 and with a tight variance. In this context, a Bayesian
approach also allows for an assessment of the prior choice: if the posterior distribution shifts
significantly far from the prior location, then the information contained in the data contradicts
the starting assumption.'!

After estimating the factors under these restrictions, we still need to decompose inflation
into its pure and relative price components as captured by the factors. We thus compute the
deviation of the restricted factor a; from its expected value given R;. For the relative prices,
we obtain the aggregate relative price inflation from the fitted value of a regression of headline
inflation “purged” from a; on the remaining factors, plus the expected value E(a;|R;) estimated
in the previous step.'? This results in the final decomposition of inflation into its pure component
v, the relative price component p, and an aggregate idiosyncratic component u;:

Ve = a¢ — E (at]Rt)
pt = E (Fi|Ry) (7)
Ty =Vt + Pt + Ut

Our econometric approach keeps many of the parametric assumptions by Reis and Watson,
2010: besides the restrictions, we also allow a full VAR structure in the state equation: this is
important to accommodate dynamic comovements among the factors. In economic terms, one
can think of it as allowing relative price changes to spread into broader price dynamics. The
post-pandemic bout of inflation, indeed, shows how sectoral price pressures can spread to other
segments of the economy and spark a broad-based inflationary dynamic.

10Tn practice we order the first four inflation components as follows: energy, food, services, non-energy industrial
goods. Pure inflation precedes these components and loads on all inflation rates.

11 Appendix C shows some checks along these lines.

12Note that Reis and Watson, 2010 use a Kalman smoother to estimate the expected value of a; conditional on
the whole sample of R, not just the contemporaneous and past values. Our counterpart in the Bayesian setting
is the posterior distribution of a;.

12



Differently from Reis and Watson, 2010, however, after exploratory analysis we impose five
factors in total in our baseline specification. The number of common factors is central to
finding whether much variation in inflation will be allocated to “aggregate” relative prices or to
idiosyncratic factors, but not to whether the common pure inflation factor will show much
variability through time. When letting the number of common factors be decided
algorithmically for each country using. e.g., the Bai and Ng criteria, the estimated number of
factors K tends to settle very close to the maximum number allowed, which in our exploratory
analysis we parameterised to be one third of the number of COICOP categories included in the
sample for that country. Experiments with standard dynamic factor models and principal
components analysis also point to the need of using a relatively high number of factors to
capture most of the variation in the data.

After experimentation we choose our baseline monthly specification to be the same for both
countries, with K = 5 common factors. The results from this preliminary analysis based on
principal components are presented in Section 4.2. Qur setup for estimating the state-space model
described by equations 1 and 2 relies on fourteen separate Markov chains that run individually
until 5000 complete draws are generated for each chain — besides adaptation and warm-up phases.
We discard the first half of these draws as burn-in. Once every chain converges to the selected
number of draws, we combine all draws and perform inference on the posterior draws.

3.2 Parameterisation

A Bayesian approach allows the flexible introduction of restrictions in an otherwise standard
dynamic factor model. As mentioned, by carefully selecting tight priors on some parameters, one
can tell apart pure inflation while also letting the data speak about the appropriateness of such
restrictions by comparing the posterior and prior distributions of the uniform loading parameters.
Under the identification and restriction strategies outlined above, the Bayesian dynamic factor
model is parameterised as follows, using fairly spread Gaussian distributions:

e~ N (AFta Qe)
Fy~N (EFt_l, ]lK)

Ak

re
A5 =0 Vi < j .
A ~IN(0,10)]  Vi=j ®)
Aij ~ N (0,10) Vi>j
Aig~ N (1,0.1) vj

diag(Q¢) ~ |Cauchy (0, 10) |
T ~ N (0,10)

Where || means a positively truncated distribution for z. At the same time, for every
iteration of the NUTS sampler, we also compute in parallel the values of our variables of interest, v
and p: doing so allows for parameter distributions that are internally consistent. As a byproduct,
part of the contribution of this paper is a method applicable to a larger set of countries: in
parallel work we have experienced that the Bayesian reformulation of a standard dynamic factor
model can handle data from both mature and developing economies, for instance with different

13



sensitivities to energy or commodity prices shocks, without ad-hoc restrictions or assumptions,
for example on the number of cointegration vectors. Moreover, our estimation yields directly all
the quantities of interest, affording the posterior checks on these, too.

4 Inflation data

In order to gauge the ability of our model to disentangle pure and relative price inflation, we
apply it to synthetic data derived from the Ghassibe, 2021 model described in section 2 above,
simulated under the assumption that aggregate inflation is only driven by shocks that affect
relative prices. In other words, we should recover a flat nu; hovering around zero. Our main
exercise uses consumer price index data from the euro area and the United States. Finally, to
compare the results with those by Reis and Watson, 2010, we also apply our framework to the
US personal consumption expenditure deflator over a longer sample. We describe these three
data sources below.

4.1 Simulating data to gauge the properties of the model

Simulating data from the model presented in Section 2 allows us to control the the data generating
process and easily generate a sample with known properties. We draw about 400 observations
from the model with standard calibration and compute inflation rates of the about 160 sectoral
prices, dropping the first 100 observations.

Given the model structure, we can expect the following results. First, the model is linear and
the shocks are unanticipated and transitory, so that no expected component can feed into pure
inflation. That means that the series for pure inflation estimated by our framework should be
close to zero. Second, each sector receives both sectoral (technology) and aggregate (monetary
policy, TFP) shocks. Finally, while relative prices move in response to all shocks, the overall
impact may be reduced when the shock is indirect — such as when it occurs in an upstream
sector.

We use the same input-output weights as in Ghassibe (2021) and calibrate price rigidity
using Calvo parameters that can take the values of 0.25, 0.5, or 0.75 depending on whether the
corresponding entry in the input-output matrix refers to a typically flexible or rigid inflation
component. The simulated series, after rescaling, are comparable in range with actual inflation
data, though we obtain a lower dispersion as shown by comparing Figure 7 with Figure 1.

4.2 Consumer price indices

In order to compare consumer price indices across countries, it is necessary to both view indices
at a more granular level than headline, and ensure that these categories are aligned in terms
of the individual goods and services that are included in the index calculation. To do this, we
have re-constructed the US national index and its subcomponents to match the structure used
in EUROSTAT’s Harmonised Index of Consumer Prices (HICP).

HICP is structured along the international standard Classification of Individual Consumption
by Purpose (COICOP), which splits expenditure into 12 main divisions (2-digit COICOP),*? such
as clothing and footwear, health, and recreation. The divisions are in turn split into a total of
43 groups (3-digit COICOP) and further in 102 classes (4-digit COICOP).

13The 2018 version of COICOP has 13 divisions, which a handful of economies have now adopted.
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Figure 7: Simulated Data

10

2000 2010 2020

Note: the data are simulated from Ghassibe (2021), where we use about 160 sectors, aggregate and
sectoral technological shocks, temporary shocks to the total stock of money. Dates are indicative
only.

The most notable changes are that imputed rents are included in the US national indices but
excluded here to match HICP, and that the United States groups cafés and restaurants alongside
food, but they fall under different divisions within COICOP. Even aligned to COICOP, there will
be differences between economies based on consumption preferences and the choice of products
used for price quotes.

We use the most disaggregated components available across countries rather than the most
granular data available in each country. This means that in some cases we use 4-digit classes
(e.g., “0112, Meat”), in others only 3-digit groups (e.g., “041, Actual rents paid by tenants”).
When class-level data are not available for any components we use the corresponding group-level
data. This maximises the coverage without causing overlap between components and leaves us
with 49 inflation components for the United States and 54 for the euro area.

We use price indices at a monthly frequency and compute inflation year on year to jointly
address seasonal adjustments and price rigidity. Seasonal analysis in general requires expert
knowledge on the properties of each individual time series and became particularly difficult after
2020 since the pandemic restrictions affected seasonal patterns in many consumption categories.
Price rigidity is important in light of the assumption needed to identify “pure inflation”: to
allow, in the words of J.M. Keynes quoted above, “a further change affecting all in the same ratio
arising out of change on the side of money”, enough time must be allowed to pass for the common
monetary shock to feed to all consumer price categories to the same extent. More practically,
the one-year window comprises enough price updates to better incorporate changes triggered by
aggregate and sectoral shocks (Gautier et al., 2024, Pasten, Schoenle, and Weber, 2020).

Some time series are excluded from the database because of irregular missing values, samples
that are too short (for example, through changing index composition) or that exhibit special
characteristics. For example, we exclude prices that are usually regulated such as inpatient
and outpatient medical services, postal services, and tobacco. This results in using 55 inflation
subcomponents for euro area HICP and 49 for the United States.

The estimation sample starts in December 2000 for the euro area and in December 2002 for
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the United States, ending in October and November 2023 respectively.'* Additionally, we rescale
and centre every time series so that it has mean zero and unit variance.

We investigate the “commonality” of these consumer price indices using principal component
analysis (PCA), to make an educated choice on the number of factors that we use in our empirical
model in Section 5 below.

Figure 8 presents the cumulative percentage share of total variance explained by an additional
factor, up to the point of saturating the principal component decomposition with K = N. In both
the euro area and US cases, the first factor explains a rather large part of the the total variance
in the data: about 39% and 53% respectively. Any additional factor, by design, captures less
of the empirical variance. For the EA, the second and third factors add about 10% to the total
variation explained, while for the US the second factor adds around 11% and the third about 8%.
The marginal contribution of any additional factor beyond the third has a progressively lower
explanatory power. Based on these results, in order to capture much of the common variation
while keeping a parsimonious specification we set a conservative upper bound of five factors to
represent the common drivers of all the inflation components: these capture a little less than
80% of the covariance for the euro area and about 70% for the USA.

Figure 8: cumulative share of explained variance
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Note: Cumulative share of wvariance explained by each principal component in a PCA
decomposition of inflation components.

4.3 Data covering a longer time span: US personal consumption expenditure
deflator

The comparability across countries of the data in our baseline sample comes at the cost of a
shorter time span, which covers a long period of quiet inflation and features only one high-

14Starting dates differ since we ensured a “rectangular” panel for both areas.
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inflation episode. Testing our methodology on multiple high-inflation episodes can shed light on
the actual sensitivity of v to several factors, such as inflation expectations and their degree of
anchoring. Since longer euro area aggregate data would entail a cumbersome and possibly ad-hoc
data manipulation, it is natural to look at disaggregated US personal consumption expenditure
deflators. These data also permit a more direct comparison of our framework with the original
exercise of Reis and Watson (2010). The PCE sample covers 201 PCE components from January
1961 to September 2024.

5 Results: decomposing inflation into pure and relative price
components

We apply the econometric framework set out in Section 3 to the three datasets described in
Section 4 with different questions in mind. The simulated data offer a controlled environment
where we can check if the model recovers the properties of v and p that we put in the data
generation process (DGP). The central exercise is run on the US and EA consumer price indices,
with a direct comparison with what we would get using the Reis and Watson, 2010 dynamic
factor model (RW-DFM) approach. Finally, the US PCE data give us the chance to see the
results over a longer time period, over some of which inflation expectations were arguably not
as well anchored as in the 2000’s. By the nature of the euro area, an analysis spanning many
decades with markedly different monetary policy regimes is not possible.

5.1 Simulated data

The results from the simulated data derived from the modified Ghassibe, 2021 model are in line
with our expectations given the DGP: Relative prices capture most of the movement in headline
inflation, while pure inflation sits consistently close to zero. Pure inflation moves away from zero
for very few periods, and only then briefly in presence of violent and sudden flares of inflation
(see Figure 9).

These results using simulated data are rather encouraging, for the model does precisely
estimate a feeble to non-existent pure inflation, while assigning most of the variance to relative
prices. Equipped with these results we now turn to actual data.
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Figure 9: Evaluating the BDFM on simulated data

2000 2010 2020

Note: Results estimated from the restricted Bayesian dynamic factor model on simulated data.
We feed the BDFM about 300 observations for each of the 160 sectors, plus headline HICP. The
BDFM runs 14 chains with 5000 iterations of the NUTS sampler each, and discards the first half
of these. v represents pure inflation (in blue), p captures relative prices (in red). For both, lines
are posterior medians and shaded areas cover the 10% to 90% credibility interval. The black solid
line is headline HICP, the dashed line is the 0 intercept.
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5.2 Consumer price indices

Starting from the estimated factors we decompose the headline CPI inflation in the euro area and
in the United States into pure inflation (v in Reis and Watson, 2010 terminology) and inflation
due to average relative price changes, p;.'?

The period covered in our sample has for the most part been one of inflation stability. That
stability ends at the end of the sample period, with inflation picking up sharply in 2021 and 2022,
before falling in 2023 to rates more in line with the previous decades. According to our B-PIDFM
the vast majority of the pick-up in inflation was driven by p¢, the relative price component, in
both currency areas. At the same time, in both areas there were some signs of an increase in the
pure inflation component, v¢, which was unwound by the end of our sample. The two components
together explain 76% of the variance of headline inflation in the euro area, but only explain 52%
of its variation in the United States. Pure inflation explains about the same share of variation of
headline inflation in the euro area and in the United States: between 12% and 14%, respectively
(see Figures 10a and 10b). The rest can be ascribed to idiosyncratic components (or possibly to
further, “local” common factors in the case of the United States).

We have argued above that the B-PIDFM could be more accommodative with the data,
because of the longer adjustment lag of annual inflation rates, as opposed to the end-of-quarter-
on-end-of-quarter of RW-DFM, and because of the flexible implementation of the the uniformity
restrictions on the loadings on the pure inflation. How compatible is this latter restriction with
the data? As shown in Figure A4 and Tables A1l and A3, the posterior distributions for the
restricted loadings shrink within the prior support, although the posterior medians tend to shift
lower than 1 in most cases, but always in a rather narrow range of 0.8 to a little above 1. The
IRQ of the posterior distributions also mostly overlap - with few exceptions - indicating a high
degree of homogeneity in the loadings. All in all, most of the probability mass concentrates close
enough to 1, which does not allow for a sharp rejection of the pure inflation restriction.

As a robustness check, we also apply our method on two-year inflation rates. As shown in
Figure 2, a very large share of price rigidities unfold in the course of one year, but some take
slightly longer, for instance some products within the service sector. The two-year inflation
exercise allows even more time for price adjustments. In this set-up, relative prices still drive a
sizeable share of the variation in headline inflation, while pure inflation is somewhat less stable.
Pure inflation does contribute slightly more to the recent rise and fall of headline inflation,
especially in the United States, where the rise of v; in 2021-22 is remarkable, but relative prices
nonetheless still contribute the lion’s share (see Figure A5 in the Appendix).

15The residual is the aggregate of the idiosyncratic terms. We omit it from the figures.
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Figure 10: Inflation decomposition m = vy + pr + uy
(a) Euro area (b) United States
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Note: headline inflation in black, pure inflation vy in blue and relative prices py in red. Results
from a Bayesian dynamic factor model with static measurement equation and VAR(1) for the
factors’ state equation: v and p are then derived as per eq. 7. The BDFM runs 14 chains with
5000 iterations of the NUTS sampler each, and discards the first half of these.
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5.3 A longer-run perspective

Given the general stability of our estimates of pure inflation, it is useful to put the most recent
episode into historical context. Previous inflationary episodes can provide useful yardsticks to
gauge the magnitude of the recent pure inflation bump. Unfortunately, long-run HICP data
does not exist for the euro area. But for the United States, we can use personal consumption
expenditure (PCE) deflators. Crucially, US PCE data cover the high-inflation period of the
1970s and 1980s, when inflation expectations were not fully anchored and monetary policy
accommodated price pressures, providing a fitting environment in which to evaluate the
decomposition in terms of fitting the historical knowledge about that period.

Figure 11 shows the estimates for pure inflation and relative prices inflation. First off, the
more recent dynamics of v and p do not appear substantially different from our baseline results
shown in Figures 10a and 10b. Similar to HICP in the last two decades, US PCE appears to
have been mainly driven by relative prices over this longer sample, with some uptick in the
contribution of pure inflation around the 2008 global financial crisis and during the 2021-2023
reflation and disinflation period.

Figure 11: US - v and p estimates from PCE data
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Note: estimates of v (blue), p (red), and rescaled headline PCE (dashed, black) based on 201
US PCE item inflation rates, January 1961 to September 2024. Results based on a Bayesian
dynamic factor model featuring a uniform restriction on the first factor, a static measurement
equation, and a VAR(1) structure for the state equation, as described in Section 3.1. v and p
derived as per equation 7. The BDFM runs 14 chains with 5000 iterations of the NUTS sampler
each, and discards the first half of these.
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Second, the high-inflation episodes of the 1970s and 1980s also saw a larger contribution of
pure inflation — around 1975 more than the early 1980s. During those years, inflation expectations
were likely unanchored and monetary policy was more accommodating rather than aggressively
responding to inflation.'6

The bumps in pure inflation prior to the Great Moderation period, thus, corroborate our
empirical methodology. Interestingly, the size of the latest increase of pure inflation in terms
of the PCE in the United States is comparable to that of the early 1980s, though the level of
headline inflation was not as high.

Between those two periods, Figure 11 also displays a smooth profile for pure inflation during

the Great Moderation, when expectations, policy (and shocks) kept inflation in check.

6See results from Boivin (2006), Clarida, Gali, and Gertler (2000), Franceschi (2021), Primiceri (2005), and
Sims and Zha (2006).
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6 Impact of shocks

Having established our model as a useful way of identifying pure inflation and relative price
shifts, we now turn our attention to how these components of inflation react to macroeconomic
shocks.

Should central banks look through the sectoral shocks that drive relative price changes? The
answer, unsurprisingly, is “it depends.” For example, Nakov and Pescatori, 2010 show that the
inflation stabilisation trade-off after a shock to the most volatile high-weight input price, oil,
depends on market power within the oil sector. Costain and Nakov, 2011 discuss how identifying
the contribution of sectoral shocks can be tricky as it depends on the firm distribution and on
the econometric approach used to disentangle the contributions. Ruge-Murcia and Wolman,
2022 use a multi-sector New Keynesian model to disentangle the contribution of three types of
shocks, namely sectoral relative price shocks and two kinds of aggregate shocks: monetary policy
and real aggregate shocks. They find, in agreement with much of the literature including Reis
and Watson, 2010, that relative price shocks contributed most to the variability of inflation, but
remark that these results refer to a period when inflation was low and stable. Ferrante, Graves,
and lacoviello, 2023 also use a multi-sector model to disentangle the effects of relative price and
aggregate shocks, but focus on the post-2019 period and consider a different aggregate shock —
labour productivity — as well as two types of shocks that affect relative prices: sectoral TFP
shocks and a preference shock that changes the relative demand for goods and services. They
find that the imperfect substitutability of labour and intermediate goods in production and the
heterogeneous price rigidity amplify the effects of the preference shocks and reverberate through
the input-output network.

We contribute to the analysis of the impact of aggregate and sectoral shocks to inflation from
a different angle: we look at the cumulated impulse response functions (CIRFs) of the relative
price and pure inflation components to global (world economic activity and world demand),
sectoral (oil supply, demand) and aggregate domestic (monetary policy), shocks.

To investigate the reaction of the pure and relative price inflation to shocks we use linear
projections a la Jorda, 2005, using external, identified shocks. We look at a global aggregate shock
meant to capture unexpected changes in global demand and global activity. We interpret the
impact of these shocks on the euro area as coming from a sectoral foreign demand shock in favour
of traded goods. We also include two sectoral shocks meant to capture innovations in global oil
supply and demand, as identified in a Bayesian SVAR. To measure global economic activity,
global oil demand, and global oil supply shocks we use the shocks produced by Baumeister and
Hamilton, 2019. We also consider identified monetary policy shocks from Jarocinski and Karadi
(2020): in their contribution, they offer a suite of monetary policy shocks for the European
Central Bank and the Federal Reserve.

6.1 Global demand shock

As a premise to all our results, our estimated impulse response functions show the well-known
issues associated with “plain vanilla” local projections: they have a jagged profile and their
variance increases at longer horizons, as discussed in e.g., Li, Plagborg-Mgller, and Wolf, 2024.
The “economic activity” shock by Baumeister and Hamilton, 2019 captures a global demand
shock, which would tend to lift all tradable goods prices. Our results, shown in Figure 12,
indicate that it does indeed have an uneven impact across inflation categories, with the response
of the relative price components p; (right pane) peaking around between twelve and sixteen
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months after the shock.!” Two years out, the relative price component plateaus at a slightly
higher level.

In addition to causing shifts in relative prices, the global economic activity shock also seem
to lift all prices homogeneously in the euro area for some months, where the cumulative impulse
response function (CIRF) of pure inflation v (left pane) rises in the short term, for about ten
months. The response of relative prices is more delayed in the euro area. One way to rationalise
this would be to consider that it has been a net exporter in recent decades, whereas the United
States has had a persistent trade deficit. In other words, an increase in global demand is likely
to increase demand for euro area exports and in turn increase local inflationary pressures later
than for the United States, which experience a quicker uptick of relative prices as they tend to
be themselves an engine of global demand. After two years, both monetary areas settle on a
slightly higher level of relative prices.

Figure 12: Cumulative IRF after a global economic activity shock
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Note: Cumulative IRF of vy and p; to a Baumeister and Hamilton, 2019 global economic activity
shock. The bands indicate a 90% coverage. Shocks and series are rescaled to have zero mean and
unit variance.

6.2 Oil supply and demand shocks

Turning to the sectoral shocks, the CIRF of pure inflation v; to an oil demand shock, shown in
Figure 13 (left pane), are occasionally significant, especially for the United States where pure
inflation picks up in the short run, then reverts back to baseline after about one year. By contrast,
and as expected, the CIRF of European pure inflation is only significant for a very short period
of time.

The CIRF of the relative price component p; (right pane) shows that the impact of oil demand
has a clear effect on relative prices, as one would expect given that it will tend to increase the
price of oil relative to that of all other goods and services. The impact peaks slightly faster

"Tn all our local projection regressions we include lags of domestic unemployment, and local interest rates.
All local projections we also include 12 lags of the dependent variable, as per Montiel Olea and Plagborg-Moller,
2021.
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and higher in the United States, while the response of euro area relative prices is, similar to the
case of global activity shocks, more delayed. One explanation for the shorter-lived impact in the
United States could be that domestic oil production can be boosted in response to an increase in
oil demand and price. Again, the longer-run responses show the expected increase in variance.

Figure 13: Cumulative IRF after a positive, global oil demand shock
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Note: Cumulative IRF of vy and p; to a Baumeister and Hamilton, 2019 positive, global oil
demand shock. The bands indicate a 90% coverage. Shocks and series are rescaled to have zero
mean and unit variance.

Figure 14: Cumulative IRF after a positive, global oil supply shock
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Note: Cumulative IRF of vy and p; to a Baumeister and Hamilton, 2019 positive, global oil supply
shock. The bands indicate a 90% coverage. Shocks and series are rescaled to have zero mean and
unit variance.
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Baumeister and Hamilton (2019) also produce global oil supply shocks, measured in terms
of increases in oil production.'® For such shocks, in the US pure inflation falls, while in the EA
the impact is significantly negative two years out, which is counterintuitive for a supply shock,
unless understood through the lens of the production network, which can amplify the impact
of upstream supply shocks and prolong their pass-through to other price components down the
supply chain. Relative prices fall more slowly in the EA, with a significant impact happening
about a year later than in the US. The larger, quicker impact in the US could be related to
an indirect effect on domestic demand, as the US are a large oil producer, as well as to higher
taxes on energy prices in the euro area, which can slow down and dampen the pass-through of
commodity price shocks.

6.3 Monetary policy shocks

To investigate how v and p react to monetary policy shocks we use updated shocks from Jarocinski
and Karadi (2020) for both the European Central Bank and the US Federal Reserve. Among the
available flavours, we pick the shocks identified via the so-called “poor-man’s sign restriction”
identification setup. We homogenise the shocks’ direction so that they are monetary restrictions.

From the theory outlined in Section 2, we would expect monetary policy shocks to only affect
relative prices.

We find that monetary policy shocks have no clearly significant effect on pure inflation: as
shown in Figure 15, in the case of euro area “pure” monetary policy shocks, i.e., abstracting
from the signalling about economic conditions as per the methodology, both pure inflation and
relative prices impulse responses move sideways, with occasional short dips in significant territory.
This applies to the response of euro area inflation as well as to the “spillover” of euro area
monetary policy to US inflation components. A similar picture appears for the reactions to US
monetary policy shocks. We do not find a significant response of relative prices, either, although
directionally the effect is as expected.

18K snzig (2021) further distinguishes between oil supply news and actual production shocks. For robustness,
results with Kénzig (2021) shocks are deferred to the Appendix D.2.
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Figure 15: Cumulative IRFs to monetary policy shocks
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Note: Cumulative IRF of vy and py to Jarocinski and Karadi (2020) monetary policy shocks from
the ECB and the US Fed. The shocks are identified via the “poor man’s” restrictions and are a

monetary tightening. The bands indicate a 90% coverage. Shocks and series are rescaled to have
zero mean and unit variance.
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7 Discussion and conclusions

Following several decades of low and stable inflation, the opening years of the present decade
delivered the highest inflation rates for more than a generation in both the euro area and the
United States. For central banks mandated to deliver price stability, it is crucial to understand the
causes of these inflation spikes and what implications they may hold for the conduct of monetary
policy. In particular, it is important to discern the extent to which the COVID-19 pandemic
(and associated fiscal expansion), the Russian war of aggression on Ukraine, and accommodative
monetary policy in the previous decade may have contributed to inflation volatility.

To this end, we decompose the dynamics of disaggregated inflation for the euro area and the
United States into a common, pure component and movements in relative prices, in the spirit of
Reis and Watson, 2010. Similar to the previous research, we find a limited role for pure inflation
in driving overall inflation dynamics: Pure inflation explains 12% of the variation of headline
inflation in the euro area, and 14% in the United States over our entire sample.

We analyse the differential impact of sectoral and aggregate shocks on both the pure and
relative price component of inflation, finding that, as expected, the latter tends to react more to
both sectoral and aggregate shocks. Arguments that the surge in inflation was brought about
mainly by sectoral shocks, find some support here for both the euro area and the United States.
On the other hand, we find little effects of monetary policy shocks on both components of
inflation. The non-response of pure inflation is expected: as discussed in Reis and Watson, 2010,
pure inflation should only react to anticipated changes in money growth - or in general to changes
in expected inflation. The muted relative price response also suggests limited short-run non-
neutrality, in contrast to network models where unexpected monetary shocks and heterogeneous
price rigidities amplify relative price distortions.

For the period of particular interest at the end of our sample, as expected given the large
shocks following the COVID-19 lockdowns and their largely sectoral nature, the relative price
component moves sharply and was the principal driver of inflation dynamics in both the euro
area and the United States. Both the euro area and the United States witnessed modest shifts
in the pure inflation component, which rapidly converged back to historical levels.

These results lend weight to arguments that inflation dynamics were driven primarily by
relative price shocks arising from the pandemic and Russia’s war of aggression on Ukraine in
the euro area, but the extremely expansionary policy mix in the United States might have also
temporarily lifted pure inflation. In this context the analysis of the impact of fiscal shocks, as
well as the interactions of fiscal and monetary policy shocks with inflation expectations, is a
particularly interesting direction of research.

28



References

Acemoglu, Daron et al. (2012). “The Network Origins of Aggregate Fluctuations”. In:
Econometrica 80.5, pp. 1977-2016 (cit. on p. 2).

Afrouzi, Hassan and Saroj Bhattarai (2023). Inflation and gdp dynamics in production networks:
A sufficient statistics approach. Tech. rep. National Bureau of Economic Research (cit. on
pp. 2, 6).

Ahn, Hie Joo, Han Cen, and Michael Kister (2024). “A New Indicator of Common Wage Inflation”.
In: Journal of Money, Credit and Banking n/a.n/a (cit. on p. 10).

Ahn, Hie Joo and Matteo Luciani (Oct. 2021). Relative prices and pure inflation since the mid-
1990s. Finance and Economics Discussion Series 2021-069. Board of Governors of the Federal
Reserve System (U.S.) (cit. on p. 4).

Bai, Jushan and Peng Wang (2015). “Identification and Bayesian Estimation of Dynamic Factor
Models”. In: Journal of Business & Economic Statistics 33.2, pp. 221-240 (cit. on p. 11).
Baqaee, David Rezza and Emmanuel Farhi (2019). “The Macroeconomic Impact of
Microeconomic Shocks: Beyond Hulten’s Theorem”. In: Fconometrica 87.4, pp. 1155-1203

(cit. on p. 2).

Baumeister, Christiane and James D. Hamilton (2019). “Structural Interpretation of Vector
Autoregressions with Incomplete Identification: Revisiting the Role of Oil Supply and
Demand Shocks”. In: American Economic Review 109.5, pp. 1873-1910 (cit. on pp. 23-26,
41).

Bianchi, Francesco, Renato Faccini, and Leonardo Melosi (2023). “A Fiscal Theory of Persistent
Inflation”. In: The Quarterly Journal of Economics 138.4, pp. 2127-2179 (cit. on p. 10).
Boivin, Jean (2006). “Has U.S. Monetary Policy Changed? Evidence from Drifting Coefficients
and Real-Time Data”. In: Journal of Money, Credit and Banking 38.5, pp. 1149-1173 (cit. on

p. 22).

Borio, Claudio et al. (2021). “Monetary policy, relative prices and inflation control: flexibility
born out of success”. In: BIS Quarterly Review (cit. on pp. 5, 10).

Borio, Claudio et al. (2023). The two-regime view of inflation. BIS Papers 133. Bank for
International Settlements (cit. on pp. 5, 10).

Bryan, Michael F. (2001). “On the origin and evolution of the word inflation”. In: Handbook of
Monetary Policy. Ed. by Jack Rabin. Taylor and Francis Group (cit. on p. 2).

Carpenter, Bob et al. (2017). “Stan: A probabilistic programming language”. In: Journal of
statistical software 76 (cit. on p. 11).

Ciccarelli, Matteo and Benoit Mojon (2010). “Global Inflation”. In: The Review of Economics
and Statistics 92.3, pp. 524-535 (cit. on p. 5).

Clarida, Richard, Jordi Gali, and Mark Gertler (2000). “Monetary Policy Rules and
Macroeconomic Stability: Evidence and Some Theory”. In: The Quarterly Journal of
Economics 115.1, pp. 147-180 (cit. on p. 22).

Cochrane, John H. (2025). Inflation and the Macroeconomy. URL:
https://www.grumpy-economist .com/p/inflation-and-the-macroeconomy (visited on
01/04/2025) (cit. on p. 2).

Costain, James and Anton Nakov (2011). “Distributional dynamics under smoothly
state-dependent pricing”. In: Journal of Monetary Economics 58.6, pp. 646-665 (cit. on
p. 23).

29


https://www.grumpy-economist.com/p/inflation-and-the-macroeconomy

Doz, Catherine, Domenico Giannone, and Lucrezia Reichlin (2012). “A Quasi-Maximum
Likelihood Approach for Large, Approximate Dynamic Factor Models”. In: The Review of
Economics and Statistics 94.4, pp. 1014-1024 (cit. on p. 32).

Ferrante, Francesco, Sebastian Graves, and Matteo Iacoviello (2023). “The inflationary effects
of sectoral reallocation”. In: Journal of Monetary Economics 140. Inflation: Drivers and
Dynamics 2022, S64-S81 (cit. on pp. 6, 23).

Forster, Marcel and Peter Tillmann (2014). “Reconsidering the International Comovement of
Inflation”. In: Open Economies Review 25.5, pp. 841-863 (cit. on p. 5).

Franceschi, Emanuele (2021). “Taylor Rules and Liquidity in Financial Markets”. In: Revue
économique 72.1, pp. 103-134 (cit. on p. 22).

Friedman, Milton (1963). Inflation: Causes and Consequences. Asia Publishing House, New York
(cit. on p. 2).

Gautier, Erwan et al. (2024). “New Facts on Consumer Price Rigidity in the Euro Area”. In:
American Economic Journal: Macroeconomics 16.4, 386-431 (cit. on pp. 4, 7, 10, 15).

Gelman, Andrew et al. (2014). “Bayesian Data Analysis”. In: Bayesian Data Analysis (cit. on
p. 11).

Geweke, John and Guofu Zhou (1996). “Measuring the price of the Arbitrage Pricing Theory”.
In: The Review of Financial Studies 9.2, pp. 557-587 (cit. on p. 11).

Ghassibe, Mishel (2021). “Monetary policy and production networks: an empirical investigation”.
In: Journal of Monetary Economics 119, pp. 21-39 (cit. on pp. 2, 4, 6, 7, 14, 15, 17).

Ghassibe, Mishel and Anton Nakov (Dec. 2024). Business Cycles with Pricing Cascades. Mimeo
(cit. on pp. 2, 6).

Hoffman, Matthew D. and Andrew Gelman (2014). “The No-U-Turn Sampler: Adaptively Setting
Path Lengths in Hamiltonian Monte Carlo”. In: Journal of Machine Learning Research 15.47,
pp. 1593-1623 (cit. on p. 11).

Humpage, Owen F. (2008). “Rising relative prices or inflation: why knowing the difference
matters”. In: Economic Commentary Jun (cit. on p. 2).

Jarocinski, Marek and Peter Karadi (2020). “Deconstructing Monetary Policy Surprises—The
Role of Information Shocks”. In: American Economic Journal: Macroeconomics 12.2, pp. 1-43
(cit. on pp. 23, 26, 27, 42).

Jorda, Oscar (2005). “Estimation and Inference of Impulse Responses by Local Projections”. In:
American Economic Review 95.1, pp. 161-182 (cit. on p. 23).

Kaénzig, Diego R. (2021). “The Macroeconomic Effects of Oil Supply News: Evidence from OPEC
Announcements”. In: American Economic Review 111.4, 1092-1125 (cit. on pp. 26, 39, 40).

Karadi, Peter et al. (2024). Strike while the iron is hot: optimal monetary policy with a nonlinear
Phillips curve. Mimeo (cit. on p. 6).

La’O, Jennifer and Alireza Tahbaz-Salehi (2022). “Optimal monetary policy in production
networks”. In: Econometrica 90.3, pp. 1295-1336 (cit. on p. 6).

Li, Dake, Mikkel Plagborg-Mgller, and Christian K. Wolf (2024). “Local projections vs. VARs:
Lessons from thousands of DGPs”. In: Journal of Econometrics 244.2; p. 105722 (cit. on
p. 23).

Luo, Shaowen and Daniel Villar (2023). “Propagation of shocks in an input-output economy:
Evidence from disaggregated prices”. In: Journal of Monetary Economics 137, pp. 26-46 (cit.
on pp. 2, 6).

Montiel Olea, Jose Luis and Mikkel Plagborg-Moller (2021). “Local Projection Inference Is
Simpler and More Robust Than You Think”. In: Econometrica 89.4, pp. 1789-1823 (cit. on
p. 24).

30



Nakov, Anton and Andrea Pescatori (2010). “Monetary Policy Trade-Offs with a Dominant Oil
Producer”. In: Journal of Money, Credit and Banking 42.1, pp. 1-32 (cit. on p. 23).

Parker, Miles (2018). “How global is “global inflation?” In: Journal of Macroeconomics 58.C,
pp. 174-197 (cit. on p. 5).

Pasten, Ernesto, Raphael Schoenle, and Michael Weber (2020). “The propagation of monetary
policy shocks in a heterogeneous production economy”. In: Journal of Monetary Economics
116, pp. 1-22 (cit. on pp. 6, 15).

Primiceri, Giorgio E. (2005). “Time Varying Structural Vector Autoregressions and Monetary
Policy”. In: The Review of Economic Studies 72.3, pp. 821-852 (cit. on p. 22).

Rajan, Raghuram (2024). Inflation and the Macroeconomy. URL: https://economictimes .
indiatimes . com/news/economy/policy/raghuram- rajan- warns - taking - food - off -
inflation-table-will-be-the-wrong-recipe/articleshow/113876488. cms?from=mdr
(visited on 10/02/2024) (cit. on p. 2).

Reis, Ricardo and Mark W. Watson (2010). “Relative goods’ prices, pure inflation, and the
Phillips correlation”. In: American Economic Journal: Macroeconomics 2.3, pp. 128-157 (cit.
on pp. 4-6, 10, 12-14, 17, 19, 23, 28).

Ruge-Murcia, Francisco J. and Alexander L. Wolman (May 2022). Relative Price Shocks and
Inflation. Working Paper 22-07. Federal Reserve Bank of Richmond (cit. on p. 23).

Sims, Christopher A. and Tao Zha (2006). “Were There Regime Switches in U.S. Monetary
Policy?” In: American Economic Review 96.1, 54-81 (cit. on p. 22).

31


https://economictimes.indiatimes.com/news/economy/policy/raghuram-rajan-warns-taking-food-off-inflation-table-will-be-the-wrong-recipe/articleshow/113876488.cms?from=mdr
https://economictimes.indiatimes.com/news/economy/policy/raghuram-rajan-warns-taking-food-off-inflation-table-will-be-the-wrong-recipe/articleshow/113876488.cms?from=mdr
https://economictimes.indiatimes.com/news/economy/policy/raghuram-rajan-warns-taking-food-off-inflation-table-will-be-the-wrong-recipe/articleshow/113876488.cms?from=mdr

A Explorative analysis: a simple dynamic factor model

In this appendix we show the results of a standard dynamic factor model (DFM), using the
well-established estimation methods from Doz, Giannone, and Reichlin, 2012. The factors are
estimated via an Expectation-Maximisation algorithm, and we only restrict the covariance matrix
of the factors to be an identity one. In line with the PCA analysis above, we use five factors.!”

Figure A1l: Dynamic factor model

(a) Euro area (b) United States

— F1 F2 F3 — F4 — F5 — F1 F2 F3 — F4 — F5

2000 2010 2020 2005 2010 2015 2020

Note: standard dynamic factor model for HICP components. Five factors estimated with EM
algorithm from Doz, Giannone, and Reichlin, 2012, factors innovation are iid with unit variance.
Kalman filter and smoother applied to the factors. Headline HICP in solid black. All data series
are scaled and centered.

Figures Ala, Alb show that most of the action comes from the first factor, both in the euro
area and the United States. Its dynamics would explain the low inflation in the euro area between
the global financial crisis and the Covid pandemic. Other factors could potentially capture the
effect of non-energy industrial goods and their long term slide in prices (F2), or energy (F3, sign
flipped).

The pattern emerging from the dynamic factor model points to a clustering pattern in the
loadings. Inspecting the estimated loadings of both PCA and the DFM points to the first factor
having relatively homogeneous impact on all components, as visible in the panes of Figure A2.

19Similar to the PCA case, diagnostics on the number of factors point to relatively high numbers, but the
marginal explanatory power drops dramatically after the fifth factor, pointing rather to a contained number of
common components.
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Figure A2: Heatmaps of the loadings for PCA and DFM estimations

(a) Euro area - PCA (b) United States - PCA
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(c) Euro area - DFM (d) United States - DEFM
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Note: each method has five components or factors: the loadings matrices’ rows are grouped in five
groups via a K-means algorithm. Loading values are not normalised and darker areas indicate
smaller values.
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B Bayesian dynamic factor model with pure inflation restriction

Figure A3: Bayesian dynamic factor model — pure inflation restriction

(a) Euro area
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Note: Bayesian dynamic factor model for the US and EA HICP components. Five factors are
estimated, with the first restricted to load equiproportionally on all items. K x K submatrixz in the
loadings matriz is also restricted to have positive elements on the diagonal, unrestricted elements
on the lower triangular part, zero elements on the upper triangular part. The BDFM runs 14
chains with 5000 iterations of the NUTS sampler each, and discards the first half of these.
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C Analysis of posterior distribution of the loadings to pure
inflation

Figure A4: Distribution of posterior draws of restricted loadings A; 1

Euro area United States
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Note: Bozx plots based on posterior draws of the restricted loading X; 1 from the estimated Bayesian
Dynamic Factor Model detailed in eq. 1, 2. In the boxplots, the central line marks the median,
the outer edges of the box mark the first and third quartile, the outer lines cover observation
1.5 times the interquartile range above (below) the third (first) quartile. Dashed lines delimit
the two-standard deviation area and the median of the normal prior for the restricted loadings,
Ai1 ~ N (1,0.1). The results are obtained by running 14 chains with 5000 iterations of the NUTS
sampler each, discarding the first half.

35



Table Al: Posterior draws sorting — euro area

COICOP code COICOP Label Share
0111 Cereals 0.71
0112 Meat 0.73
0113 Fish 0.64
0114 Dairy and eggs 0.65
0115 Oils and fats 0.81
0116 Fruits and nuts 0.78
0117 Vegetables 0.84
0118 Sugar and sweets 0.85
0119 Other food 0.64
0121 Coffee, tea, cocoa 0.55
0122 Water, juices, soft drinks 0.76
0211 Spirits 0.73
0212 Wine 0.64
0213 Beer 0.61
0312 Garments 0.56
0313 Other clothing 0.46
0314 Cleaning and repair of clothing 0.73
0320 Footwear 0.45
0410 Rents 0.79
0431 Materials for dwelling maintenance and repair 0.61
0432 Services for dwelling maintenance and repair 0.71
0440 Water supply and other dwelling services 0.92
0451 Electricity 0.71
0452 Gas 0.81
0453 Liquid fuels 0.72
0510 Furniture 0.67
0520 Household textiles 0.61
0530 Household appliances 0.68
0540 Glassware, tableware etc 0.61
0550 Tools for house and garden 0.66
0561 Non-durable household goods 0.54
0562 Domestic and household services 0.79
0610 Medicines and health products 0.85
0710 Vehicles 0.68
0721 Parts for vehicles 0.47
0722 Fuels and lubricants for vehicles 0.78
0723 Maintenance and repair of personal vehicles 0.67
0724 Other services for personal vehicles 0.83
0731 Railway transport services 0.75
0732 Road transport services 0.76
0733 Air transport services 0.41
0734 Water transport services 0.81
0800 Communication 0.85
0911 Photo, audio and optical instruments 0.85
0910 Audio, video and information processing equipment  0.64
0920 Other recreational durables 0.52
0930 Recreational and garden products and pets 0.55
0940 Recreational services 0.65
0950 Newspapers, books 0.61
1110 Catering services 0.56
1120 Accommodation services 0.43
1210 Personal care 0.71
1230 Personal effects n.e.c. 0.80
1250 Insurance 0.79
1270 Other services 0.74

Notes: share of the posterior draws below 1 for #lee restricted loading ;1. Perfect correspondence
between prior and posterior median would give a 0.50 share. Draws are generated by 14 chains
with 5000 iterations of the NUTS sampler each, with a 50% burn-in. Food, energy, NEIG and

services are highlighted in different colors.



Table A3: Posterior draws sorting — United States

COICOP code Label Share
0111 Cereals 0.78
0112 Meat 0.85
0113 Fish 0.56
0114 Dairy and eggs 0.78
0115 Oils and fats 0.73
0116 Fruits and nuts 0.77
0117 Vegetables 0.78
0118 Sugar and sweets 0.83
0119 Other food 0.70
0121 Coffee, tea, cocoa 0.82
0122 Water, juices, soft drinks 0.76
0211 Spirits 0.58
0212 Wine 0.93
0213 Beer 0.92
0312 Garments 0.59
0314 Cleaning and repair of clothing 0.38
0320 Footwear 0.72
0410 Rents 0.81
0440 Water supply and other dwelling services 0.81
0451 Electricity 0.64
0452 Gas 0.72
0453 Liquid fuels 0.72
0510 Furniture 0.72
0520 Household textiles 0.68
0530 Household appliances 0.71
0540 Glassware, tableware etc 0.66
0550 Tools for house and garden 0.76
0561 Non-durable household goods 0.69
0562 Domestic and HH services 0.77
0610 Medicines and health products 0.88
0710 Vehicles 0.90
0721 Parts for vehicles 0.66
0722 Fuels and lubricants for vehicles 0.70
0723 Maint. and repair of personal vehicles 0.79
0724 Other services for personal vehicles 0.77
0733 Air transport services 0.74
0800 Communication 0.81
0911 Photo, audio and optical instruments 0.88
0910 Audio, video and information processing equipment 0.56
0920 Other recreational durables 0.68
0930 Recreational and garden products and pets 0.71
0940 Recreational services 0.79
0950 Newspapers, books 0.64
1110 Catering services 0.68
1120 Accommodation services 0.73
1210 Personal care 0.61
1230 Personal effects n.e.c. 0.75
1250 Insurance 0.81
1270 Other services 0.73

Notes: share of the posterior draws below 1 for the restricted loading A; 1. Perfect correspondence
between prior and posterior median would give a 0.5 share. Draws are generated by 14 chains
with 5000 iterations of the NUTS sampler each, with a 50% burn-in. Food, energy, NEIG and
services are highlighted in different colours.
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D Robustness checks

D.1 TImpact of using two-year rather than year-on-year inflation rates

Figure A5: v, p based on two-year inflation rates

(a) Euro area

2005 2010 2015 2020 202

(b) United States

2005 2010 2015 2020

Note: headline inflation in black, pure inflation vy in blue and relative prices py in red. Results
from a Bayesian dynamic factor model with static measurement equation and VAR(1) for the
factors’ state equation: v and p are then derived as per eq. 7, on two-year inflation rates.
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D.2 Kainzig (2021) oil shocks

This appendix reports robustness results on the impact of oil shocks to using those produced
by Kénzig (2021). Crucially, Kénzig (2021) focuses on supply shocks, and differentiate between
news shocks — identified using high-frequency variation in oil future prices around OPEC
announcements — and actual production shocks.

We test both negative shocks in Figures A6, A7: results do not change sensibly with respect
to (mirrored) Figure 14 under these alternative shocks. With both shocks, US pure inflation
shortly rises for about one year, then converges back to the baseline. EA pure inflation, on
the other hand, does not react as much as its US equivalent, with fairly muted effects. Relative
prices, similarly to Figure 14, are more reactive and rise quite significantly on impact, converging
back to zero relatively quickly but with some heterogeneity. As in the baseline case, US v and p
rise and fall faster than their EA counterparts.

Figure A6: Cumulative IRF after an oil supply news shock
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Note: Cumulative IRF of vy and p; to a Kdinzig, 2021 o0il supply news shock. The bands indicate
a 90% coverage. Shocks and series are rescaled to have zero mean and unit variance.
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Figure A7: Cumulative IRF after an oil supply shock
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Note: Cumulative IRF of vy and ps to a Kinzig, 2021 oil supply shock. The bands indicate a
90% coverage. Shocks and series are rescaled to have zero mean and unit variance.
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D.3 Pre-COVID sample

Our main sample covers the Covid period and the ensuing rise and fall of inflation, together
with strong monetary and fiscal policy interventions. To assess the robustness of our results,
this section presents results based only on data up to the end of 2019. The main message of our
baseline results remains substantially unchanged.

Figure A8: CIRFs on pre-Covid sample — Baumeister and Hamilton (2019) shocks

(a) Global activity
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Note: Cumulative IRF of vy and py to a Baumeister and Hamilton, 2019 shocks. The bands
indicate a 90% coverage. Shocks and series are rescaled to have zero mean and unit variance. v
and p estimated on the full sample, we then exclude observations later than December 2019
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Figure A9: CIRFs on pre-Covid sample — monetary shocks

(a) ECB “poor-man’s” shock identification — Jarocinski and Karadi (2020)
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(b) Fed “poor-man’s” shock identification — Jarociniski and Karadi (2020)
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E Available COICOP classes

Code Divisions Groups Classes

CPI0100 Food and non-alcoholic beverages

CPI0110 Food

CPIO111 Bread and cereals

CPI0112 Meat

CPI0113 Fish and seafood

CPI0114 Milk, cheese and eggs

CPI0115 Oils and fats

CPIO116 Fruit

CPIO117 Vegetables

CPI0118 Sugar, jam, honey, chocolate and confectionery
CPI0119 Food products n.e.c.

CPI0120 Non-alcoholic beverages

CPI0121 Coffee, tea and cocoa

CPI0122 Mineral waters, soft drinks, fruit and vegetable juices
CPI10200 Alcoholic beverages, tobacco and narcotics

CPI10210 Alcoholic beverages

CPI0211 Spirits

CPI0212 Wine

CPI0213 Beer

CPI10220 Tobacco

CPI0300 Clothing and footwear

CPI0310 Clothing

CPI0311 Clothing materials

CPI0312 Garments

CPI0313 Other articles of clothing and clothing accessories
CPI0314 Cleaning, repair and hire of clothing

CPI10320 Footwear

CPI10400 Housing, water, electricity, gas and other fuels

CPI0410 Actual rentals for housing

CPI0430 Maintenance and repair of the dwelling

CPI0431 Materials for the maintenance and repair of the dwelling
CPI0432 Services for the maintenance and repair of the dwelling
CPI10440 Water supply and miscellaneous services relating to the dwelling
CPI10450 Electricity, gas and other fuels

CPI0451 Electricity

CPI10452 Gas

CPI10453 Liquid fuels

CPI10454 Solid fuels

CPI0455 Heat energy

CPI0500 Furnishings, household equipment and routine household maintenance
CPI0510 Furniture and furnishings, carpets and other floor coverings
CPI10520 Household textiles

CPI0530 Household appliances

CPI10540 Glassware, tableware and household utensils
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CPI0550
CPI0560
CPI10561
CPI0562
CPI0600
CPI0610
CPI10620
CPI0630
CPI0700
CPI0710
CPI0720
CPI0721
CPI0722
CPI0723
CPI0724
CPI0730
CPI0731
CPI0732
CPI0733
CPI0734
CPI0735
CPI0736
CPI0800
CPI0810
CPI10820
CPI0830
CPI0900
CPI0910
CPI0911
CPI0912
CPI0913
CPI10914
CPI0915
CPI10920
CPI0930
CPI10940
CPI0950
CPI0960
CPI1000
CPI1100
CPI1110
CPI1120
CPI1200
CPI1210
CPI1211
CPI1230
CPI1240

Health

Transport

Tools and equipment for house and garden

Goods and services for routine household maintenance
Non-durable household goods
Domestic services and household services

Medical products, appliances and equipment
Out-patient services
Hospital services

Purchase of vehicles
Operation of personal transport equipment
Spare parts and accessories for personal transport equipment
Fuels and lubricants for personal transport equipment
Maintenance and repair of personal transport equipment
Other services in respect of personal transport equipment
Transport services
Passenger transport by railway
Passenger transport by road
Passenger transport by air
Passenger transport by sea and inland waterway
Combined passenger transport
Other purchased transport services

Communications

Postal services
Telephone and telefax equipment
Telephone and telefax services

Recreation and culture

Education

Audio-visual, photographic and information processing equipment
Equipment for sound and picture
Photographic and cinematographic equipment
Information processing equipment
Recording media
Repair of audio-visual, photographic, etc. equipment
Other major durables for recreation and culture
Other recreational items and equipment, gardens and pets
Recreational and cultural services
Newspapers, books and stationery
Package holidays

Restaurants and hotels

Catering services
Accommodation services

Miscellaneous goods and services

Personal care

Hairdressing salons and personal grooming establishments
Personal effects n.e.c.
Social protection
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CPI1250 Insurance
CPI1260 Financial services n.e.c.
CPI1270 Other services n.e.c.

Special aggregates

CPITOTL All-items HICP

CPIGOOD Goods (overall index excluding services)
CPINEIG  Non-energy industrial goods

CPIENRG Energy

CPISERV  Services (overall index excluding goods)
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