Supply Chain Networks and the Macroeconomic Expectations of Firms

Ina Hajdini, Saten Kumar, Samreen Malik, Jordan J. Norris, Mathieu
Pedemonte

Discussion by Tiziano Ropele
(Banca d'Italia)

Introduction

Bayesian learning equation:

$$(1 - G) \times Prior_i + G \times Signal_i = Posterior_i$$

At the core in empirical literature on formation of expectations, which expanded enormously in past years (elicitation methods, RTCs, agents, countries, periods...)

Introduction

Bayesian learning equation:

$$(1 - G) \times Prior_i + G \times Signal_i = Posterior_i$$

At the core in empirical literature on formation of expectations, which expanded enormously in past years (elicitation methods, RTCs, agents, countries, periods...)

Innovation in this paper: agents interact and don't learn in isolation

$$(1 - G) \times Prior_i + G \times Signal_i = Posterior_i$$

$$(1 - G) \times Prior_k + G \times Signal_k = Posterior_k$$

Goal and main empirical findings

- Goal: how firms form expectations and diffuse information along supply chain
- RCT on supplier-customer pairs (New Zealand, 2 waves)
 - Only one firm in each treated pair receive information
 - Treatment: professional GDP forecasts (mean and range)

Goal and main empirical findings

- Goal: how firms form expectations and diffuse information along supply chain
- RCT on supplier-customer pairs (New Zealand, 2 waves)
 - Only one firm in each treated pair receive information
 - Treatment: professional GDP forecasts (mean and range)

Main empirical findings:

- o direct effects \rightarrow treated firms revise macro expectations and decisions
- \circ spillovers \rightarrow untreated firms revise too (with lag)
- effect magnitudes similar → strong information diffusion via supply chains (through direct communication rather than inference from actions)

Comment # 1: Experimental Design

- Clean and careful survey design, but simplified
- Focus on "dyads"; real supply chains are longer and complex (domestic and foreign partners) and information/signal may deteriorate while travelling -> risk of over/under-estimation of effects
- Identification of causal effects relies on "no cross-pair contamination" →
 checked between pairs, but at a deeper level? Role of third connected firms? How
 inter-connected are firms in New Zealand?

Comment # 1: Experimental Design

- Clean and careful survey design, but simplified
- Focus on "dyads"; real supply chains are longer and complex (domestic and foreign partners) and information/signal may deteriorate while travelling -> risk of over/under-estimation of effects
- Identification of causal effects relies on "no cross-pair contamination" →
 checked between pairs, but at a deeper level? Role of third connected firms? How
 inter-connected are firms in New Zealand?
- Low response rates (13% in wave 1 and even lower in wave 2) → concerns of representativeness/external validity
- On latter point, not much can be done, but check robustness adding controls for firm characteristics in regressions (esp. wave 2)

Comment # 2: Treatment Effects on GDP Expectations

Key empirical results are in this Table!

	(1)	(2)	(3)	(4)
$Prior_i^{mean}$	0.972***	0.964***	0.945***	0.938***
	(0.008)	(0.016)	(0.020)	(0.013)
$T_1 \times Prior_i^{mean}$	-0.723***	0.017	-0.603***	-0.586***
·	(0.022)	(0.019)	(0.032)	(0.046)
$T_2 \times Prior_i^{mean}$	-0.492***	0.006	-0.503***	-0.502***
·	(0.039)	(0.018)	(0.046)	(0.061)
Constant	0.025	0.062	0.080*	0.120***
	(0.024)	(0.043)	(0.047)	(0.036)
Period Posterio	Baseline	Baseline	Follow Up	Follow Up
Type of firm	Treated	Connected	l Treated	Connected
Observations	999	1,020	510	505
R-squared	0.739	0.955	0.760	0.743
	-			

Wave 1

Information treatments affect main firm but not connected firm.

Comment # 2: Treatment Effects on GDP Expectations

Key empirical results are in this Table!

	(1)	(2)	(3)	(4)
$Prior_{i}^{mean}$	0.972***	0.964***	0.945***	0.938***
	(0.008)	(0.016)	(0.020)	(0.013)
$T_1 \times Prior_i^{mean}$	-0.723***	0.017	-0.603***	-0.586***
V	(0.022)	(0.019)	(0.032)	(0.046)
$T_2 \times Prior_i^{mean}$	-0.492***	0.006	-0.503***	-0.502***
v	(0.039)	(0.018)	(0.046)	(0.061)
Constant	0.025	0.062	0.080*	0.120***
	(0.024)	(0.043)	(0.047)	(0.036)
Period Posterior	Baseline	Baseline	Follow Up	Follow Up
Type of firm	Treated	Connected	Treated	Connected
Observations	999	1,020	510	505
R-squared	0.739	0.955	0.760	0.743
	-			

Wave 2

Information treatments still affect main firm <u>and now also</u> connected firm.

This is a super-interesting finding!

Comment # 2: Treatment Effects on GDP Expectations

Key empirical results are in this Table!

	4.4	(-)		
	(1)	(2)	(3)	(4)
$Prior_i^{mean}$	0.972***	0.964***	0.945***	0.938***
	(0.008)	(0.016)	(0.020)	(0.013)
$T_1 \times Prior_i^{mean}$	-0.723***	0.017	-0.603***	-0.586***
v	(0.022)	(0.019)	(0.032)	(0.046)
$T_2 \times Prior_i^{mean}$	-0.492***	0.006	-0.503***	-0.502***
	(0.039)	(0.018)	(0.046)	(0.061)
Constant	0.025	0.062	0.080*	0.120***
	(0.024)	(0.043)	(0.047)	(0.036)
Period Posterior	Baseline	Baseline	Follow Up	Follow Up
Type of firm	Treated	Connected	Treated	Connected
Observations	999	1,020	510	505
R-squared	0.739	0.955	0.760	0.743
	-		-	

Effect magnitudes are **remarkably similar** \rightarrow need more discussion

Detailed descriptive statistics of prior/posterior forecast would help a lot.

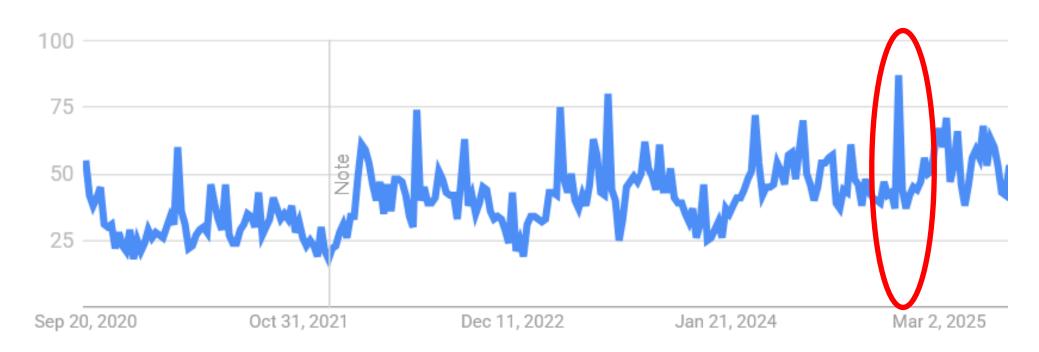
Comment # 3: Channels of information diffusion

Channel 1. "Connected firm observes actions of treated firms" → empirically ruled out (and in my view not very likely as connected firms needed also observe treated firms' plans)

Channel 2. "Direct communication between connected and treated firms" → empirically confirmed (treated pairs self-reported having communicate more) see if effect magnitudes correlate with communication frequency

Comment # 3: Channels of information diffusion

Channel 1. "Connected firm observes actions of treated firms" → empirically ruled out (and in my view not very likely as connected firms needed also observe treated firms' plans)


Channel 2. "Direct communication between connected and treated firms" → empirically confirmed (treated pairs self-reported having communicate more) see if effect magnitudes correlate with communication frequency

Channel 3 (alternative): "Communication triggers active information search by connected (and treated) firms"

→ not only information diffusion but also active information collection

Comment # 3: Channels of information diffusion

Google trends: interest in the word "GDP" in the New Zealand

Active information collection \rightarrow **policy implication** ensure firms can easily access reliable sources of information rather than direct communication to systemic firms.

Comment # 4: Supply chain collaboration

- Literature on **Supply Chain Collaboration (SCC)**, see Kurtulu (2017) for an overview in *Handbook of information exchange in supply chain management*.
- Some testable hypotheses:
 - More communication/stronger effects in sectors where demand is more unpredictable/volatile?
 - In collaborative forecasting, firms resolve forecast discrepancies through discussions → less disagreement within pairs that communicated more?
 - SCC might entail synchronization of decisions → is this in the data?

Comment # 4: Supply chain collaboration

- Literature on **Supply Chain Collaboration (SCC)**, see Kurtulu (2017) for an overview in *Handbook of information exchange in supply chain management*.
- Some testable hypotheses:
 - More communication/stronger effects in sectors where demand is more unpredictable/volatile?
 - In collaborative forecasting, firms resolve forecast discrepancies through discussions → less disagreement within pairs that communicated more?
 - SCC might entail synchronization of decisions → is this in the data?
 - Simatupang and Sriharan (2004) surveyed New Zealand firms on SCC → might rationalize the finding of similar estimated magnitudes!

Conclusions

- Must-read paper
- Very innovative and well written
- Addresses relevant questions on experimental design
- Documents strong direct and spillover effects among connected firms
- Great potential for many new applications!!!