Uncertainty through the Production Network: Sectoral Origins and Macroeconomic Implications

Matteo Cacciatore¹ Giacomo Candian²

Inflation: Drivers and Dynamics Conference

European Central Bank

September 29, 2025

¹HEC Montreal, Bank of Canada, and NBER

²HEC Montreal and CIRANO

- Recent events highlight the importance of sectoral shocks for inflation dynamics
 - E.g., supply shortages and rising relative prices in key upstream industries
- The network transmission of *first-moment* shocks is well studied (Acemoglu et al., 2012; Baqaee and Farhi, 2019a, 2019b; Carvalho et al., 2020)

- Recent events highlight the importance of sectoral shocks for inflation dynamics
 - E.g., supply shortages and rising relative prices in key upstream industries
- The network transmission of *first-moment* shocks is well studied (Acemoglu et al., 2012; Baqaee and Farhi, 2019a, 2019b; Carvalho et al., 2020)
- Far less is known about how supply chains transmit the effects of uncertainty across sectors (second-moment shocks)
 - E.g., sector-specific trade tensions, financial instability, regulatory changes, etc.

- Recent events highlight the importance of sectoral shocks for inflation dynamics
 - E.g., supply shortages and rising relative prices in key upstream industries
- The network transmission of first-moment shocks is well studied (Acemoglu et al., 2012; Baqaee and Farhi, 2019a, 2019b; Carvalho et al., 2020)
- Far less is known about how supply chains transmit the effects of uncertainty across sectors (second-moment shocks)
 - E.g., sector-specific trade tensions, financial instability, regulatory changes, etc.

Questions:

- How does uncertainty in one industry affect uncertainty, production, and prices in customer and supplier sectors?
- Do macro effects depend on where uncertainty originates in the production network?

- Recent events highlight the importance of sectoral shocks for inflation dynamics
 - E.g., supply shortages and rising relative prices in key upstream industries
- The network transmission of first-moment shocks is well studied (Acemoglu et al., 2012; Baqaee and Farhi, 2019a, 2019b; Carvalho et al., 2020)
- Far less is known about how supply chains transmit the effects of uncertainty across sectors (second-moment shocks)
 - E.g., sector-specific trade tensions, financial instability, regulatory changes, etc.

Questions:

- How does uncertainty in one industry affect uncertainty, production, and prices in customer and supplier sectors?
- Do macro effects depend on where uncertainty originates in the production network?

- Construct sectoral uncertainty measures using rich options micro-data
 - Implied stock volatility from the universe of options traded on U.S. exchanges (OptionMetrics)
 - NAICS 4-digit: most disaggregated level with consistent data on employment, prices, and IO linkages

- Construct sectoral uncertainty measures using rich options micro-data
 - Implied stock volatility from the universe of options traded on U.S. exchanges (OptionMetrics)
 - NAICS 4-digit: most disaggregated level with consistent data on employment, prices, and IO linkages
- Identify sectoral uncertainty variation orthogonal to first-moment shocks and to uncertainty in connected sectors

- Construct sectoral uncertainty measures using rich options micro-data
 - Implied stock volatility from the universe of options traded on U.S. exchanges (OptionMetrics)
 - NAICS 4-digit: most disaggregated level with consistent data on employment, prices, and IO linkages
- Identify sectoral uncertainty variation orthogonal to first-moment shocks and to uncertainty in connected sectors
- Estimate dynamic responses of employment and prices
 - In directly affected industries and along the supply chain
 - At the aggregate level

- · Construct sectoral uncertainty measures using rich options micro-data
 - Implied stock volatility from the universe of options traded on U.S. exchanges (OptionMetrics)
 - NAICS 4-digit: most disaggregated level with consistent data on employment, prices, and IO linkages
- Identify sectoral uncertainty variation orthogonal to first-moment shocks and to uncertainty in connected sectors
- Estimate dynamic responses of employment and prices
 - In directly affected industries and along the supply chain
 - At the aggregate level
- NK production network model with time-varying uncertainty to interpret the results

1. Higher uncertainty is contractionary and inflationary in the sector of origin

- 1. Higher uncertainty is contractionary and inflationary in the sector of origin
- 2. Uncertainty shocks propagate through the supply chain asymmetrically:

- 1. Higher uncertainty is contractionary and inflationary in the sector of origin
- 2. Uncertainty shocks propagate through the supply chain asymmetrically:
 - Uncertainty increases in upstream and downstream industries
 - Adverse demand shock for upstream industries (lower employment and prices in supplier industries)
 - Negative supply shock for downstream industries (lower employment and higher prices in customer industries)

- 1. Higher uncertainty is contractionary and inflationary in the sector of origin
- 2. Uncertainty shocks propagate through the supply chain asymmetrically:
 - Uncertainty increases in upstream and downstream industries
 - Adverse demand shock for upstream industries (lower employment and prices in supplier industries)
 - Negative supply shock for downstream industries (lower employment and higher prices in customer industries)
- 3. Aggregate effects: contractionary; inflationary if uncertainty originates upstream

- 1. Higher uncertainty is contractionary and inflationary in the sector of origin
- 2. Uncertainty shocks propagate through the supply chain asymmetrically:
 - Uncertainty increases in upstream and downstream industries
 - Adverse demand shock for upstream industries (lower employment and prices in supplier industries)
 - Negative supply shock for downstream industries (lower employment and higher prices in customer industries)
- 3. Aggregate effects: contractionary; inflationary if uncertainty originates upstream
- 4. Theory: production linkages central to understanding sectoral effects
 - Lower input demand for suppliers and higher marginal cost for customers (input complementarity)
 - Results hold for both supply- or demand-side driven uncertainty

1. Effects of time-varying uncertainty

Bloom(2009), Berger Dew-Becker Giglio (2020), Cesa-Bianchi Pesaran Rebucci (2020), Christiano Motto Rostagno (2014), Basu Bundick (2017) Bloom Floetotto Jaimovich Saporta-Eksten Terry (2018), Dew-Becker and Giglio (2022), Basu Candian Chahrour Valchev (2023), Alfaro Bloom Lin (2023) ..

- We examine sector-specific uncertainty and study network propagation
- Macro implications of production networks Acemoglu Carvalho Ozdaglar Tahbaz-Salehi (2012), Acemoglu Ackigit Kerr (2016), Baqaee Farhi (2019a, b), Carvalho Nirei Saito Tahbaz-Salehi (2020) Barattieri Cacciatore (2023) Barattieri Cacciatore Traum (2023) Kopytov Mishra Nimark Taschereau-Dumouchel (2024) ...
 - We focus on the effects of second-moment shocks
- 3. Sectoral or production network dimensions of uncertainty
 Segal (2019) Ma Samaniego (2019) Castelnuovo et al. (2022)

Segal (2019), Ma Samaniego (2019), Castelnuovo et al. (2022) Grigoris Segal (2021) Saijo (2025)

 We identify high-frequency sectoral uncertainty shocks that are uncorrelated to first-moment shocks and to uncertainty originating in connected industries

Outline

1. Data and Measurement

2. Identification

3. Local Projections and Results

4. Model

Implied Volatility (IV) from OptionMetrics

- Daily firm-level uncertainty: implied volatility of US stock options 1996-2019
- IV is the conditional variance of the stock return over the life of the option
- Attractive features
 - Forward-looking and high-frequency
 - Extensive sectoral coverage at NAICS 4-digit

Implied Volatility (IV) from OptionMetrics

- Daily firm-level uncertainty: implied volatility of US stock options 1996-2019
- IV is the conditional variance of the stock return over the life of the option
- Attractive features
 - Forward-looking and high-frequency
 - Extensive sectoral coverage at NAICS 4-digit
- Different from realized volatility (RV): backward-looking, reflecting past price movements (realized first-moment shocks)

Implied Volatility (IV) from OptionMetrics

- Daily firm-level uncertainty: implied volatility of US stock options 1996-2019
- IV is the conditional variance of the stock return over the life of the option
- Attractive features
 - Forward-looking and high-frequency
 - Extensive sectoral coverage at NAICS 4-digit
- Different from realized volatility (RV): backward-looking, reflecting past price movements (realized first-moment shocks)
- Focus: equity-based, at-the-money options with 30-days maturity
 - Firms listed in at least one major U.S. stock exchange
 - Most liquid options; same time horizon as the VIX
 - Options traded for at least 10 years
 - Industries for which option issuers jointly represent > 0.20 of mkt cap
 - 14m observations for 6,345 firms

Measures of Sectoral Uncertainty

- Measures of sector-level implied volatility:
 - Baseline: weighted average of IV across firms within a sector
 - Alternative: only the within sector common component (industry-time fixed-effects / principal component)

Measures of Sectoral Uncertainty

- Measures of sector-level implied volatility:
 - Baseline: weighted average of IV across firms within a sector
 - Alternative: only the within sector common component (industry-time fixed-effects / principal component)
- Daily measure of sector-level implied-volatility $\sigma_{i,d}$:

$$IV_{i,d} = \sum_{f \in i} s_{f,i,d-1} IV_{f,i,d}$$

 $s_{f,i,d-1}$: previous month market cap share of firm f in industry i on day d (very similar results with previous year sales share)

Measures of Sectoral Uncertainty

- Measures of sector-level implied volatility:
 - Baseline: weighted average of IV across firms within a sector
 - Alternative: only the within sector common component (industry-time fixed-effects / principal component)
- Daily measure of sector-level implied-volatility $\sigma_{i,d}$:

$$IV_{i,d} = \sum_{f \in i} s_{f,i,d-1} IV_{f,i,d}$$

 $s_{f,i,d-1}$: previous month market cap share of firm f in industry i on day d (very similar results with previous year sales share)

- Monthly measure: last-5-trading days average of IV_{i,d}
- Realized vol defined analogously using realized squared returns over month

Uncertainty Measures: Properties

Panel I: Sectoral Component in Firm Implied Volatility				
	No aggregate IV_t control		Aggregate IV_t control	
	Unweighted	Weighted	Unweighted	Weighted
R^2	0.66	0.75	0.25	0.30

Panel II: Contemporaneous Correlations Sectoral Unc. (pw) IP Aggregate Unc. Inflation Sectoral Unc. 0.87 -0.14 0.71 0.02 (0.74, 0.91) (-0.30, 0.02) (0.68, 0.90) (-0.09, 0.10)

Notes: Panel I: average R^2 from monthly regressions: $IV_{f,i,t} = \alpha_f + \beta_{f,i}IV_{i,t} + \gamma_{f,i}IV_t + \epsilon_{f,i,t}$, where $IV_{f,i,t}$ is the daily firm f's implied volatility averaged over the last 5 trading days of each month, and $IV_{i,t}$ is the corresponding industry-level measure. Panel II: 10th & 90th in brackets.

Identification Challenges

• Consider the following local projection at horizon *h*:

$$\ln X_{it+h} - \ln X_{it-1} = \alpha_{ih} + \beta_h \sigma_{i,t} + \epsilon_{it}$$

 $X_{i,t}$: industry's outcome, e.g., employment, prices

$$\sigma_{i,t} = \ln I V_{i,t}$$

- Sectoral uncertainty $\sigma_{i,t}$ is endogenous:
 - Sector-specific or aggregate 1st-moment shocks
 e.g., ↑ commodity prices may ↑ uncertainty in energy-intensive industries
 - Uncertainty elsewhere
 - Changes in uncertainty originating in supplier and customer industries
 - Aggregate uncertainty

Supplier and Customer Industry Uncertainty

- Combine uncertainty measures with 2007 total requirement I-O tables (e.g., Acemoglu et al, 2016)
- Supplier uncertainty for industry *i* :

$$\sigma_{i,t}^S = \sum_k \omega_{ki} \sigma_{k,t},$$

 ω_{ki} : fraction of i's output sourced from the k-th intermediate in Leontief Inverse form.

Supplier and Customer Industry Uncertainty

- Combine uncertainty measures with 2007 total requirement I-O tables (e.g., Acemoglu et al, 2016)
- Supplier uncertainty for industry *i* :

$$\sigma_{i,t}^{S} = \sum_{k} \omega_{ki} \sigma_{k,t},$$

 ω_{ki} : fraction of i's output sourced from the k-th intermediate in Leontief Inverse form.

• Customer uncertainty for industry i:

$$\sigma_{i,t}^C = \sum_k \tilde{\omega}_{ik} \sigma_{k,t},$$

 $\tilde{\omega}_{ik}$: fraction of i's output demanded by k-th sector in Leontief Inverse form.

Identification Approach – First-Stage Regression

• Purge $\sigma_{i,t}$ of endogenous variation via industry-level time-series regressions:

$$\begin{split} \sigma_{i,t} &= \alpha_i + \sum_{\ell=1}^p \varphi_i^\ell \sigma_{i,t-\ell} + \sum_{\ell=0}^p \psi_{rv_i}^\ell r v_{t-\ell} + \sum_{\ell=0}^p \psi_{\sigma_i}^\ell \sigma_{t-\ell} + \sum_{\ell=0}^p \pmb{\Psi}_i^\ell \pmb{\mathsf{Z}}_{i,t-\ell} + \nu_{i,t} \\ \pmb{\mathsf{Z}}_{i,t} &= [rv_{i,t}, rv_{i,t}^S, rv_{i,t}^C, \sigma_{i,t}^S, \sigma_{i,t}^C]' \end{split}$$

- 1. Control for realized volatility (rv): parse out effects of 1st-moment shocks
 - rv (1st-moment shocks) can affect uncertainty immediately
 - Uncertainty shocks don't affect RV on average as in Berger et al. (2020 ReStud)

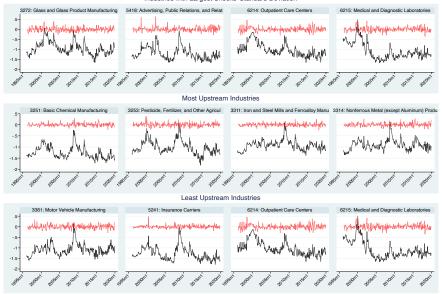
Identification Approach – First-Stage Regression

• Purge $\sigma_{i,t}$ of endogenous variation via industry-level time-series regressions:

$$\begin{split} \sigma_{i,t} &= \alpha_i + \sum_{\ell=1}^p \varphi_i^\ell \sigma_{i,t-\ell} + \sum_{\ell=0}^p \psi_{rv_i}^\ell r v_{t-\ell} + \sum_{\ell=0}^p \psi_{\sigma_i}^\ell \sigma_{t-\ell} + \sum_{\ell=0}^p \pmb{\Psi}_i^\ell \pmb{\mathsf{Z}}_{i,t-\ell} + \nu_{i,t} \\ \pmb{\mathsf{Z}}_{i,t} &= [rv_{i,t}, rv_{i,t}^S, rv_{i,t}^C, \sigma_{i,t}^S, \sigma_{i,t}^C]' \end{split}$$

- 1. Control for realized volatility (rv): parse out effects of 1st-moment shocks
 - rv (1st-moment shocks) can affect uncertainty immediately
 - Uncertainty shocks don't affect RV on average as in Berger et al. (2020 ReStud)
- 2. Control for supplier and customer uncertainty (using first 16 tdom)

Identification Approach – First-Stage Regression


• Purge $\sigma_{i,t}$ of endogenous variation via industry-level time-series regressions:

$$\begin{split} \sigma_{i,t} &= \alpha_i + \sum_{\ell=1}^p \varphi_i^\ell \sigma_{i,t-\ell} + \sum_{\ell=0}^p \psi_{rv_i}^\ell r v_{t-\ell} + \sum_{\ell=0}^p \psi_{\sigma_i}^\ell \sigma_{t-\ell} + \sum_{\ell=0}^p \Psi_i^\ell \mathsf{Z}_{i,t-\ell} + \nu_{i,t} \\ \mathsf{Z}_{i,t} &= [rv_{i,t}, rv_{i,t}^S, rv_{i,t}^C, \sigma_{i,t}^S, \sigma_{i,t}^C]' \end{split}$$

- 1. Control for realized volatility (rv): parse out effects of 1st-moment shocks
 - rv (1st-moment shocks) can affect uncertainty immediately
 - Uncertainty shocks don't affect RV on average as in Berger et al. (2020 ReStud)
- 2. Control for supplier and customer uncertainty (using first 16 tdom)
- 3. Control for aggregate uncertainty

Uncertainty Measures and Shocks

Industries with Largest Shocks' Standard Deviation

First-Stage Results: Shocks Properties

- Estimated shocks have desirable statistical properties
 - 1. Not autocorrelated
 - 2. Small cross-industry correlation (0.15 on average)
- Distribution of shock sizes relatively similar upstream and downstream

First-Stage Results: Shocks Properties

- Estimated shocks have desirable statistical properties
 - 1. Not autocorrelated
 - 2. Small cross-industry correlation (0.15 on average)
- Distribution of shock sizes relatively similar upstream and downstream
- What do these shocks capture?
 - Changes in uncertainty common across firms within a NAICS 4-digit industry
 - Idiosyncratic uncertainty affecting large firms within the industry
- Large shocks associated with:
 - Regulatory changes
 - Financial restructuring
 - Technological transformations
 - Trade tensions

Local Projections

• Construct supplier and customer industries shocks as before

$$\hat{v}_{it}^S = \sum_k \omega_{ki} \hat{v}_{kt} \qquad \hat{v}_{it}^C = \sum_k \tilde{\omega}_{ik} \hat{v}_{kt}$$

Local Projections

Construct supplier and customer industries shocks as before

$$\hat{v}_{it}^S = \sum_k \omega_{ki} \hat{v}_{kt} \qquad \hat{v}_{it}^C = \sum_k \tilde{\omega}_{ik} \hat{v}_{kt}$$

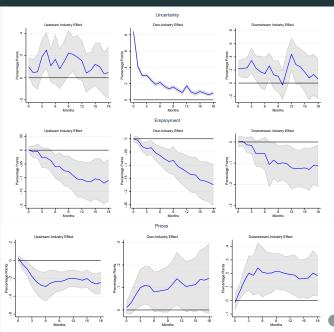
• Estimate panel local projections: (Jorda, 2005)

$$\ln X_{it+h} - \ln X_{it-1} = \alpha_{ih} + \beta_h^O \hat{v}_{it} + \beta_h^D \hat{v}_{it}^S + \beta_h^U \hat{v}_{it}^C + \omega_{t+h} + \sum_{\kappa=1}^{p_{\kappa}} \Phi_{\kappa}^{\kappa} \mathbf{x}_{t-\kappa} + \epsilon_{it+h}$$

• Outcome variables (X): uncertainty, employment, prices

Local Projections

Construct supplier and customer industries shocks as before


$$\hat{v}_{it}^S = \sum_k \omega_{ki} \hat{v}_{kt} \qquad \hat{v}_{it}^C = \sum_k \tilde{\omega}_{ik} \hat{v}_{kt}$$

• Estimate panel local projections: (Jorda, 2005)

$$\ln X_{it+h} - \ln X_{it-1} = \alpha_{ih} + \beta_h^O \hat{v}_{it} + \beta_h^D \hat{v}_{it}^S + \beta_h^U \hat{v}_{it}^C + \omega_{t+h} + \sum_{\kappa=1}^{p_x} \mathbf{\Phi}_{x}^{\kappa} \mathbf{x}_{t-\kappa} + \epsilon_{it+h}$$

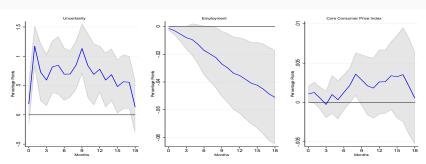
- Outcome variables (X): uncertainty, employment, prices
- $\beta_h^O \equiv$ average own-industry effect at horizon h
- $\beta_h^D \equiv$ average downstream effect at horizon h
- $\beta_h^U \equiv$ average upstream effect at horizon h
- $x_{t-\kappa} \equiv \text{lags of } \ln X_{it} \ln X_{it-1}$, lags of shocks

Local Projections: Industry-Level Effects

• What are the aggregate effects of sectoral uncertainty shocks?

- What are the aggregate effects of sectoral uncertainty shocks?
- Aggregate sectoral uncertainty shocks $\hat{v}_t^A = \sum_i s_{it} \hat{v}_{it}$

- What are the aggregate effects of sectoral uncertainty shocks?
- Aggregate sectoral uncertainty shocks $\hat{v}_t^A = \sum_i s_{it} \hat{v}_{it}$


$$\ln X_{t+h} - \ln X_{t+1} = \gamma_h^A \hat{v}_t^A + \sum_{\kappa=1}^p \mathbf{\Phi}_{\kappa h}^{\kappa} \mathbf{x}_{t-\kappa} + \epsilon_{t+h}$$

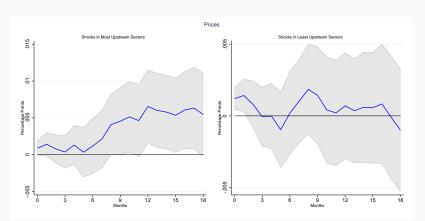
- X: VIX, aggregate employment, Core CPI
- $\mathbf{x}_{t-\kappa}$: lags of $\ln X_t \ln X_{t-1}$, shocks, RV, shadow rate (Wu and Xia, 2016)

- What are the aggregate effects of sectoral uncertainty shocks?
- Aggregate sectoral uncertainty shocks $\hat{v}_t^A = \sum_i s_{it} \hat{v}_{it}$

$$\ln X_{t+h} - \ln X_{t+1} = \gamma_h^A \hat{v}_t^A + \sum_{\kappa=1}^p \mathbf{\Phi}_{\kappa h}^{\kappa} \mathbf{x}_{t-\kappa} + \epsilon_{t+h}$$

- X: VIX, aggregate employment, Core CPI
- $\mathbf{x}_{t-\kappa}$: lags of $\ln X_t \ln X_{t-1}$, shocks, RV, shadow rate (Wu and Xia, 2016)

Aggregate Inflation Effects for Upstream and Downstream Uncertainty


• Does inflation response depend on whether uncertainty originates upstream/downstream?

$$\hat{v}_t^A = \textstyle\sum_i s_{it} \hat{v}_{it} \mathbb{1}[i \in \text{top upstream decile}] \quad \text{or} \quad \hat{v}_t^A = \textstyle\sum_i s_{it} \hat{v}_{it} \mathbb{1}[i \in \text{bottom upstream decile}]$$

Aggregate Inflation Effects for Upstream and Downstream Uncertainty

 Does inflation response depend on whether uncertainty originates upstream/downstream?

 $\hat{v}_t^A = \sum_i s_{it} \hat{v}_{it} \mathbb{1}[i \in \text{top upstream decile}] \quad \text{or} \quad \hat{v}_t^A = \sum_i s_{it} \hat{v}_{it} \mathbb{1}[i \in \text{bottom upstream decile}]$

• Households maximize

$$\begin{split} \mathbb{V}_t &= \max \left[(1 - \beta) (C_t^{\eta_I} (1 - N_t)^{1 - \eta_I})^{1 - 1/\psi} + \beta (\mathbb{E}_t \mathbb{V}_{t+1}^{1 - \gamma})^{\frac{1 - 1/\psi}{1 - \gamma}} \right]^{\frac{1}{1 - 1/\psi}}, \\ C_t &= \prod_{s \in S} C_{s,t}^{\omega_{c,s}} \qquad N_t = \prod_{s \in S} N_{s,t}^{\omega_{N,s}}, \end{split}$$

• Households maximize

$$\begin{split} \mathbb{V}_t &= \max \left[(1 - \beta) (C_t^{\eta_I} (1 - N_t)^{1 - \eta_I})^{1 - 1/\psi} + \beta (\mathbb{E}_t \mathbb{V}_{t+1}^{1 - \gamma})^{\frac{1 - 1/\psi}{1 - \gamma}} \right]^{\frac{1}{1 - 1/\psi}}, \\ C_t &= \prod_{s \in S} C_{s,t}^{\omega_{c,s}} \qquad N_t = \prod_{s \in S} N_{s,t}^{\omega_{N,s}}, \end{split}$$

• Monopolistically competitive firms face Calvo-style price stickiness & produce

$$Z_{s,t}^{j} = \left[\alpha_{s}^{\frac{1}{\vartheta_{s}}}(\boldsymbol{A_{s,t}}N_{s,t}^{j})^{\frac{\vartheta_{s}-1}{\vartheta_{s}}} + (1-\alpha_{s})^{\frac{1}{\vartheta_{s}}}(\boldsymbol{H_{s,t}^{j}})^{\frac{\vartheta_{s}-1}{\vartheta_{s}}}\right]^{\frac{\vartheta_{s}}{\vartheta_{s}-1}} \quad \text{with} \quad \boldsymbol{H_{s,t}} = \prod_{x=1}^{S}\boldsymbol{H_{s,x,t}^{\omega_{h,s,x}}}.$$

• Households maximize

$$\begin{split} \mathbb{V}_t &= \max \left[(1 - \beta) (C_t^{\eta_I} (1 - N_t)^{1 - \eta_I})^{1 - 1/\psi} + \beta (\mathbb{E}_t \mathbb{V}_{t+1}^{1 - \gamma})^{\frac{1 - 1/\psi}{1 - \gamma}} \right]^{\frac{1}{1 - 1/\psi}}, \\ C_t &= \prod_{s \in S} C_{s,t}^{\omega_{c,s}} \qquad N_t = \prod_{s \in S} N_{s,t}^{\omega_{N,s}}, \end{split}$$

• Monopolistically competitive firms face Calvo-style price stickiness & produce

$$Z_{s,t}^j = \left[\alpha_s^{\frac{1}{\vartheta_s}} (A_{s,t} N_{s,t}^j)^{\frac{\vartheta_s - 1}{\vartheta_s}} + (1 - \alpha_s)^{\frac{1}{\vartheta_s}} (H_{s,t}^j)^{\frac{\vartheta_s - 1}{\vartheta_s}}\right]^{\frac{\vartheta_s}{\vartheta_s - 1}} \quad \text{with} \quad H_{s,t} = \prod_{x=1}^S H_{s,x,t}^{\omega_{h,s,x}}.$$

Sectoral resource constraint:

$$Z_{s,t} = C_{s,t} + \sum_{x=1}^{S} H_{x,s,t}$$

• Households maximize

$$\begin{split} \mathbb{V}_t &= \max \left[(1 - \beta) (C_t^{\eta_I} (1 - N_t)^{1 - \eta_I})^{1 - 1/\psi} + \beta (\mathbb{E}_t \mathbb{V}_{t+1}^{1 - \gamma})^{\frac{1 - 1/\psi}{1 - \gamma}} \right]^{\frac{1}{1 - 1/\psi}}, \\ C_t &= \prod_{s \in S} C_{s,t}^{\omega_{c,s}} \qquad N_t = \prod_{s \in S} N_{s,t}^{\omega_{N,s}}, \end{split}$$

• Monopolistically competitive firms face Calvo-style price stickiness & produce

$$Z_{s,t}^j = \left[\alpha_s^{\frac{1}{\vartheta_s}} (A_{s,t} N_{s,t}^j)^{\frac{\vartheta_s - 1}{\vartheta_s}} + (1 - \alpha_s)^{\frac{1}{\vartheta_s}} (H_{s,t}^j)^{\frac{\vartheta_s - 1}{\vartheta_s}}\right]^{\frac{\vartheta_s}{\vartheta_s - 1}} \quad \text{with} \quad H_{s,t} = \prod_{x=1}^S H_{s,x,t}^{\omega_{h,s,x}}.$$

Sectoral resource constraint:

$$Z_{s,t} = C_{s,t} + \sum_{x=1}^{S} H_{x,s,t}$$

• Monetary policy: $\log(R_t/R) = \rho_i \log(R_{t-1}/R) + (1 - \rho_i)\psi_{\pi} \log(\Pi_t/\Pi)$

Households maximize

$$\begin{split} \mathbb{V}_t &= \max \left[(1-\beta) (C_t^{\eta_I} (1-N_t)^{1-\eta_I})^{1-1/\psi} + \beta (\mathbb{E}_t \mathbb{V}_{t+1}^{1-\gamma})^{\frac{1-1/\psi}{1-\gamma}} \right]^{\frac{1}{1-\gamma/\psi}}, \\ C_t &= \prod_{s \in S} C_{s,t}^{\omega_{c,s}} \qquad N_t = \prod_{s \in S} N_{s,t}^{\omega_{N,s}}, \end{split}$$

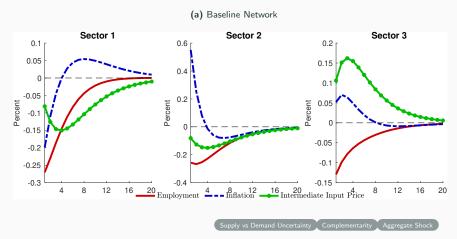
• Monopolistically competitive firms face Calvo-style price stickiness & produce

$$Z_{s,t}^{j} = \left[\alpha_{s}^{\frac{1}{\vartheta_{s}}}(A_{s,t}N_{s,t}^{j})^{\frac{\vartheta_{s}-1}{\vartheta_{s}}} + (1-\alpha_{s})^{\frac{1}{\vartheta_{s}}}(H_{s,t}^{j})^{\frac{\vartheta_{s}-1}{\vartheta_{s}}}\right]^{\frac{\vartheta_{s}}{\vartheta_{s}-1}} \quad \text{with} \quad H_{s,t} = \prod_{s=1}^{s} H_{s,s,t}^{\omega_{h,s,x}}.$$

• Sectoral resource constraint:

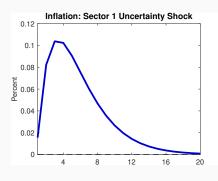
$$Z_{s,t} = C_{s,t} + \sum_{x=1}^{S} H_{x,s,t}$$

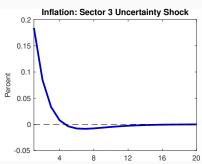
- Monetary policy: $\log(R_t/R) = \rho_i \log(R_{t-1}/R) + (1 \rho_i) \psi_{\pi} \log(\Pi_t/\Pi)$
- Exogenous processes:


$$\begin{split} \log A_{s,t} &= (1-\rho_a) \log A_s + \rho_a \log A_{s,t-1} + \sigma_{s,t-1}^a \varepsilon_{s,t}^a \\ \sigma_{s,t}^a &= (1-\rho_{\sigma_a}) \log \sigma^a + \rho_{\sigma_a} \log \sigma_{s,t-1}^s + \sigma_{\sigma_a} \varepsilon_{s,t}^\sigma \end{split}$$

Impulse Responses to Sectoral Uncertainty Shock

- Study propagation of sectoral uncertainty shocks in a 3-sector case
 - Linear network for intuition ($S1 \rightarrow S2 \rightarrow S3$);
 - ullet Uncertainty shock in S2


Impulse Responses to Sectoral Uncertainty Shock


- Study propagation of sectoral uncertainty shocks in a 3-sector case
 - Linear network for intuition ($S1 \rightarrow S2 \rightarrow S3$);
 - Uncertainty shock in \$2

Aggregate Inflation Response

• Aggregate inflation response depends on sectoral origin of uncertainty

Propagation of Uncertainty Shocks

- Regardless of the source of uncertainty (supply- vs demand-side):
 - Higher prices and lower input demand where uncertainty increases
 - Lower input demand in the upstream sector (deflationary)
 - Price pass-through downstream (inflationary)
- These effects dominate other GE forces
 (e.g., wealth effects on labor supply, precautionary savings)
- Aggregate inflation response depends on sectoral origin of uncertainty

Conclusions

- Uncertainty shocks are significantly transmitted along the supply chain
 - Transmit upstream like a negative demand shock
 - Propagate downstream like an adverse supply shock
- Aggregate effects are contractionary; inflationary if uncertainty originates upstream
- NK production network model rationalizes the empirical estimates

Conclusions

- Uncertainty shocks are significantly transmitted along the supply chain
 - Transmit upstream like a negative demand shock
 - Propagate downstream like an adverse supply shock
- Aggregate effects are contractionary; inflationary if uncertainty originates upstream
- NK production network model rationalizes the empirical estimates
- Implications for macro policy design
 - Uncertainty arising upstream intensifies the inflation-output tradeoff
 - Uncertainty may exacerbate or dampen the inflationary impact of first-moment shocks (e.g., supply disruptions, demand shortfalls)

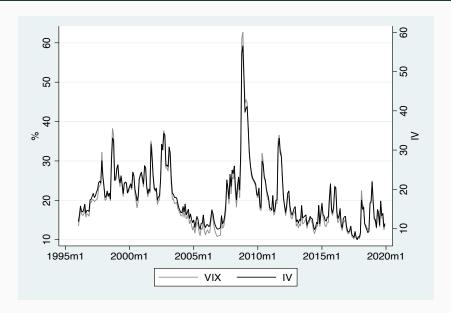
Thank you!

giacomo.candian@hec.ca

Measuring Sectoral Uncertainty

• Start from sector-i version of CAPM:

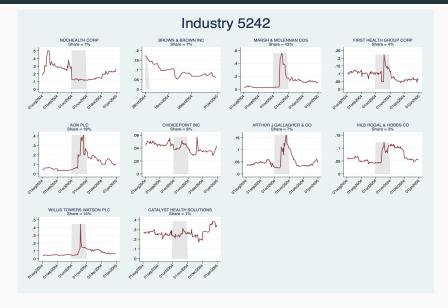
$$r_{f,t+1} = \beta_{f,i}r_{i,t+1} + \epsilon_{f,t+1}$$
 where $r_{i,t+1} \equiv s_{f,i,t}r_{f,t+1}$

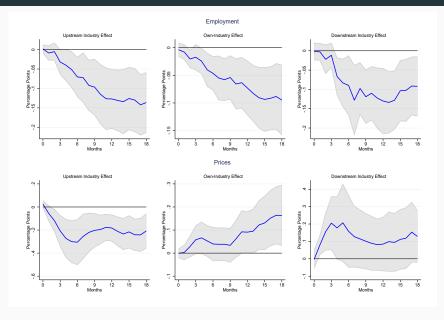

Take conditional variance:

$$\sigma_{f,t}^2 = \beta_{f,i}^2 \sigma_{i,t}^2 + \sigma_{\epsilon,i,t+1}^2$$

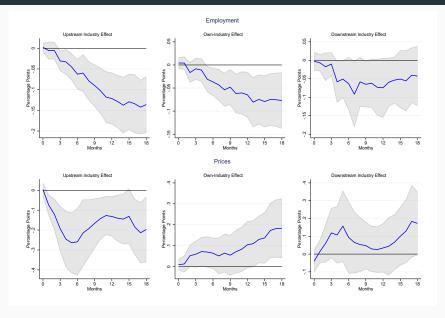
• Following Campbell et al. (2001), using $\sum_f s_{f,i,t} \beta_{f,i} = 1$, one can show:

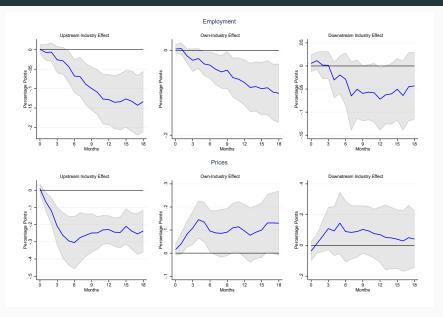
$$\sum_{f} s_{f,i,t} \sigma_{f,t}^2 = \underbrace{\sigma_{i,t}^2}_{\text{common uncertainty}} + \underbrace{\sum_{f} s_{f,i,t} \sigma_{\varepsilon,i,t+1}^2}_{\text{average id uncertainty}}$$

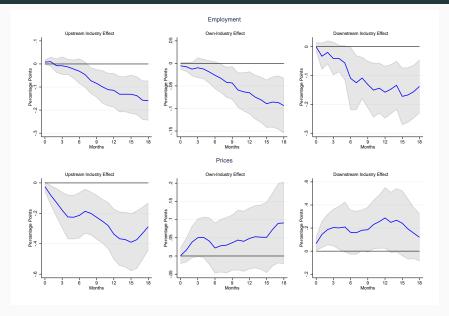

Aggregate Implied Volatility vs VIX


Examples

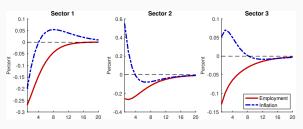
- Insurance industry (5241), October 2004. Antifraud investigation by the NY attorney general led many insurance companies to announce they would stop paying contingent commissions to their agents.
- Outpatient care industry (6214), series of large shocks in 2015. At this
 time, the Centers for Medicare & Medicaid Services began implementing
 value-based care initiatives. Outpatient care centers faced uncertainties in
 adapting to these new business models.
- Motor vehicle manufacturing industry (3361), important spike in 1998 when Daimler-Benz AG acquired Chrysler Corporation. This merger represented a major consolidation in the automotive industry.
- Ferrous and non-ferrous metal industries (3311 and 3314) rising uncertainty during the late 2010 ' following US-China escalating trade tensions.
- Advertising industry (5418). Shock series captures key events that transformed the sector: digital shift of the late 1990s, launch of Google AdWords in Oct 2000, and launch of YouTube in Feb 2005.


Shocks: Agencies, Brokerages, and Other Insurance Related Activities

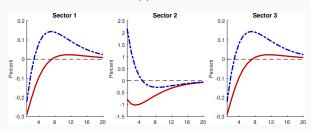

Robustness - Responses to an Uncertainty Shock - Sales Weights


Robustness - Responses to an Uncertainty Shock - Fixed Effect

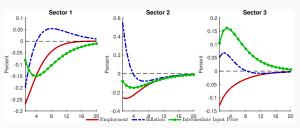
Robustness - Responses to an Uncertainty Shock - Options Traded > 5 Years



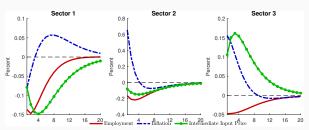
Robustness - Responses to an Uncertainty Shock - Simple First Stage



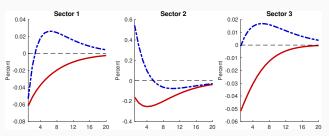
Baseline vs No Network Economy



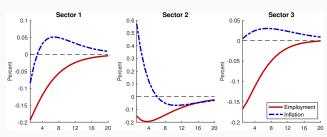
(b) No Network



Baseline vs No Precautionary Savings

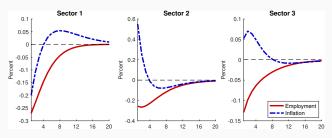


(b) No Precautionary Savings

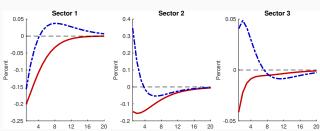


Robustness: Supply vs Demand Uncertainty Shocks

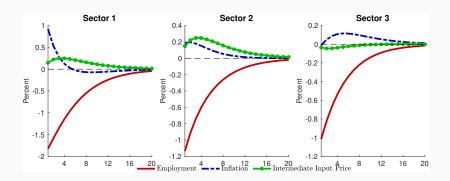
(a) Empirical Network - Supply Uncertainty Shock



(b) Empirical Network - Demand Uncertainty Shock



Robustness: Complementarity in Production Function


(a) Baseline ($\vartheta = 0.5$)

(b) Cobb Douglas Production ($\vartheta = 1$)

Aggregate Uncertainty Shock

