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Abstract

We study how uncertainty propagates through production networks. Using option-

implied volatility data for U.S. firms, we construct a granular, forward-looking mea-

sure of industry-level uncertainty. We then estimate its effects within industries, across

supply chains, and at the aggregate level. Uncertainty in upstream sectors (e.g., chemi-

cals, steel) acts like a supply shock, raising prices and reducing employment across the

network. In contrast, uncertainty in downstream sectors (e.g., automotive, insurance)

resembles a demand shock, lowering prices and employment. Aggregate inflation dy-

namics depend on the origin of uncertainty. A multi-sector model with time-varying

sectoral uncertainty shows that network propagation explains these results.
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1 Introduction

A vast body of literature examines how sector-specific shocks propagate through pro-

duction networks, generating aggregate economic fluctuations (e.g., Acemoglu et al.,

2012; Baqaee and Farhi, 2019b; Carvalho et al., 2020). A striking example of this phe-

nomenon emerged in 2023 when supply shortages and rising relative prices in key up-

stream industries (e.g., semiconductor manufacturing and energy production) became

primary drivers of the global inflation surge (e.g., Bernanke and Blanchard, 2024).

While substantial progress has been made in tracing the real-side transmission

of first-moment shocks, considerably less is known about how increased uncertainty–

a second-moment shock–propagates through the production network. Discussions in

policy and financial circles often highlight the potential supply chain implications of

heightened volatility in commodity markets, trade tensions, and sector-specific financial

instability or regulatory changes, to name a few. Yet key questions remain unanswered:

How does uncertainty arising in a particular industry affect uncertainty, production,

and prices in upstream suppliers and downstream customers? Do the aggregate ef-

fects of uncertainty depend on where in the production network it originates? This

paper provides the first empirical and theoretical framework to study the dynamics of

uncertainty shocks across industries.

Our results break new ground on two fronts. First, using a novel measure of

industry-level uncertainty based on option-implied volatility, we show that heightened

uncertainty in one industry propagates through the production network, increasing

uncertainty and reducing employment across linked sectors. Second, we find that

the network propagation of uncertainty depends on its origin: upstream uncertainty

(from industries supplying intermediate inputs) behaves like a negative supply shock,

reducing employment while raising prices throughout the supply chain, whereas down-

stream uncertainty behaves like a negative demand shock, lowering both employment

and prices. At the aggregate level, the inflation response depends on where uncertainty

originates, with upstream uncertainty resulting in persistently higher prices.

In the first part of the paper, we tackle the challenge of estimating how heightened

uncertainty propagates through the production network. Identifying network effects

requires uncertainty variation that is uncorrelated with first-moment shocks and not

common across interconnected sectors (e.g., economy-wide uncertainty). However, dis-

aggregated, industry-level measures of uncertainty are not readily available.
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Our first contribution is to construct sectoral uncertainty measures using high-

frequency, option-implied volatility data from publicly traded U.S. firms. We focus

on NAICS 4-digit industry-level measures, as this is the finest level of aggregation at

which comprehensive data on employment, prices, and input-output relationships are

consistently available. The use of implied volatility data offers several advantages.

As it is derived from market prices, it captures forward-looking uncertainty and is

available at high frequency. Option data also provides extensive sectoral coverage,

unlike more aggregated measures that lack the necessary granularity to measure cross-

industry spillovers.1 Variation in implied volatility stems from uncertainty about future

economic activity (e.g., expected cash flows) or from financial uncertainty (e.g., external

financing conditions, financial restructuring, or changes in ownership).2 Our sample

spans over one hundred industries, including upstream and downstream sectors (as

defined in Antràs and Chor, 2013), with the underlying option-issuing firms accounting

for a significant share of sectoral output and employment on average.

We document that our measure of sectoral uncertainty, 𝜎𝑖 ,𝑡 , is both higher on av-

erage and more volatile in absolute terms than aggregate uncertainty, yet it exhibits

similar persistence. The average bilateral correlation of 𝜎𝑖 ,𝑡 across industries is positive

but well below one, indicating the presence of significant industry-specific variation.

Sectoral uncertainty correlates positively with aggregate uncertainty and negatively

with industrial production for most, though not all, industries, displaying substantial

cross-sectional heterogeneity. Thus, 𝜎𝑖 ,𝑡 largely mimics the well-established counter-

cyclicality of aggregate uncertainty (e.g., Jurado et al., 2015). Importantly, sectoral

uncertainty does not exhibit a clear-cut correlation pattern with aggregate inflation:

the comovement is positive for approximately two-thirds of the industries, while it is

negative for the remaining sectors.

Our second contribution is to identify variations in sectoral uncertainty suitable

for estimating network effects. Such variation must be uncorrelated with first-moment

shocks and with uncertainty originating in other industries. Building on Berger et al.

(2019), we require that uncertainty shocks be orthogonal to realized volatility, which

1The use of option data has become a consolidated approach in macroeconomics to measure ag-
gregate uncertainty since Bloom (2009). Other measures of uncertainty not based on financial data
include survey-based measures of uncertainty (e.g., Bachmann et al., 2013; Bloom et al., 2018) and var-
ious macroeconomic and financial uncertainty indices (e.g. Jurado et al., 2015). For a comprehensive
review, see Cascaldi-Garcia et al. (2023).

2Influential studies show that implied volatility increases in response to uncertainty about ex-
pected cash flows, firm fundamentals, and external financing constraints (e.g., Merton, 1974; Pan and
Poteshman, 2006; Cremers and Weinbaum, 2010).

2



captures actual stock return volatility driven by first-moment shocks. In addition, we

leverage the high-frequency nature of options data to construct within-month controls

for contemporaneous changes in implied volatility originating from upstream suppliers

and downstream customers. Thus, our approach conservatively exploits variation in

industry-level implied volatility not explained by past or current realized volatility or

uncertainty from supplier and customer industries. The identified shocks capture both

unexpected changes in uncertainty affecting multiple firms within an industry and un-

certainty impacting large firms in the sector. The largest shocks are associated with

notable events that created uncertainty in specific sectors, such as regulatory changes

(e.g., insurance), financial restructuring (e.g., automotive), technological transforma-

tions (e.g., advertising), and trade tensions (e.g., iron and steel), to name a few.

Our third contribution is to estimate the dynamic response of uncertainty, em-

ployment, and prices in affected industries (where uncertainty shocks arise) and along

the supply chain (in industries that supply intermediate inputs to or buy output from

industries that face heightened uncertainty).3 We then analyze the macroeconomic

implications of uncertainty by aggregating sectoral shocks.

Our empirical findings are as follows. Higher uncertainty leads to a persistent de-

cline in employment and a rise in producer prices within the affected industry. The

increase in sectoral producer prices is consistent with precautionary pricing, where firms

raise prices today to hedge against the risk of future marginal cost increases—a mech-

anism featured in benchmark macroeconomic models with time-varying uncertainty

(see Fernández-Villaverde et al. (2015) and references therein).4 The price increase is

also consistent with models featuring customer markets and financial frictions, which

predict that firms with weaker balance sheets pass on higher financing costs to their

customers during periods of heightened uncertainty (e.g., Gilchrist et al., 2017).

Uncertainty shocks propagate through the supply chain. Implied volatility rises

in upstream and downstream industries, indicating that uncertainty spreads to cus-

tomer and supplier sectors. However, network transmission is heterogeneous across

industries. On the one hand, employment and producer prices decline in supplier in-

dustries, consistent with weaker demand for intermediate inputs from industries facing

higher uncertainty. On the other hand, in customer industries, employment falls while

3We measure an industry’s exposure to upstream (downstream) uncertainty variation using total-
requirements input-output tables in the spirit of Acemoglu et al. (2016).

4This result is also consistent with Kopytov et al. (2024), who shows in a model of endogenous
network formation that higher uncertainty leads firms to purchase from more stable suppliers, even
though these suppliers might sell at higher prices.
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producer prices rise, akin to a negative supply shock for downstream producers. Con-

sistent with sectoral propagation, we find that uncertainty shocks are contractionary

at the aggregate level, while their impact on inflation depends on where uncertainty

originates within the network. Specifically, uncertainty is inflationary when it increases

in relatively upstream sectors.

What explains the network propagation of uncertainty shocks? Our fourth and final

contribution is to show that a New Keynesian multi-sector model with input-output

linkages and sector-specific time-varying volatility rationalizes the empirical findings.

Input-output linkages are crucial for understanding the response of employment and

prices across sectors, both qualitatively and quantitatively. The results hold regardless

of whether uncertainty arises from supply- or demand-side factors, such as sectoral

productivity fluctuations or demand shocks.

When industry-level uncertainty increases, producers in that industry raise markups

out of precaution due to the presence of nominal rigidities. Higher markups lead to

higher prices and lower employment in that sector. Without production linkages, sec-

toral spillovers would solely reflect general equilibrium effects driven by households’

precautionary saving, leading to counterfactual sectoral comovement, i.e., lower ag-

gregate demand would imply a fall in prices and employment in upstream and down-

stream industries. Production linkages instead transmit changes in input demand and

costs along the supply chain, altering price dynamics across sectors and amplifying the

magnitude of sectoral spillovers. First, consistent with the estimated co-movements,

suppliers of industries facing the uncertainty shock experience a decline in demand

for their output, leading to lower inflation and employment upstream. Second, the

price increase in industries affected by the uncertainty shock raises marginal costs for

their customer industries, triggering higher inflation and a reduction in the use of in-

termediate inputs. For an empirically plausible complementarity between labor and

intermediate inputs, employment declines downstream. The model also rationalizes

the estimated response of aggregate output and inflation: uncertainty shocks are con-

tractionary and become more inflationary the further upstream they originate. Finally,

the model demonstrates that sectoral price dynamics following downstream uncertainty

differ from those implied by aggregate uncertainty, which does not produce asymmet-

ric price responses across sectors. This result suggests that price dispersion across

industries during uncertain times is more likely driven by sector-specific rather than

aggregate uncertainty.
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Our analysis shows that the macroeconomic effects of uncertainty are not uniform,

but depend on where in the supply chain uncertainty originates. The asymmetric

network propagation suggests important implications for the design of macroeconomic

policy. First, uncertainty arising upstream poses a greater inflationary risk that is more

difficult to offset without triggering additional employment losses, thereby intensify-

ing the inflation-output tradeoff. Second, when uncertainty stems from first-moment

shocks, it can amplify or dampen their inflationary impact—for example, when uncer-

tainty rises following upstream supply disruptions or downstream demand shortfalls.

Central banks need to address both the scale and source of uncertainty shocks in the

supply chain to design effective policies.

Related Literature. Our work contributes to a broad research agenda examining

how uncertainty influences economic aggregates. Much of this literature has focused

on the business cycle effects of aggregate uncertainty, both empirically (e.g., Bloom,

2009; Berger et al., 2019; Cesa-Bianchi et al., 2020) and theoretically (e.g., Christiano

et al., 2014; Basu and Bundick, 2017; Bloom et al., 2018; Basu et al., 2021). Beyond its

cyclical effects, uncertainty can also have more persistent consequences, as shown by

models developed by Nieuwerburgh and Veldkamp (2006) and Fajgelbaum et al. (2017).

We contribute to this literature by estimating how uncertainty shocks propagate along

the supply chain and their implications for the behavior of aggregate inflation and

output.

A handful of recent papers have begun to examine sectoral or production network

dimensions of uncertainty. Castelnuovo et al. (2022) estimate a dynamic factor model

on industrial production series to construct uncertainty indexes for durable and non-

durable goods. Grigoris and Segal (2021) examine how firm-level investment, hiring,

and inventories respond to uncertainty originating from suppliers and customers. Our

analysis differs in both scope and methodology. First, our focus on disaggregated

industry-level outcomes allows us to study both quantity and price dynamics across

the production network. Second, we identify high-frequency sectoral uncertainty shocks

that are orthogonal to first-moment shocks and to uncertainty originating in connected

industries. Our theoretical model shares features with Saijo (2025), who develops a

multi-sector New Keynesian framework with sector-specific volatility shocks to show

that input-output linkages can amplify the recessionary effects of precautionary pricing.

Our findings contribute to a broad literature investigating how production net-
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works transmit shocks and policies across firms or sectors. Much research has shown

that granular supply and demand shocks affecting large firms or sectors can lead to

aggregate economic fluctuations (e.g., Gabaix, 2011; Carvalho and Grassi, 2019). The-

oretical models have extensively analyzed how these granular shocks propagate along

supply chains through input-output linkages, including work by Acemoglu et al. (2012),

Acemoglu et al. (2016), Baqaee and Farhi (2019a), and Baqaee and Farhi (2019b). Her-

skovic et al. (2020) show that production network effects are also essential to explaining

the empirical firm size and firm sales volatility distributions. Existing empirical studies

primarily focus on first-moment supply-side shocks, exploiting natural-disaster-driven

supply chain disruptions.5 Barattieri et al. (2023) study the network transmission of

sectoral public procurement spending. We contribute to this literature empirically and

theoretically by studying the network transmission of second-moment shocks.

Our results show that network propagation has first-order implications for price

dynamics during periods of heightened uncertainty. In this respect, our analysis also

relates to previous findings about the impact of aggregate uncertainty on inflation.

While linear VAR-based estimates typically find that aggregate uncertainty shocks

are deflationary (e.g., Leduc and Liu, 2016), recent empirical work documents that

uncertainty shocks are inflationary in normal or expansionary periods (e.g., Caggiano

et al., 2022; Andreasen et al., 2024).

Finally, our paper relates to the literature that uses option data to measure uncer-

tainty and its macroeconomic implications. Building on Bloom (2009), many studies

rely on aggregate measures such as the VIX to capture time-varying uncertainty, typi-

cally focusing on its one-month horizon. However, recent work by Krogh and Pellegrino

(2025) shows that short- and long-term components of uncertainty–extracted from the

VIX term structure–have distinct macroeconomic implications. Dew-Becker and Giglio

(2023) construct cross-sectional measures of idiosyncratic uncertainty from firm-level

options, while Alfaro et al. (2023) use firm-level implied volatility to study the role

of financial frictions in amplifying the impact of uncertainty shocks. We are the first

to exploit option-implied volatility to measure industry-level uncertainty and study its

propagation across the supply chain.

5Barrot and Sauvagnat (2016) identify downstream effects following various disaster events in the
U.S., while Boehm et al. (2019) document large output losses in the U.S. subsidiaries of Japanese
multinationals after the 2011 earthquake in Japan. Carvalho et al. (2020) also examine this event,
utilizing detailed firm-to-firm network data from Japanese companies to highlight downstream and
upstream propagation. Barattieri and Cacciatore (2023) study the network propagation of tariffs.
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2 Data and Identification of Uncertainty Shocks

The first part of the analysis involves constructing industry-level measures of uncer-

tainty using options data and identifying suitable variation to estimate its production

network effects. In this section, we describe the data that we use and our empirical

strategy to identify such variation in uncertainty.

2.1 Data

Stock market data. We obtain stock options data from OptionMetrics (OM), a com-

prehensive database containing millions of historical option prices, underlying security

information, and implied volatilities. Implied volatility in OM is calculated using the

Black and Scholes (1973) formula. Computing implied volatility only requires observ-

ing a single option price instead of multiple puts and calls over a wide range of strike

prices (such as the calculation of the VIX requires). It is the only feasible measure

of conditional volatility for individual stock options as their trading volume is signif-

icantly smaller than the trading volume of options on stock indices. In practice, the

implied volatility of the stock market is 99.5% correlated with the VIX.

We extract implied volatilities for all the option-issuing firms listed in the NYSE /

AMEX / NASDAQ exchanges. We focus on daily at-the-money implied volatilities for

all stock options with a 30-day maturity of firms. 30-day options are the most liquid

and share the same time horizon as the VIX.

Focusing on implied volatility offers several advantages for our analysis. First, be-

cause it is constructed from market prices, our measure is forward-looking and available

at high frequency, which is essential to study the dynamic effect of uncertainty on real

outcomes. Second, option data provide extensive granular sectoral coverage, which is

necessary to measure cross-industry spillovers accurately. Third, it reflects investors’

beliefs about future uncertainty because it is based on actual investment decisions.

We match these option data with Compustat / CRSP to assign firm identity, mar-

ket capitalization, stock prices, and industry code (NAICS). Whenever the NAICS

code assigned by Compustat is missing, we assign a NAICS code by using SIC-NAICS

concordance tables. After merging the datasets, we have almost 14 million daily ob-

servations for 6,345 firms.

Our analysis focuses on issuers whose options have been traded for at least ten

years. To ensure that sectoral uncertainty derived from option data is economically
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meaningful, we restrict the sample to industries in which the market capitalization of

option issuers represents at least 20% of the market capitalization of all publicly listed

firms in each NAICS 4-digit industry code. On average, option issuers account for at

least 20% total employment in each industry.6 This approach allows us to construct

implied volatility measures for 244 industries.

Additional data. We collect NAICS 4-digit industry-level monthly data on U.S.

employment and prices from the Bureau of Labor Statistics (BLS). From the 2007 Use

and Make Tables from the BEA, we construct a total requirement input-output table,

accounting for direct and indirect sectoral linkages. Finally, we use annual Compustat

firm-level sales data and sectoral output data from the BEA to measure the sectoral

representativeness of the option issuers underlying our uncertainty measures. Using

concordance tables, we convert all BEA industry classifications to the NAICS 4-digit

level. We convert NAICS 4-digit industry codes that do not belong to the Census 2007

classification (e.g., 2002, 2012, etc.) to the corresponding 2007 codes.

2.2 Measuring Uncertainty

We first construct a daily measure of sector-level implied volatility. The baseline mea-

sure is a weighted average of daily firm-level implied volatility, 𝐼𝑉𝑓 ,𝑖 ,𝑑, for all firms

belonging to a specific NAICS 4-digit industry:

𝐼𝑉𝑖 ,𝑑 =
©­«
∑
𝑓 ∈𝑖

𝑠 𝑓 ,𝑖 ,𝑑−1𝐼𝑉𝑓 ,𝑖 ,𝑑
ª®¬ , (1)

where 𝑑 indicate trading days, 𝑓 indexes firms, 𝑖 denotes industries. The weight 𝑠 𝑓 ,𝑖 ,𝑑−1
represents the average firm’s share of industry market capitalization in the previous

month; alternatively, we use the firm’s share of industry sales in the previous year.

Regardless of the specific weighting scheme, 𝐼𝑉𝑖 ,𝑑 captures the common component

of implied volatility across firms on a given day, while also accounting for the dispropor-

tionate influence of larger firms within the sector. Importantly, this weighted average

does not correspond to the implied volatility of a hypothetical NAICS 4-digit represen-

tative portfolio. Constructing such a portfolio would require additional assumptions

about cross-firm return correlations, which are not necessary for our purposes: our

objective is not to approximate the volatility of a replicable asset, but to construct a

6Total employment is computed using data for all firms, not just publicly listed ones.
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sector-level measure of implied volatility that reflects investor-perceived risk within a

given NAICS 4-digit industry. For robustness, we also consider a measure that isolates

only the common component of firm-level implied volatility, as detailed below.

Starting from the daily NAICS 4-digit implied volatility, we construct a monthly

measure of sectoral implied volatility, denoted 𝐼𝑉𝑖 ,𝑡 , by averaging the daily values over

the last five trading days of each month. As discussed in the next section, using a short

time window allows us to better control for realized volatility—which reflects first-

moment shocks—as well as for implied volatility in customer and supplier industries.

As a robustness check, we also consider an alternative measure based on the average

across all trading days in the month.

While implied volatility measures market expectations of future volatility, we also

construct monthly measures of realized volatility (RV), capturing the actual asset price

fluctuations from realized shocks:

𝑅𝑉𝑖 ,𝑡 =
1

𝐷

∑
𝑑∈𝑡

©­«
∑
𝑓 ∈𝑖

𝑠 𝑓 ,𝑖 ,𝑑𝑟
2
𝑓 ,𝑖 ,𝑑

ª®¬ ,
where 𝑟 𝑓 ,𝑖 ,𝑑 denotes the stock return of firm 𝑓 . Finally, we construct aggregate monthly

measures of realized and implied volatility using the monthly average of daily realized

volatility of the 𝑆&𝑃500 index and the implied volatility of the same index. We denote

these two variables by 𝑅𝑉𝑡 and 𝐼𝑉𝑡 .

2.3 Uncertainty Measures: Properties

We begin by documenting the time-series properties of our newly constructed mea-

sures. We first assess how much of the time variation in firm-level implied volatility

can be explained by sector-level implied volatility. Intuitively, if idiosyncratic shocks

primarily drive firm-level variation, we would expect the sectoral measure to have little

explanatory power on average. Panel A of Table 1 shows this is not the case. The panel

reports 𝑅2 from time-series firm-level regressions and indicates that, on average, 𝐼𝑉𝑖 ,𝑡

explains between 65% and 75% of the variation in firm-level implied volatility when

we do not control for aggregate implied volatility, and up to 30% when we do.7 These

findings suggest that 𝐼𝑉𝑖 ,𝑡 accounts for a significant share of firm’s implied volatility

7The significant explanatory power of aggregate implied volatility in these regressions is consistent
with the findings of Herskovic et al. (2016), who document that time variation in firm-level volatilities
obeys a strong factor structure and that about 35% of it is explained by a single aggregate factor.
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Table 1: Properties of Uncertainty Measures

Panel A: Sectoral Component in Firm Implied Volatility
No aggregate 𝐼𝑉𝑡 control Aggregate 𝐼𝑉𝑡 control

Unweighted Weighted Unweighted Weighted
𝑅2 (industry average) 0.66 0.75 0.25 0.30

Panel B: Time Series Properties
Mean St.Dev. Autocorr. Skewness

Sectoral 0.43 0.15 0.80 1.56
(0.28, 0.58) (0.09, 0.23) (0.68, 0.90) (0.73, 2.49)

Aggregate 0.18 0.07 0.85 1.79

Notes: The first two columns in Panel A present average 𝑅2 coefficients from the monthly firm-level
regressions: 𝐼𝑉𝑓 ,𝑖 ,𝑡 = 𝛼 𝑓 +𝛽 𝑓 ,𝑖 𝐼𝑉𝑖 ,𝑡 + 𝜖 𝑓 ,𝑖 ,𝑡 , where 𝐼𝑉𝑓 ,𝑖 ,𝑡 is the daily firm 𝑓 ’s implied volatility averaged
over the last 5 trading days of each month, and 𝐼𝑉𝑖 ,𝑡 is the corresponding industry-level measure
defined in the text. In the first column, for each industry, we compute the unweighted average of the
𝑅2 values across firms and then report the average across industries. In the second column, for each
industry, we weigh the 𝑅2 of each firm by the firm’s average market capitalization share. The third
and fourth columns are constructed analogously but report partial 𝑅2 coefficients attributable to 𝐼𝑉𝑖 ,𝑡

from the underlying regressions: 𝐼𝑉𝑓 ,𝑖 ,𝑡 = 𝛼 𝑓 + 𝛽 𝑓 ,𝑖 𝐼𝑉𝑖 ,𝑡 + 𝛾 𝑓 ,𝑖 𝐼𝑉𝑡 + 𝜖 𝑓 ,𝑖 ,𝑡 . Panel B reports summary
statistics for the sectoral (𝐼𝑉𝑖 ,𝑡) and aggregate (𝐼𝑉𝑡) measures in standard deviation units. 10th and
90th percentiles of the corresponding statistics for 𝐼𝑉𝑖 ,𝑡 in parentheses.

within a NAICS4-digit industry.

In Panel B, we examine further time series properties of the measures. Several

important features stand out. First, sectoral implied volatility is higher on average

than aggregate implied volatility, as measured by the implied volatility of the index of

the entire stock market. The mean of 𝐼𝑉𝑖 ,𝑡 for the average industry is twice as large as

that of 𝐼𝑉𝑡 and 1.5 (3.2) times as large when considering the 10th (90th) percentile of

the industry distribution. Second, the standard deviation of sectoral implied volatility

is approximately twice that of aggregate implied volatility. Third, both aggregate and

sectoral implied volatility exhibit similar persistence, with autocorrelation coefficients

of 0.85 and 0.80, respectively, for the average industry. Finally, implied volatility at

the sectoral and aggregate levels has high positive skewness. Given this high skewness

and following common practices in the literature, in the remainder of the article, we

focus on the log square root of option-implied and realized volatility (𝜎𝑖 ,𝑡 = ln
√
𝐼𝑉𝑖 ,𝑡

and 𝑟𝑣𝑖 ,𝑡 = ln
√
𝑅𝑉𝑖 ,𝑡 ). We refer to 𝜎𝑖 ,𝑡 as sectoral uncertainty.

Figure 1 shows in black sectoral uncertainty, 𝜎𝑖 ,𝑡 , for a selection of industries. To

conserve space, we focus on NAICS 4-digit industries with the largest share of aggre-
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Figure 1: Sectoral Uncertainty and Uncertainty Shocks
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Note: Sectoral uncertainty 𝜎𝑖 ,𝑡 (black) and estimated uncertainty shocks 𝜈̂𝑖 ,𝑡(red).

gate output and where option-issuing firms’ sales account for at least 30% of industry

output. Among these industries, the continuous black line in the top row of Figure 1

plots uncertainty for the five industries experiencing the largest uncertainty shocks, as

measured by their standard deviation. The discussion of uncertainty shock identifica-

tion is deferred to the next section. The second and third rows show the most and least

upstream industries within the same set. We measure upstreamness using the index

constructed by Antràs and Chor (2013), which captures the extent to which a sector

primarily sells to other industries rather than directly to final consumers.8 The figure

confirms the substantial time variation and persistence in these time series documented

above. Some of this variation appears to be common across many series, particularly

8An upstream sector is one that sells a small share of its output to final consumers and instead
supplies disproportionately to other sectors that themselves engage in limited direct sales to final
consumers.
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Figure 2: Cyclical Properties of Uncertainty Measures
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Note: The first panel shows the distribution of the average correlation between 𝜎𝑖 ,𝑡 and 𝜎𝑗≠𝑖 ,𝑡 . The
second panel plots the distribution of the correlations between 𝜎𝑖 ,𝑡 and monthly industrial production
HP filtered using a smoothing parameter of 129,600. Analogously, the third and fourth panel depict
the distribution of correlations with monthly aggregate uncertainty 𝜎𝑡 and monthly core CPI inflation.

around the Great Recession. However, the series also exhibit numerous idiosyncratic

spikes. The first panel of Figure 2, which plots the distribution of the average bilateral

correlations of 𝜎𝑖 ,𝑡 with 𝜎𝑗 ,𝑡 with 𝑗 ≠ 𝑖, suggests that this pattern holds more generally

in our data. Indeed, the average bilateral correlation between uncertainty in a given

industry and that in other industries never exceeds 0.8.

The other panels of Figure 2 document additional cyclical properties of sectoral

uncertainty. Panels 2 to 4 plot the distribution of correlations between sectoral un-

certainty and industrial production (HP-filtered), aggregate uncertainty, and core CPI

inflation. The majority of sectoral measures of uncertainty display a negative correla-

tion with the cyclical component of aggregate activity. However, there is substantial
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heterogeneity in the degree of countercyclicality, as well as some exceptions: uncertainty

for a few sectors is mildly procyclical. Moreover, sectoral uncertainty is positively cor-

related with aggregate uncertainty for all industries, albeit to varying degrees. This is

consistent with the well-known fact that aggregate uncertainty is countercyclical (e.g.,

Jurado et al., 2015): in our sample, the contemporaneous correlation between aggre-

gate uncertainty and industrial production is -0.22. Finally, there is no systematic

relationship between sectoral uncertainty and inflation: for 32% of the sectors in our

sample, uncertainty comoves negatively with inflation, while for 68% of sectors this co-

movement is positive. For comparison, the correlation between aggregate uncertainty

and inflation is virtually zero (-0.0660 in our sample).

2.4 Identification of Uncertainty Shocks

There are three main challenges to identifying industry-level uncertainty variation suit-

able for estimating production network transmission. First, implied volatility is endoge-

nous because it can fluctuate in response to first-moment shocks, whether sector-specific

or aggregate. For instance, a sharp increase in commodity prices may raise uncertainty

in energy-intensive industries. While higher uncertainty affects firms’ decisions, the

direct impact of rising input costs influences output and employment for a given level

of uncertainty. A key econometric challenge lies in disentangling the effects of higher

volatility from those of the first-moment shock. Second, sectoral uncertainty may re-

flect changes in uncertainty originating in supplier and customer industries. Third,

industry-level uncertainty may respond to aggregate uncertainty.

We address these issues by purging our uncertainty measures of likely endogenous

variation arising from the aforementioned sources. To do this, we estimate the following

monthly, industry-level time series regressions using the log square root of sectoral

implied volatility, 𝜎𝑖 ,𝑡 :

𝜎𝑖 ,𝑡 = 𝛼𝑖 +
𝑝𝜎∑
𝜅=1

𝜑𝜅
𝑖 𝜎𝑖 ,𝑡−𝜅 +

𝑝𝜎∑
𝜅=0

𝜓𝜅
𝜎𝑖𝜎𝑡−𝜅 +

𝑝𝑅𝑉∑
𝜅=0

𝜓𝜅
𝑅𝑉𝑖

𝑟𝑣𝑡−𝜅 +
𝑝∑

𝜅=0

Ψ𝜅
𝑖 Z𝑖 ,𝑡−𝜅 + 𝜈𝑖 ,𝑡 , (2)

where Z𝑖 ,𝑡−𝜅 are additional contemporaneous and lagged sector-specific controls de-

scribed below, and the left-hand side uncertainty measure is constructed by averaging

daily sectoral implied volatility using the last five trading days of the month. The

identified shocks correspond to the residuals of these industry-level regressions, 𝜈𝑖 ,𝑡 .
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The rationale for the first-stage regression is as follows. First, following the argu-

ment in Berger et al. (2019), we assume that first-moment shocks can affect contempo-

raneously realized volatility while, on average, uncertainty shocks do not immediately

cause changes in realized volatility. The reason is that both positive and negative

changes in uncertainty result in positive squared returns. Thus, on average, the im-

pact effect of uncertainty shocks on realized volatility is nearly zero. Following this

rationale, we control for contemporaneous and lagged realized volatility at the aggre-

gate level (𝑟𝑣𝑡−𝜅), industry level (𝑟𝑣𝑖 ,𝑡−𝜅), and in industries that are upstream and

downstream relative to industry 𝑖 (𝑟𝑣𝑈
𝑖,𝑡−𝜅 and 𝑟𝑣𝐷

𝑖,𝑡−𝜅, included in Z𝑖 ,𝑡−𝜅 and defined

just below).9 These controls purge the effects of current and past first-moment shocks

that occur in industry 𝑖 itself, at the aggregate level, and in its suppliers and customer

industries.

Second, the availability of daily data allows us to control for within-month implied

volatility originating from upstream suppliers and downstream customers. We con-

struct these measures using the first sixteen trading days of each month to ensure they

capture information that does not overlap with the left-hand side variable. Following

Acemoglu et al. (2016), supplier uncertainty for industry 𝑖 is defined by:

𝜎𝑈𝑖,𝑡 =
∑
𝑘

𝜔𝑘,𝑖𝜎𝑘,𝑡 , (3)

where 𝜔𝑘,𝑖 represents the fraction of 𝑖’s output sourced from the 𝑘-th intermediate in

its Leontief Inverse. Customer uncertainty for industry 𝑖 is defined by:

𝜎𝐷
𝑖,𝑡 =

∑
𝑘

𝜔̃𝑖 ,𝑘𝜎𝑘,𝑡 , (4)

where 𝜔̃𝑖 ,𝑘 represents the fraction of 𝑖’s output demanded by 𝑘-th sector in its Leontief

Inverse form. The weights 𝜔̃𝑖 ,𝑘 and 𝜔𝑘,𝑖 are derived from the 2007 total-requirement

input-output table.10 We include both measures in Z𝑖 ,𝑡−𝜅. Supplier and customer

realized volatility, 𝑟𝑣𝑈
𝑖,𝑡

and 𝑟𝑣𝐷
𝑖,𝑡
, analogously to equations (3) and (4).

Finally, we assume that uncertainty in a given sector does not affect aggregate

uncertainty, while the opposite is not true. This is motivated by the modest size of a

9We include three lags of 𝑟𝑣𝑡 and 𝑟𝑣𝑖 ,𝑡 and one lag of 𝑟𝑣𝑈
𝑖,𝑡

and 𝑟𝑣𝐷
𝑖,𝑡
.

10We combine the make and use tables to construct an industry-by-industry matrix that details
how much of an industry’s inputs are produced by other industries.
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Figure 3: Distribution of standard deviations of shocks
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Note: Distribution of standard deviation of estimated shocks. The left panel is the entire distribution,
while the middle (right) panel is the distribution in the first (last) quartile of upstreamness.

NAICS 4-digit sector compared to the aggregate economy.11 Consequently, we control

for current and lagged implied volatility both at the aggregate level (𝜎𝑡−𝜅) (3 lags) and

in upstream and downstream industries (included in Z𝑖 ,𝑡−𝜅) (1 lag). Finally, we allow

for endogenous persistence in our uncertainty measure and control for 3 lags of 𝜎𝑖 ,𝑡−𝜅.

As detailed in section 3.2, we consider different alternative specifications of the

first-stage regression for robustness. In particular, we construct monthly uncertainty

measures using all trading days of the month (rather than the last five days) or using

only option issuers that are always in the sample (rather than those that have been in

the sample for at least ten years). We also consider a specification with a more parsi-

monious set of controls (excluding measures of upstream and downstream uncertainty

and realized volatility).

Identified uncertainty shocks. The identified shocks have desirable statistical

properties: they are not autocorrelated and display a small cross-industry correlation

(0.15 on average). Figure 3 shows the distribution of the industry-level standard devia-

tion of the estimated shocks for all industries and for industries in the top and bottom

quartiles of the upstreamness distribution. A comparison of the three panels shows

that the distribution of shock sizes is relatively similar upstream and downstream.

Figure 1 plots in red the residuals from our first-stage regression for the industries

discussed in the previous section. The shock series displays considerably less volatility

11If some sectoral shocks have contemporaneous aggregate effects, controlling for aggregate uncer-
tainty would absorb this component of exogenous sectoral uncertainty variation. In this regard, our
approach is conservative, as the residuals may capture only a subset of the true sectoral shock.
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than the corresponding measures, as the controls absorb most of the variation in the

uncertainty series.

The identified shocks capture unexpected increases in uncertainty that affect mul-

tiple firms within a sector or disproportionately impact large firms. To isolate shocks

suitable for studying propagation through production networks, we conservatively re-

tain only the component of NAICS 4-digit implied volatility not explained by aggre-

gate or network-wide factors. Nonetheless, the largest shocks in Figure 1 correspond

to industry-specific events that plausibly generated heightened uncertainty—such as

regulatory interventions, financial restructurings, technological transitions, and trade

tensions.

For example, the insurance industry (5241) experiences a sharp spike in Octo-

ber 2004 when, in response to a major antifraud investigation, insurance companies

halted contingent commission payments, creating uncertainty about the industry’s fu-

ture profitability. In the outpatient care industry (6214), repeated spikes in 2015

align with the rollout of value-based reimbursement reforms by the Centers for Medi-

care & Medicaid Services, which required major adjustments in service delivery and

financial planning. The 1998 Daimler-Benz–Chrysler merger, one of the largest cross-

border industrial mergers at the time, generates a pronounced shock in motor vehicle

manufacturing (3361), likely reflecting uncertainty about corporate strategy and em-

ployment. Upstream sectors such as ferrous and non-ferrous metals (3311, 3314) show

rising uncertainty during the late 2010s, consistent with escalating U.S.–China trade

tensions. Finally, the advertising industry (5418) exhibits a sequence of large shocks

during the early 2000s, corresponding to major technological disruptions—including

the launch of Google AdWords (2000) and the emergence of YouTube (2005)—that

upended traditional business models in the industry.

3 Uncertainty Propagation Along The Supply Chain

We use panel local projections to estimate the dynamic industry effects of the identified

shocks. Our approach enables us to estimate responses to uncertainty shocks that

originate within the same industry, as well as to shocks that originate upstream or

downstream in the production network. Let ln𝑋𝑖 ,𝑡+ℎ − ln𝑋𝑖 ,𝑡−1 be the cumulative log

difference of 𝑋𝑖 between time 𝑡 − 1 and 𝑡 + ℎ. We estimate the following set of ℎ-steps
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ahead predictive panel regressions (Jordà, 2005):

ln𝑋𝑖 ,𝑡+ℎ − ln𝑋𝑖 ,𝑡−1 = 𝛼𝑖 ,ℎ + 𝛽𝑂
ℎ
𝜈̂𝑖 ,𝑡 + 𝛽𝐷

ℎ
𝜈̂𝐷
𝑖,𝑡

+ 𝛽𝑈
ℎ
𝜈̂𝑈
𝑖,𝑡

+ 𝜛𝑡+ℎ +
∑𝑝𝑥

𝜅=1Φ
𝜅
𝑥𝑥𝑖 ,𝑡−𝜅 + 𝜖𝑖 ,𝑡+ℎ . (5)

The outcome variables (𝑋) can be uncertainty, employment, or producer prices in a

particular industry. We regress the outcome variable on our estimated shocks in that

industry 𝜈̂𝑖 ,𝑡 as well as on the shocks of industries that are upstream or downstream

relative to the industry in question. These shocks 𝜈̂𝑈
𝑖,𝑡

and 𝜈̂𝐷
𝑖,𝑡

are weighted averages

of shocks in upstream and downstream industries, with weights that come from the

2007 total requirements table, analogously to how we constructed upstream and down-

stream uncertainty using equations (4) and (3). The assumption is that an increase

in uncertainty in industry 𝑘 is more important for industry 𝑖 when the input/output

share of sector 𝑘 in 𝑖 is higher. The local projections also include a horizon-industry

fixed effect, a time fixed effect, and twelve lags of (𝑥𝑖 ,𝑡−𝜅 ≡ ln𝑋𝑖 ,𝑡−𝜅 − ln𝑋𝑖 ,𝑡−𝜅−1).

We compute 90% confidence intervals for each impulse response by clustering at the

NAICS 4-digit industry. industry.

The coefficient 𝛽𝑂
ℎ
gives the response of the cumulative log difference of 𝑋 at time

𝑡 + ℎ following a shock at time 𝑡 in that same industry. The network propagation is

captured by the coefficients 𝛽𝑈
ℎ
and 𝛽𝐷

ℎ
, which represent the response of the cumulative

log difference of 𝑋 at time 𝑡+ ℎ following a shock at time 𝑡 in upstream or downstream

industries, respectively.

3.1 Industry-level Results

We start by analyzing how our measure of uncertainty responds to a positive one-

standard-deviation uncertainty shock. The shock corresponds to an 8% increase in

industry-level implied volatility. As shown in the first row of Figure 4, an uncertainty

shock results in a moderately persistent increase in uncertainty in the industry in which

it originates. The uncertainty shock significantly increases uncertainty also in the up-

stream and downstream sectors, albeit the effect is only significant for a few months.12

Overall this evidence suggests moderate endogenous transmission of uncertainty across

the production network. It follows that the real effects of uncertainty in other industries

along the supply chain, if any, are more likely to be driven by first-moment transmission

12Note that the magnitude of responses is not directly comparable across the three columns, as each
represents the response to a one-standard-deviation innovation in 𝜈̂𝑖 ,𝑡 , 𝜈̂𝐷𝑖,𝑡 , and 𝜈̂𝑈

𝑖,𝑡
, respectively, and

the standard deviations of these shocks differ.
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Figure 4: Responses of Uncertainty and Employment to an Uncertainty Shock
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Note: Estimated impulse response functions to one-standard-deviation uncertainty shocks. “Own
industry” effect is the effect of a shock originating in that same industry (𝜈̂𝑖 ,𝑡). “Upstream effect”
refers to the effect of a shock originating in downstream sectors relative to the industry in question
(𝜈̂𝐷

𝑖,𝑡
). “Downstream effect” refers to the effect of a shock originating in upstream sectors (𝜈̂𝑈

𝑖,𝑡
).

(e.g., changes in prices and quantities in the industries facing higher uncertainty).

The second row of Figure 4 plots the employment response to the uncertainty

shocks. An uncertainty shock in a given sector triggers a decline in employment in

that particular sector, reaching 0.15%. Importantly, the uncertainty shock also re-

duces employment in upstream and downstream sectors. The decline in upstream

employment follows the same timing as in the sector facing higher uncertainty, consis-

tent with the idea that producers simultaneously pause hiring and reduce intermediate

input demand. In contrast, the fall in downstream employment occurs with a delay.

The delay can, in turn, be rationalized by understanding price dynamics across the

network, which we discuss next.

The first row of Figure 5 depicts the response of producer prices to uncertainty
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Figure 5: Responses of Prices to an Uncertainty Shock
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Note: Estimated impulse response functions to one-standard-deviation uncertainty shocks. “Own
industry” effect is the effect of a shock originating in that same industry (𝜈̂𝑖 ,𝑡). “Upstream effect”
refers to the effect of a shock originating in downstream sectors relative to the industry in question
(𝜈̂𝐷

𝑖,𝑡
). “Downstream effect” refers to the effect of a shock originating in upstream sectors (𝜈̂𝑈

𝑖,𝑡
).

shocks. Starting with the own-industry effect, we note that prices increase significantly

and persistently following the increase in uncertainty. We also observe a stronger

increase of producer prices in downstream industries and a significant and persistent

decline in prices in upstream industries relative to the origin of the uncertainty shock.

Discussion. The impulse responses presented above suggest a significant transmis-

sion of uncertainty shocks across the production network. The impact of uncertainty

shocks in the industry in which they originate is in line with what the literature has doc-

umented for aggregates (e.g. Bloom, 2009). In particular, sectoral uncertainty shocks

are contractionary in their own industry, as they reduce employment. At the same

time, uncertainty increases producer prices in affected industries. The producer price

increase is consistent with precautionary pricing. Intuitively, when firms face nominal

price rigidities, an increase in uncertainty means greater incentives to increase prices

today to hedge against the risk of future marginal cost increases. This mechanism

is a key source of uncertainty propagation in benchmark macroeconomic models with

time-varying volatility (see Fernández-Villaverde et al., 2015). The price increase is

also consistent with models featuring customer markets and financial frictions, which

predict that firms with weaker balance sheets pass on higher financing costs to their

customers during periods of heightened uncertainty (e.g., Gilchrist et al., 2017).

Figures 4 and 5 show that uncertainty shocks propagate through the supply chain.

19



In particular, uncertainty propagates upstream like a negative demand shock, reduc-

ing employment and prices in supplier industries. In contrast, uncertainty acts like

a negative supply shock for downstream producers, decreasing employment and in-

creasing prices in customer industries. Thus, the implications for price dynamics are

asymmetric and depend on the sectoral origins of uncertainty.

Our theoretical contribution in the next section is to show that a New Keyne-

sian production network model can rationalize these empirical findings and explain

the upstream and downstream propagation of uncertainty shocks. Central to network

transmission is the fact that uncertainty raises prices in the affected industries. As

higher prices depress sectoral demand, the industry facing increased uncertainty re-

duces its demand for intermediate inputs, which in turn lowers employment and prices

in supplier industries. Moreover, higher prices in affected industries increase intermedi-

ate input and final producer prices in customer industries. Provided that intermediate

inputs and employment are complements in production downstream, employment in

customer industries also declines.

Before turning to our theoretical analysis, we assess the robustness of these re-

sults to various checks and empirically address how the heterogeneous transmission of

uncertainty through the production network affects aggregate dynamics.

3.2 Robustness

We assess the robustness of the previous results to alternative methods of construct-

ing NAICS 4-digit implied volatility and to alternative specifications of the first-stage

regressions. Concerning the measurement of implied volatility, we first consider us-

ing previous-year firm sales relative to industry sales as weights 𝑠 𝑓 ,𝑖 ,𝑑−1 to construct

daily industry volatility (see equation (1)). Second, we compute NAICS 4-digit im-

plied volatility, 𝜎𝑖 ,𝑡 , using only the common component of firm-level volatility within

a month, 𝛽𝑖 ,𝑡 , estimated from the following fixed-effects regression: ln(
√
𝐼𝑉𝑓 ,𝑖 ,𝑡) =

𝛼 𝑓 + 𝛽𝑖 ,𝑡 + 𝜀 𝑓 ,𝑖 ,𝑡 . Third, we present results using options traded for at least 5 years

(instead of 10 years). Finally, we consider a simpler first-stage regression that excludes

controls for upstream and downstream implied volatility. In this case, we use all trad-

ing days within a month to measure NAICS 4-digit implied volatility, 𝐼𝑉𝑖 ,𝑡 . Appendix

A shows that the results are robust to these alternative specifications.
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3.3 Aggregate Implications

The upstream and downstream propagation documented in Section 3.1 raises the ques-

tion of whether and how network propagation affects aggregate employment and infla-

tion. To address this question, we proceed as follows. First, we construct a time series

of aggregate shocks by taking an average of sectoral shocks weighted by the average

market capitalization share of each sector:

𝜈̂𝐴𝑡 =

𝐼∑
𝑖=1

𝑠𝑖 ,𝑡 𝜈̂𝑖 ,𝑡 , (6)

where 𝑠𝑖 ,𝑡 is industry 𝑖 market capitalization share at time 𝑡. We then estimate aggre-

gate local projections for ℎ = 1, .., 𝐻:

ln𝑋𝑡+ℎ − ln𝑋𝑡−1 = 𝛾𝐴
ℎ
𝜈̂𝐴𝑡 +

𝑝∑
𝜅=1

Φ𝜅x𝑡−𝜅 + 𝜖𝑡+ℎ , (7)

where 𝑋 is the outcome variable of interest and x𝑡−𝜅 is a vector of aggregate controls

that include lags of 𝑋, aggregate implied volatility, realized volatility, and the shadow

Federal Funds rate of Wu and Xia (2016).13

Figure 6 shows the estimated impulse responses for aggregate implied volatility,

employment, and core CPI. Aggregate implied volatility exhibits a persistent increase

following the shock. In turn, aggregate employment declines persistently. This is

consistent with the sectoral results discussed earlier, which show that employment

declines not only in the sector where the shock originates but also in upstream and

downstream industries.

Figure 6 also shows that the core CPI does not respond significantly, although the

point estimates are consistently positive over the considered horizon. To interpret this

result, recall that sectoral uncertainty shocks tend to have inflationary effects in the

originating and downstream sectors, while exerting deflationary pressure on upstream

suppliers. Importantly, the aggregate response does not simply reflect the sum of

industry–level effects. General equilibrium forces—such as the response of aggregate

demand–also play a role in determining aggregate inflation, as further illustrated by

the general equilibrium model presented in the next section.

13We include twelve lags of the control variables, except for the shadow rate, for which we include
six lags.
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Figure 6: Impulse Responses of Aggregate Variables
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Note: Estimated impulse response functions of aggregate variables to a one-standard-deviation un-
certainty shock 𝜈̂𝐴𝑡 .

Given the heterogenous sectoral response of producer price inflation previously doc-

umented, it is natural to ask whether shocks originating more upstream have different

implications for aggregate inflation than those originating downstream. To answer this

question, we re-estimate the local projections in equation (7) but consider only shocks

from the top or bottom decile of the upstreamness distribution. In other words, in

these regressions, we replaced the shock series 𝜈̂𝐴𝑡 with:

𝜈̂
𝐴,𝑡𝑜𝑝

𝑡 =

𝐼∑
𝑖=1

𝑠𝑖 ,𝑡 𝜈̂𝑖 ,𝑡𝟙[𝑖 ∈ top upstream decile], (8)

or

𝜈̂𝐴,𝑏𝑜𝑡𝑡𝑜𝑚
𝑡 =

𝐼∑
𝑖=1

𝑠𝑖 ,𝑡 𝜈̂𝑖 ,𝑡𝟙[𝑖 ∈ bottom upstream decile], (9)

respectively.

Figure 7 plots the estimated impulse responses from these additional regressions.

The first main result is that when shocks originate in the top decile of the upstreamness

distribution, core CPI rises significantly for several months starting from a year after

the shock. The point estimate of this response is also larger than in the corresponding

response in Figure 6, where we were not conditioning on the sectoral origin of the
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Figure 7: Response of core CPI - Shocks in Top (left) or Bottom (right) Upstreamness
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Note: Estimated impulse response functions of core CPI to a one-standard-deviation uncertainty shock

𝜈̂
𝐴,𝑡𝑜𝑝

𝑡 (left) and 𝜈̂𝐴,𝑏𝑜𝑡𝑡𝑜𝑚
𝑡 (right).

shock. This result is consistent with the notion that when shocks originate upstream,

aggregate CPI reflects primarely the inflationary effect of the uncertainty shock on

the industry of origin and downstream sectors. The second main result is that when

shocks originate in the bottom decile of the upstreamness distribution, core CPI does

not respond significantly and follows a pattern more similar to the inflation pattern

observed when we do not condition on the origin of the shock. This behavior may

partly reflect the offsetting effects of a sectoral uncertainty shock on the industry of

origin (positive) and its suppliers (negative).

Overall, these results demonstrate that the origin of uncertainty shocks has a sig-

nificant impact on network propagation and aggregate dynamics.

4 Theoretical Insights

The empirical results from the previous section suggest that uncertainty shocks propa-

gate to the supplier and customer industries by affecting the relative price and demand

of intermediate inputs. To understand the mechanisms behind network transmission,

we now develop a multi-sector model with input-output linkages and sector-specific

time-varying volatility. The model rationalizes the empirical findings and illustrates
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the economic forces driving the propagation of sectoral uncertainty along the supply

chain and at the aggregate level.

We use a minimal set of ingredients necessary to study the network propagation

of uncertainty shocks. Building on recent literature (e.g., Bouakez et al., 2023), we

develop a model with three key features: (i) nominal price rigidities, (ii) empirically

plausible complementarity between labor and intermediate inputs in production, and

(iii) imperfect sectoral labor mobility. To this relatively standard set of ingredients, we

add sector-specific time-varying uncertainty. The baseline version of the model consid-

ers sector-specific productivity uncertainty. Appendix D demonstrates that the same

intuition applies and that the results remain robust when considering demand-driven

uncertainty. We illustrate the main results using a three-sector, linear network econ-

omy. As detailed below, the findings remain similar when considering a a non-linear

production network calibrated to U.S. data. Saijo (2025) studies a related multisec-

tor model featuring sector-specific productivity uncertainty and capital accumulation,

while abstracting from complementarity between labor and intermediates in produc-

tion.

4.1 A Production Network Model with Sectoral Uncertainty

Shocks

Here we describe the key ingredients of the model and refer the reader to Appendix B

for further details. The economy is populated by a representative household, producers

and wholesalers operating in the 𝑆 sectors, retailers, and the government.

Household. The representative household chooses aggregate consumption, 𝐶𝑡 , and

leisure, (1 − 𝑁𝑡), to maximize its expected lifetime utility given by

V𝑡 = max

[
(1 − 𝛽)(𝐶𝜂𝑙

𝑡 (1 − 𝑁𝑡)1−𝜂𝑙 )1−1/𝜓 + 𝛽(E𝑡V
1−𝛾
𝑡+1 )

1−1/𝜓
1−𝛾

] 1
1−1/𝜓

, (10)

where 𝛽 represents the time discount factor. The Epstein-Zin preferences in (10) de-

couple the intertemporal elasticity of substitution 𝜓 from the risk aversion parameter

𝛾, enabling quantitatively realistic comovements between macroeconomic variables and

asset prices. To account for limited labor mobility across sectors, we assume labor is

imperfectly substitutable across sectors (e.g., Bouakez et al., 2009). Specifically, labor
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provided by the household, 𝑁𝑡 , is a Cobb-Douglas aggregate of the labor supplied to

each sector:

𝑁𝑡 =

∏
𝑠∈𝑆

𝑁
𝜔𝑁,𝑠

𝑠,𝑡 , (11)

where we denote with 𝜔𝑁,𝑠 the sector shares.

Producers. In each sector, a continuum of unit mass of monopolistically compet-

itive firms, indexed by 𝑗, produce differentiated varieties of sectoral goods, 𝑍
𝑗

𝑠 ,𝑡 , by

combining labor and intermediate inputs in the following production function:

𝑍
𝑗

𝑠 ,𝑡 =

[
𝛼

1
𝜗𝑠
𝑠 (𝐴𝑠,𝑡𝑁

𝑗

𝑠 ,𝑡)
𝜗𝑠−1
𝜗𝑠 + (1 − 𝛼𝑠)

1
𝜗𝑠 (𝐻 𝑗

𝑠 ,𝑡)
𝜗𝑠−1
𝜗𝑠

] 𝜗𝑠
𝜗𝑠−1

, (12)

where 𝑁
𝑗

𝑠 ,𝑡 and 𝐻
𝑗

𝑠 ,𝑡 denote labor and the intermediate input bundle used in sector 𝑠

by producer 𝑗, and 𝐴𝑠,𝑡 denotes sector 𝑠 productivity. The parameter 𝜗𝑠 is the sector-

specific elasticity of substitution between inputs, while 𝛼𝑠 is the factor share. The

producers in sector 𝑠 hire labor and buy intermediate inputs at prices at prices 𝑊𝑠,𝑡

and 𝑃𝐻
𝑠,𝑡 , respectively.

Producers face Calvo-style price-setting frictions that result in price stickiness.

These frictions introduce forward-looking behavior into the otherwise static producer

problem, making them essential for capturing the real effects of uncertainty shocks.

The probability of not changing prices in sector 𝑠 is denoted by 𝜙𝑠 .

Wholesalers. Producers sell differentiated varieties to perfectly competitive whole-

salers, who bundle them into a single final sectoral good, 𝑍𝑠,𝑡 , using a CES production

technology with elasticity of substitution 𝜖:

𝑍𝑠,𝑡 =

[∫ 1

0
(𝑍 𝑗

𝑠 ,𝑡)
𝜖𝑠−1
𝜖𝑠 𝑑𝑗

] 𝜖𝑠
𝜖𝑠−1

. (13)

Wholesalers sell goods to perfectly competitive retailers, who assemble sectoral

goods into bundles destined for consumption or intermediate input use. Consequently,
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the resource constraint for sector 𝑠 is given by:

𝑍𝑠,𝑡 = 𝐶𝑠,𝑡 +
𝑆∑

𝑥=1

𝐻𝑥,𝑠,𝑡 , (14)

where 𝐻𝑥,𝑠,𝑡 denotes the demand from retailers producing the intermediate-good bundle

used by sector 𝑥, and 𝐶𝑠,𝑡 represents the demand from consumption-good retailers.

Retailers. Perfectly competitive consumption-good retailers aggregate sectoral goods

to produce 𝐶𝑡 using a Cobb-Douglas production function:

𝐶𝑡 =

∏
𝑠∈𝑆

𝐶
𝜔𝑐,𝑠

𝑠,𝑡 , (15)

where 𝜔𝑐,𝑠 denotes the sectoral share of good 𝑠, with
∑

𝑠∈𝑆 𝜔𝑐,𝑠 = 1.

Similarly, in each sector 𝑠, intermediate-good retailers combine sectoral intermedi-

ate inputs from the different 𝑥-sectors 𝐻𝑠,𝑥,𝑡 into an intermediate input bundle 𝐻𝑠,𝑡

using a Cobb-Douglas aggregator:

𝐻𝑠,𝑡 =

𝑆∏
𝑥=1

𝐻
𝜔ℎ,𝑠,𝑥

𝑠,𝑥,𝑡 . (16)

The shares in the aggregator are sector-specific and denoted by 𝜔𝐻,𝑠,𝑥.

Government. The government consists of a monetary authority that follows a Taylor

rule of the type:

𝑅𝑡

𝑅
=

(
𝑅𝑡−1
𝑅

)𝜌𝑖
(
Π𝑡

Π

) (1−𝜌𝑖)𝜓𝜋

, (17)

where 𝑖𝑡 denotes the nominal interest rate and 𝜋𝑡 is nominal consumer-price inflation.

Exogenous Processes. The economy is buffeted by sectoral first- and second-moment

productivity shocks that follow the processes:

log𝐴𝑠,𝑡 = (1 − 𝜌𝑎) log𝐴𝑠 + 𝜌𝑎 log𝐴𝑠,𝑡−1 + 𝜎𝑎
𝑠,𝑡−1𝜀

𝑎
𝑠,𝑡 , (18)

𝜎𝑎
𝑠,𝑡 = (1 − 𝜌𝜎𝑎 ) log 𝜎𝑎 + 𝜌𝜎𝑎 log 𝜎

𝑠
𝑠,𝑡−1 + 𝜎𝜎𝑎𝜀

𝜎
𝑠,𝑡 , (19)
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where 𝜀𝑎𝑠,𝑡 ∼ 𝒩(0, 1) is a first-moment shock that captures innovations to the level of the

stochastic process for sectoral technology. We refer to 𝜀𝜎𝑠,𝑡 ∼ 𝒩(0, 1) a second-moment

or uncertainty shock that captures innovations to the volatility of the stochastic process

for sectoral technology.14

Conditional Sectoral Volatility To construct a model-based counterpart to the

empirical measures of implied volatility studied in the first part of the paper, we define

aggregate and sectoral conditional volatility of returns within our framework. Building

on Basu and Bundick (2017), we define sectoral conditional volatility as the expected

conditional volatility of the return on a claim to wholesale producers’ cash flows, 𝐷𝐸
𝑡 :

𝐷𝐸
𝑠,𝑡 = 𝑃𝑠,𝑡𝑌𝑠,𝑡 −𝑊𝑠,𝑡𝑁𝑠,𝑡 − 𝑃𝐻

𝑠,𝑡𝐻𝑠,𝑡 , (20)

𝑅𝐸
𝑠,𝑡+1 =

𝐷𝐸
𝑠,𝑡+1 + 𝑃𝐸

𝑠,𝑡+1

𝑃𝐸
𝑠,𝑡

, (21)

𝑉𝐸
𝑠,𝑡 = 100 ×

√
4 ∗𝑉𝐴𝑅𝑡(𝑅𝐸

𝑠,𝑡+1). (22)

Above, 𝑅𝐸
𝑠,𝑡+1 denotes the return and 𝑉𝐸

𝑠,𝑡 its conditional volatility. The measure of ag-

gregate conditional volatility is analogously defined over the cashflows 𝐷𝑡 =
∑

𝑠∈𝑆 𝐷
𝐸
𝑠,𝑡 .

We assume that these equity claims are traded and held in equilibrium by the rep-

resentative household. The following Euler equation determines the pricing of these

claims:

𝐸𝑡[𝑀𝑡+1𝜉𝑡+1𝑅
𝐸
𝑠,𝑡+1] = 1, (23)

where 𝑀𝑡+1 is the household’s stochastic discount factor. 𝜉𝑡+1 represents a financial

shock that introduces realistic conditional returns’ volatility E[𝑉𝐸
𝑠,𝑡] in the stochas-

tic steady state of the model despite the absence of capital and leverage. Since the

Modigliani and Miller (1958) theorem holds, this shock only affects asset prices but not

macroeconomic dynamics. Yet, its presence allows us to obtain a response of condi-

tional returns’ volatility to an uncertainty shock that aligns with the empirical evidence

of section 3.1. We model 𝜉𝑡 as an autoregressive process of order 1 with persistence 𝜌𝜉

and standard deviation 𝜎𝜉.

14We assume that sector-specific volatility is exogenous since the estimated response of upstream and
downstream implied volatility is relatively small compared to the size of the average shock. Modelling
the correlation of sectoral uncertainty across sectors would not alter any of the main results; it would
strengthen the role of precautionary pricing in network transmission.
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Solution Method. Since we focus on the dynamic effect of uncertainty shocks, we

solve the model using a third-order approximation of the policy function of the model

around the steady state. We compute impulse responses by comparing the path of

the economy over 5, 000 periods in which the realizations of all shocks are zero to the

alternative path in which a single one-standard-deviation shock to 𝜎𝑎
𝑠,𝑡 is realized in

period 4, 500.

4.2 Calibration

We consider a monthly calibration of the model. To illustrate the main intuitions

transparently, we first focus on a linear production network such that 𝜔𝐻,1,1 = 1,

𝜔𝐻,2,1 = 1, and 𝜔𝐻,3,2 = 1. Thus, each sector uses as intermediate inputs only output

produced from sectors that are immediately upstream (in practice, sector 3 uses inputs

from sector 2, and sector 2 uses inputs from sector 1). We also assume symmetric price

stickiness and consumption shares across sectors. In the next subsection, we extend the

analysis to an empirically calibrated production network, also incorporating sectoral

heterogeneity in price stickiness and consumption shares.

We set 𝛽 = 0.9967 corresponding to a steady-state annual real interest rate of 4%.

We fix the intertemporal elasticity of substitution to 2 and follow Basu and Bundick

(2017) in setting the risk aversion parameter 𝛾 to 80. The value of 𝜂𝑙 to chosen to

obtain a Frisch elasticity of labor supply of 2.25. The elasticity of substitution across

different product varieties in a sector, 𝜖, is set to 6, which implies a steady-state markup

of 33%. The Taylor rule parameters take standard values: the smoothing coefficient

is 𝜌𝑖 = 0.80, and the reaction coefficient to inflation is 𝜓𝜋 = 1.5. We calibrate the

production function parameter 𝛼𝑠 to 0.4, close to the average of the sectoral employees’

compensation share in value added. We set the elasticity of substitution between

intermediate goods and labor, 𝜗, to 0.5, which is in the range of empirical estimates

(see discussion in Atalay, 2017). For robustness, we will consider setting 𝜗 = 1, which

corresponds to a Cobb-Douglas production function. When considering a symmetric

degree of price stickiness across sectors, we set 𝜙𝑠 = 𝜙 = 0.7. We divide the economy

into three broad sectors (𝑆 = 3) and set the consumption weights such that 𝜔𝐶,1 =

𝜔𝐶,2 = 0.3.

We set the persistence and steady-state standard deviation of sectoral productivity

shocks at conventional values: 𝜌𝑎 = 0.95 and 𝜎𝑎 = 0.007. We calibrate the persistence

and standard deviation of the sectoral uncertainty shock, 𝜎𝑎
𝑠,𝑡 , to match the sectoral
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Figure 8: Impulse Responses to Sector 2 Uncertainty Shock

(a) Baseline Network
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Note: Model sectoral impulse response functions to a one-standard-deviation sectoral uncertainty
shock in sector 2 (𝜀𝜎2,𝑡).

employment response relative to conditional returns’ volatility in sector 2. This requires

setting 𝜌𝜎𝑎 = 0.80 and 𝜎𝜎𝑎 = 0.40. To match the absolute response of conditional

returns’ volatility, we set 𝜌𝜉 = 0.90 and its standard deviation 𝜎𝜉 = 0.0025.

4.3 Propagation of uncertainty shocks

Figure 8a presents impulse responses to a one-standard-deviation sectoral uncertainty

shock in the linear network economy. We shock sector 2 so that we can easily see the
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effects on the sector where the shock originates but also in sectors upstream (sector

1) and downstream (sector 3). To understand how the production network propagates

uncertainty shocks, Figure 8b considers instead an economy in which there are no

network linkages, i.e., every sector uses only output from its own sector as intermediate

inputs (𝜔𝐻,1,1 = 1, 𝜔𝐻,2,2 = 1, and 𝜔𝐻,3,3 = 1).

To build intuition, consider first the no-network economy. Figure 8b shows that

a sectoral uncertainty shock leads to a persistent decline in employment and output,

alongside a rise in inflation within the affected sector. These own-sector responses

reflect a precautionary pricing motive arising from Calvo-style pricing frictions (as in

Born and Pfeifer, 2014; Fernández-Villaverde et al., 2015). Specifically, when uncer-

tainty about future marginal costs increases, firms raise prices (i.e., increase markups)

to self-insure against being locked into prices that may prove too low. This rise in

markups reduces demand and production, resulting in lower employment and higher

inflation in the shocked sector.

Despite the absence of sectoral production linkages, general equilibrium effects prop-

agate the uncertainty shock to other sectors of the economy. However, the resulting

comovement in sectoral prices is inconsistent with the empirical evidence. The shock

induces households to increase precautionary savings, which reduces final consumption

demand and generates deflationary pressure in both upstream and downstream sectors.

Additionally, aggregate labor supply rises due to precautionary motives, as discussed

in Basu and Bundick (2017). In equilibrium, the aggregate demand channel dominates,

leading to declines in employment and output across all sectors.

Moving to the network economy, production linkages add further channels for un-

certainty propagation, which ultimately are central to rationalize the price dynamics

across sectors documented empirically: the fact that prices decrease upstream and

increase downstream in response to higher uncertainty. First, the increase in sector

2 prices due to the precautionary pricing motive, now results in an increase in the

marginal cost of sector 3, which uses sector 2’s output as an intermediate input. This

increase in marginal cost creates inflationary pressure in sector 3. Figure 8b shows

that cost pass-through more than offsets the deflationary effect of lower aggregate de-

mand for downstream goods. As shown in Appendix D, this result obtains also when

considering a non-linear, empirically calibrated network. The increase in sector 3’s

marginal cost reduces intermediate inputs demand and, to the extent that labor and

intermediates are complements in production, further reduces labor demand relative
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Figure 9: Aggregate Responses to Sector 2 Uncertainty Shock
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Note: Model aggregate responses to a one-standard-deviation sectoral uncertainty shock in sector 2
(𝜀𝜎2,𝑡).

to the no network case. This results in a stronger decline in employment and output

in sector 3.15

Second, the fall in labor demand of sector 2 also comes with a fall in intermediate

input demand from the upstream sector, i.e. sector 1, which adds to deflationary

pressure and further contracts employment in that sector.

Overall, these results demonstrate that not only do production linkages alter sec-

toral price dynamics, but they also magnify the contractionary effects of uncertainty.

To conclude, we note that the network propagation of sector-specific uncertainty differs

from the effects of an aggregate uncertainty shock—that is, an increase in uncertainty

common across all sectors. As shown in Appendix C, aggregate uncertainty results in

higher prices across all sectors, including upstream producers (sector 1). This find-

ing demonstrates that the identified effects of sectoral uncertainty shocks cannot be

rationalized by a uniform increase in uncertainty across all sectors, as the resulting

price comovement would not be asymmetric. A second implication is that price dis-

persion across sectors during periods of heightened uncertainty is more likely to reflect

sector-specific rather than aggregate second-moment shocks.
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Figure 10: Heterogeneous Aggregate Inflation Response
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Note: Model response of aggregate inflation to a one-standard-deviation sectoral uncertainty shock in
sector 1 (𝜀𝜎1,𝑡 , left) and sector 3 (𝜀𝜎3,𝑡 , right).

4.4 Aggregate effects

We now examine the aggregate effects of uncertainty shocks and ask whether these

effects are network-dependent—that is, whether the macroeconomic impact depends

on where uncertainty originates in the production network. Figure 9 shows the impact

of an uncertainty shock in sector 2 on aggregate employment and consumer price infla-

tion. The shock is contractionary and leads to a very short-lived price increase. Figure

10 shows that the inflation increase becomes larger and much more persistent when

uncertainty originates upstream in the network (sector 1), consistent with our empir-

ical results in Section 3. As previously discussed, this result stems from the fact that

precautionary pricing and the marginal cost channel dominate the aggregate demand

channel, and the more upstream uncertainty arises, the more upstream uncertainty

shocks propagate downstream like a negative supply shock. The network-dependent

aggregate effects of uncertainty raise important policy questions and potential chal-

lenges. Indeed, to the extent that the central bank seeks to stabilize aggregate employ-

ment or output and aggregate inflation, our results suggest that upstream uncertainty

shocks imply a more challenging aggregate stabilization trade-off than downstream

uncertainty shocks.

15As shown in Appendix D, if labor and intermediate inputs are not complements in production,
the increase in intermediate input prices implies that firms substitute towards labor, which ultimately
dampens the contraction in employment relative to the no-network economy.
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4.5 Model Robustness

For illustrative purposes, the baseline parametrization focuses on a linear production

network and assumes a symmetric degree of price stickiness across sectors and uniform

consumption shares. We now consider an empirically calibrated version of these three

model features. To obtain an empirically-based calibration of the model production

network, we collapse the 57 NAICS 3-digit industries considered in Bouakez et al. (2023)

into three broad sectors based on their upstreamness (again using the classification in

Antràs and Chor, 2013). The most upstream broad sector corresponds to sector 1 in

the model, while the least upstream broad sector maps into sector 3. For each sector,

we then set the 𝜔𝐻,𝑠,𝑥’s at the within-sector average use of intermediate inputs from

other industries, based on the Input-Output matrices of the BEA averaged from 1995-

2015. We similarly set the consumption shares 𝜔𝐶,𝑠 ’s to the average contribution to

aggregate consumption of the industries in each of the three sectors. Finally, we allow

for heterogeneous price stickiness, calibrating the parameters 𝜙𝑠 to match the average

frequency of price changes in our three sectors using data from Pastén, Schoenle, and

Weber (2024). Figure A.6b shows that the qualitative patterns remain the same,

although in sector 3 the inflation response is more hump-shaped than in the baseline.

In an additional robustness exercise, we look at the response to demand-side uncer-

tainty by augmenting our model with sectoral government spending, driven by exoge-

nous processes analogous to those for productivity in (18) - (19). Figure A.7 shows that

our results do not depend on whether we consider supply- or demand-side uncertainty

shocks under the empirically relevant calibration described just above.

Finally, we consider whether our results depend on the degree of complementarity

in production between intermediate inputs and labor. Figure A.8 shows that under an

alternative calibration of the linear network economy with Cobb-Douglas production,

results are qualitatively similar, but the response of employment in sector 3 is signifi-

cantly smaller and less persistent than under our baseline. Therefore complementarity

in production between labor and intermediate inputs is important for the downstream

propagation to be quantitatively realistic.

5 Conclusions

We have studied the propagation of uncertainty shocks along the supply chain. To do

so, we constructed a disaggregated measure of sectoral uncertainty using the option-
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implied volatility of U.S. firms. Leveraging this novel measure of industry-level un-

certainty, we estimated the dynamic effects of uncertainty within and across sectors,

as well as at the aggregate level. Our findings indicate that uncertainty shocks are

contractionary and inflationary in the industry in which they originate. Moreover,

these shocks are significantly transmitted along the supply chain. In particular, un-

certainty propagates upstream like a negative demand shock and downstream like a

negative supply shock. At the aggregate level, the inflation response depends on where

uncertainty originates, while employment unambiguously declines.

We have also demonstrated that a New Keynesian production network featuring

sector-specific uncertainty shocks rationalizes the empirical findings, both qualitatively

and quantitatively. The model underscores the central role of input-output linkages in

shaping the transmission of uncertainty across sectors and influencing macroeconomic

dynamics.

Our findings suggest that macroeconomic policy should adopt a more granular

approach to uncertainty. When shocks originate in upstream sectors, they can prop-

agate inflationary pressure even as aggregate activity declines—a combination that

complicates the standard policy playbook. Recognizing the network transmission of

uncertainty, therefore, has first-order implications for the design of stabilization policy.

We leave to future research the task of understanding these implications.
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Appendix

A Industry-Level Analysis: Robustness

Figure A.1 presents the response of employment and producer prices when daily sectoral

uncertainty is constructed using previous-year firm sales relative to industry sales as

weights 𝑠 𝑓 ,𝑖 ,𝑑 (see equation (1)). Figure A.2 refers to the case in which NAICS 4-digit

implied volatility, 𝜎𝑖 ,𝑡 , is measured using only the common component of firm-level

volatility within a month, 𝛽𝑖 ,𝑡 . As discussed in the main text, we estimate the following

fixed-effects regression:

ln(𝜎 𝑓 ,𝑖 ,𝑡) = 𝛼 𝑓 + 𝛽𝑖 ,𝑡 + 𝜀 𝑓 ,𝑖 ,𝑡 . (A.1)

We then estimate the first-stage regression in equation (2) using 𝛽𝑖 ,𝑡 as the left-hand-

side variable.

Figure A.3 presents results using options traded for at least 5 years (instead of

10 years). Finally, Figure A.4 considers a simpler first-stage regression that excludes

controls for upstream and downstream implied volatility. In this case, we use all trading

days within a month to measure NAICS 4-digit implied volatility, 𝜎𝑖 ,𝑡 .
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Figure A.1: Responses to an Uncertainty Shock - Sales Weights
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Figure A.2: Responses to an Uncertainty Shock - Fixed Effect
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Note: “Own industry” effect is the effect of a shock originating in that same industry (𝜈̂𝑖 ,𝑡). “Upstream
effect” refers to the effect of a shock originating in downstream sectors relative to the industry in
question (𝜈̂𝐷

𝑖,𝑡
). “Downstream effect” is symmetrically defined.

40



Figure A.3: Responses to an Uncertainty Shock - Options Traded 5 Years or More
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Figure A.4: Responses to an Uncertainty Shock - Simple First Stage
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Note: “Own industry” effect is the effect of a shock originating in that same industry (𝜈̂𝑖 ,𝑡). “Upstream
effect” refers to the effect of a shock originating in downstream sectors relative to the industry in
question (𝜈̂𝐷

𝑖,𝑡
). “Downstream effect” is symmetrically defined.
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B Model

We here present a full description of the model environment.

B.1 Households

An infinitely-lived representative houehold maximizes the following lifetime utility func-

tion:

V𝑡 = max

[
(1 − 𝛽)(𝐶𝜂𝑙

𝑡 (1 − 𝑁𝑡)1−𝜂𝑙 )1−1/𝜓 + 𝛽(E𝑡V
1−𝛾
𝑡+1 )

1−1/𝜓
1−𝛾

] 1
1−1/𝜓

, (A.2)

where 𝛽 represents the time discount factor. The parameter 𝜓 is the intertemporal

elasticity of substitution, while 𝛾 parameterizes risk aversion. In the utility function,

𝐶𝑡 represents final consumption goods, which the household purchases at price 𝑃𝑐,𝑡 ,

and 𝑁𝑡 denotes aggregate labor, which pays an aggregate wage 𝑊𝑡 .

Each period 𝑡, the household trades one-period nominal bonds 𝐵𝑡 , which pay a gross

nominal return of 𝑅𝑡 in period 𝑡+1. The household also pays a nominal lump-sum tax

𝑇𝑡 and receives nominal profits from firms in all sectors, 𝐷𝑠,𝑡 . The budget constraint

in nominal terms as follows:

𝑃𝑐,𝑡𝐶𝑡 + 𝐵𝑡 + 𝑇𝑡 = 𝑊𝑡𝑁𝑡 + 𝐵𝑡−1𝑅𝑡−1 +
∑
𝑠∈𝑆

𝐷𝑠,𝑡 . (A.3)

Maximization of equation (A.2), subject to the budget constraint (A.3), results in the

following first-order conditions:

E𝑡

[
𝑀𝑡+1

𝑅𝑡

𝜋𝑡+1

]
= 1, (A.4)

1 − 𝜂𝑙
𝜂𝑙

𝐶𝑡

1 − 𝑁𝑡
=

𝑊𝑡

𝑃𝑐,𝑡
, (A.5)

𝑀𝑡+1 = 𝛽

(
𝐶
𝜂𝑙
𝑡+1(1 − 𝑁𝑡+1)1−𝜂𝑙

𝐶
𝜂𝑙
𝑡 (1 − 𝑁𝑡)1−𝜂𝑙

)−1/𝜓
𝐶
𝜂𝑙−1
𝑡+1 (1 − 𝑁𝑡+1)1−𝜂𝑙

𝐶
𝜂𝑙−1
𝑡 (1 − 𝑁𝑡)1−𝜂𝑙

(
V𝑡+1

(E𝑡V
1−𝛾
𝑡+1 )

1
1−𝛾

)1/𝜓−𝛾
. (A.6)

Labor provided by the household, 𝑁𝑡 , is a Cobb-Douglas aggregate of the labor

supplied to each sector:
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𝑁𝑡 =

∏
𝑠∈𝑆

𝑁
𝜔𝑁,𝑠

𝑠,𝑡 . (A.7)

The weights 𝜔𝑁,𝑠 are such that
∑𝑆

𝑠=1 𝜔𝑁,𝑠 = 1. The aggregate wage is given by:

𝑊𝑡 =

[
𝑆∑

𝑠=1

𝜔𝑛,𝑠𝑊
1+𝜈𝑛
𝑠,𝑡

] 1
1+𝜈𝑛

. (A.8)

The household chooses 𝑁𝑠,𝑡 to maximize:

max𝑊𝑡𝑁𝑡 −
𝑆∑

𝑠=1

𝑊𝑠,𝑡𝑁𝑠,𝑡 , (A.9)

subject to equation (A.5). The first-order condition implies:

𝑁𝑠,𝑡 = 𝜔𝑛,𝑠

(
𝑊𝑠,𝑡

𝑊𝑡

)
𝑁𝑡 . (A.10)

B.2 Differentiated Goods Producers

In each sector, a continuum of unit mass of monopolistically competitive firms, indexed

by 𝑗, produce differentiated varieties of sectoral goods, 𝑍
𝑗

𝑠 ,𝑡 , by combining labor and

intermediate inputs in the following production function:

𝑍
𝑗

𝑠 ,𝑡 =

[
𝛼

1
𝜗𝑠
𝑠 (𝐴𝑠,𝑡𝑁

𝑗

𝑠 ,𝑡)
𝜗𝑠−1
𝜗𝑠 + (1 − 𝛼𝑠)

1
𝜗𝑠 (𝐻 𝑗

𝑠 ,𝑡)
𝜗𝑠−1
𝜗𝑠

] 𝜗𝑠
𝜗𝑠−1

, (A.11)

where 𝑁
𝑗

𝑠 ,𝑡 and 𝐻
𝑗

𝑠 ,𝑡 denote labor and the intermediate input bundle used in sector 𝑠

by producer 𝑗, and 𝐴𝑠,𝑡 denotes sector 𝑠 productivity. The parameter 𝜗𝑠 is the sector-

specific elasticity of substitution between inputs, while 𝛼𝑠 is the factor share. These

producers is sector 𝑠 hire labor and buy intermediate inputs at prices at prices 𝑊𝑠,𝑡

and 𝑃𝐻
𝑠,𝑡 respectively. Producers choose inputs to minimize costs, subject to producing

enough goods to meet demand. The first-order conditions for the associated cost
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minimization problem are:

𝑊𝑠,𝑡 = 𝑀𝐶𝑠,𝑡𝛼
1
𝜗𝑠
𝑛,𝑠𝐴𝑠,𝑡(𝐴𝑠,𝑡𝑁

𝑗

𝑠 ,𝑡)
−1
𝜗𝑠 (𝑍 𝑗

𝑠 ,𝑡)
1
𝜗𝑠 , (A.12)

𝑃𝐻
𝑠,𝑡 = 𝑀𝐶𝑠,𝑡(1 − 𝛼𝑛,𝑠)

1
𝜗𝑠 (𝐻 𝑗

𝑠 ,𝑡)
−1
𝜗𝑠 (𝑍 𝑗

𝑠 ,𝑡)
1
𝜗𝑠 . (A.13)

Since all producers in a sector are subject to the same factor costs, they all choose the

same intermediate-labor ratio, which is also equal to the aggregate intermediate-labor

ratio. Thus, all producers face the same nominal marginal costs 𝑀𝐶𝑠,𝑡 .

The producer 𝑗 sells its good at the price 𝑃
𝑗

𝑠 ,𝑡 to wholesalers. Producers are subject

to Calvo-pricing, where the probability that the price remains fixed from one period to

another is constant and identical for all producers within a sector. The probability can

differ across sectors to allow for differential levels of price rigidities. We denote this

probability by 𝜙𝑠 . Since average and marginal costs coincide, the firm chooses 𝑃
𝑗

𝑠 ,𝑡 to

maximize the following present discounted value of real profits:

max
𝑃
𝑗

𝑠 ,𝑡

𝐸𝑡

∞∑
𝑘=0

(𝛽𝜙𝑠)𝑘
𝜆𝑡+𝑘
𝜆𝑡


(
𝑃
𝑗

𝑠 ,𝑡

)1−𝜖𝑠
𝑃𝑠,𝑡+𝑘

𝜖𝑠
𝑍𝑠,𝑡+𝑘
𝑃𝑡+𝑘

− 𝑚𝑐𝑠,𝑡+𝑘

(
𝑃
𝑗

𝑠 ,𝑡

𝑃𝑠,𝑡+𝑘

)−𝜖𝑠
𝑍𝑠,𝑡+𝑘

 . (A.14)

The first-order condition is

(1 − 𝜖𝑠)(𝑃 𝑗

𝑠 ,𝑡)−𝜖𝑠𝐸𝑡

∞∑
𝑘=0

(𝛽𝜙𝑠)𝑘
𝜆𝑡+𝑘
𝜆𝑡

𝑃
𝜖𝑠
𝑠,𝑡+𝑘𝑃

−1
𝑡+𝑘𝑍𝑠,𝑡+𝑘

+𝜖𝑠(𝑃 𝑗

𝑠 ,𝑡)−𝜖𝑠−1𝐸𝑡

∞∑
𝑘=0

(𝛽𝜙𝑠)𝑘
𝜆𝑡+𝑘
𝜆𝑡

𝑚𝑐𝑠,𝑡+𝑘𝑃
𝜖𝑠
𝑠,𝑡+𝑘𝑍𝑠,𝑡+𝑘 = 0 (A.15)

where 𝑚𝑐𝑠,𝑡 ≡ 𝑀𝐶𝑠,𝑡/𝑃𝑐,𝑡 denotes the real marginal cost.

B.3 Wholesale Producers

In each sector, perfectly competitive firms aggregate the differentiated varieties into a

final good. The wholesaler sells this good to both final consumption and intermediate

input retailers. The production function is:

𝑍𝑠,𝑡 =

[∫ 1

0
(𝑍 𝑗

𝑠 ,𝑡)
𝜖𝑠−1
𝜖𝑠 𝑑𝑗

] 𝜖𝑠
𝜖𝑠−1

. (A.16)
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The price of the bundled sector 𝑠 good is

𝑃𝑠,𝑡 =

[∫ 1

0
(𝑃 𝑗

𝑠 ,𝑡)1−𝜖𝑠𝑑𝑗
] 1
1−𝜖𝑠

. (A.17)

The wholesaler maximizes

max𝑃𝑠,𝑡𝑍𝑠,𝑡 −
∫ 1

0
𝑃
𝑗

𝑠 ,𝑡𝑍
𝑗

𝑠 ,𝑡𝑑𝑗, (A.18)

subject to

𝑍𝑠,𝑡 ≤
[∫ 1

0
(𝑍 𝑗

𝑠 ,𝑡)
𝜖𝑠−1
𝜖𝑠 𝑑𝑗

] 𝜖𝑠
𝜖𝑠−1

. (A.19)

The first-order condition gives the demand function:

𝑍
𝑗

𝑠 ,𝑡 =

(
𝑃
𝑗

𝑠 ,𝑡

𝑃𝑠,𝑡

)−𝜖𝑠
𝑍𝑠,𝑡 . (A.20)

Sectoral market clearing implies

𝑍𝑠,𝑡 = 𝐶𝑠,𝑡 +
𝑆∑

𝑥=1

𝐻𝑥,𝑠,𝑡 . (A.21)

B.4 Intermediate-Input Retailers

The sectoral intermediate input, 𝐻𝑠,𝑡 , is produced by a perfectly-competitive intermediate-

input retailer using the following technology:

𝐻𝑠,𝑡 =

𝑆∏
𝑥=1

𝐻
𝜔ℎ,𝑠,𝑥

𝑠,𝑥,𝑡 , (A.22)

where 𝐻𝑠,𝑥,𝑡 is purchased at price 𝑃𝑥,𝑡 from wholesale producers in sector 𝑥. 𝜔ℎ,𝑠,𝑥,

such that
∑𝑆

𝑥=1 𝜔ℎ,𝑠,𝑥 = 1, gives the weight of good 𝑥 in the intermediate-input bundle

for sector 𝑠, and 𝜈ℎ is the elasticity of substitution of intermediate inputs across sectors.

The price of the intermediate-input bundle is:

𝑃ℎ,𝑠,𝑡 =

𝑆∏
𝑥=1

𝑃
𝜔ℎ,𝑠,𝑥

𝑥,𝑡 . (A.23)
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The intermediate input retailer maximizes

max𝑃ℎ,𝑠,𝑡𝐻𝑠,𝑡 −
𝑆∑

𝑥=1

𝑃𝑥,𝑡𝐻𝑠,𝑥,𝑡 , (A.24)

subject to equation (A.22). The first-order condition leads to the demand function

𝐻𝑠,𝑥,𝑡 = 𝜔ℎ,𝑠,𝑥

(
𝑃𝑥,𝑡

𝑃ℎ,𝑠,𝑡

)−1
𝐻𝑠,𝑡 . (A.25)

B.5 Final Consumption Retailers

A perfectly competitive retailer produces the final consumption good, 𝐶𝑡 , using the

following technology:

𝐶𝑡 =

∏
𝑠∈𝑆

𝐶
𝜔𝑐,𝑠

𝑠,𝑡 , (A.26)

where 𝐶𝑠,𝑡 is purchased at price 𝑃𝑠,𝑡 from wholesale producers in sector 𝑠. 𝜔𝑐,𝑠 , such

that
∑𝑆

𝑠=1 𝜔𝑐,𝑠 = 1, gives the weight of good 𝑠 in the consumption bundle and 𝜈𝑐 is the

elasticity of substitution of consumption across sectors. The price of the consumption

good is:

𝑃𝑐,𝑡 =

∏
𝑠∈𝑆

𝑃
𝜔𝑐,𝑠

𝑠,𝑡 . (A.27)

The consumption retailer maximizes

max𝑃𝑐,𝑡𝐶𝑡 −
𝑆∑

𝑠=1

𝑃𝑠,𝑡𝐶𝑠,𝑡 , (A.28)

subject to equation (A.26). The first-order condition leads to the demand function

𝐶𝑠,𝑡 = 𝜔𝑐,𝑠

(
𝑃𝑠,𝑡

𝑃𝑐,𝑡

)−1
𝐶𝑡 . (A.29)

B.6 Monetary Policy

The monetary authority sets the nominal interest rate according to a Taylor rule:

𝑅𝑡

𝑅
=

(
𝑅𝑡−1
𝑅

)𝜌𝑖
(
Π𝑡

Π

) (1−𝜌𝑖)𝜓𝜋

, (A.30)

46



where 𝑅𝑡 denotes the nominal interest rate, and Π𝑡 is consumer-price inflation. The

latter coincides with the GDP deflator inflation since the final goods resource constraint

is 𝑌𝑡 = 𝐶𝑡 .

B.7 Aggregation

Market clearing implies 𝑁𝑠,𝑡 =
∫ 1

0
𝑁

𝑗

𝑠 ,𝑡𝑑𝑗 and 𝐻𝑠,𝑡 =
∫ 1

0
𝐻

𝑗

𝑠 ,𝑡𝑑𝑗. The aggregate produc-

tion function is ∫ 1

0
𝑍

𝑗

𝑠 ,𝑡𝑑𝑗 = 𝑍𝑠,𝑡

∫ 1

0

(
𝑃
𝑗

𝑠 ,𝑡

𝑃𝑠,𝑡

)−𝜖𝑠
𝑑𝑗 = 𝑍𝑠,𝑡𝑣𝑠,𝑡 , (A.31)

where 𝑣𝑠,𝑡 ≡
∫ 1

0

(
𝑃
𝑗

𝑠 ,𝑡

𝑃𝑠,𝑡

)−𝜖𝑠
𝑑𝑗 measures sectoral price dispersion. The sectoral price

dispersion can be written recursively as:

𝑣𝑠,𝑡 = (1 − 𝜙𝑠)
(
𝑃
𝑗

𝑠 ,𝑡

𝑃𝑠,𝑡

)−𝜖𝑠
+ 𝜙𝑠𝜋

𝜖𝑠
𝑠,𝑡𝑣𝑠,𝑡−1

= (1 − 𝜙𝑠)
(
𝜋∗
𝑠,𝑡

)−𝜖𝑠
𝜋𝑠,𝑡

𝜖𝑠 + 𝜙𝑠𝜋
𝜖𝑠
𝑠,𝑡𝑣𝑠,𝑡−1. (A.32)

The aggregate sectoral production function is

𝑌𝑠,𝑡 ≡
[
𝛼

1
𝜗𝑠
𝑛,𝑠(𝐴𝑠,𝑡𝑁𝑠,𝑡)

𝜗𝑠−1
𝜗𝑠 + (1 − 𝛼𝑛,𝑠)

1
𝜗𝑠 (𝐻𝑠,𝑡)

𝜗𝑠−1
𝜗𝑠

] 𝜗𝑠
𝜗𝑠−1

= 𝑍𝑠,𝑡𝑣𝑠,𝑡 . (A.33)

C The Effects of Aggregate Uncertainty Shocks

Figure A.5 shows the responses of sectoral output an inflation to a positive one-

standard-deviation increase in productivity uncertainty in all sectors of the economy.

As the figure shows an increase in aggregate uncertainty lowers employment and in-

creases inflation across the entire production network, resulting in positive sectoral

comovement of both quantities and prices.
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Figure A.5: Aggregate Uncertainty Shock
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Note: Model responses to a one-standard-deviation productivity uncertainty shock common to all
sectors.

D Model Sensitivity Analysis

We here examine the sensitivity of the model’s impulse responses to sectoral uncertainty

shocks to different parameterizations and modeling assumptions. We first consider an

empirically based calibration of the three sector model, as described in main text.

Figure A.6 compares the responses of sectoral employment and inflation to a one-

standard-deviation productivity uncertainty shock in sector 2 in our baseline linear-

network economy (panel a) to this empirically calibrated version (panel b). As can be

seen in the Figure, the qualitative patterns remain the same, although in sector 3 the

positive inflation response is more hump-shaped than in the baseline.

Second, we consider the sensitivity of the models’ responses to the source of sec-

toral uncertainty shocks, differentiating between supply and demand uncertainty. To

introduce demand uncertainty shocks, we modify the model as follows. Wholesalers

now sell their goods to the consumption and intermediate input retailers (as before),

as well as the government. Therefore, the market clearing conditions (A.21) become

𝑍𝑠,𝑡 = 𝐺𝑠,𝑡 + 𝐶𝑠,𝑡 +
𝑆∑

𝑥=1

𝐻𝑥,𝑠,𝑡 . (A.34)
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Figure A.6: Impulse Responses to Sector 2 Uncertainty Shock

(a) Baseline
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(b) Empirical Network
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Note: Model sectoral impulse response functions to a one-standard-deviation sectoral uncertainty
shock in sector 2 (𝜀𝜎2,𝑡).

We assume that government purchases for each sector 𝑠 follow the AR(1) process:

log𝐺𝑠,𝑡 = (1 − 𝜌𝑔) log𝐺𝑠 + 𝜌𝑔 log𝐺𝑠,𝑡−1 + 𝜎
𝑔

𝑠,𝑡−1𝜀
𝑔

𝑠,𝑡 , (A.35)

with 𝜀
𝑔

𝑠,𝑡 ∼ 𝒩(0, 1). The government purchases these goods from wholesalers at the

price 𝑃𝑠,𝑡 . Government spending is assumed to be wasteful and financed through lump-
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Figure A.7: Impulse Responses to Sector 2 Uncertainty Shock

(a) Empirical Network - Supply Uncertainty Shock
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(b) Empirical Network - Demand Uncertainty Shock
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Note: Model sectoral impulse response functions to a one-standard-deviation sectoral uncertainty
shock in sector 2 (𝜀𝜎2,𝑡).

sum taxes 𝑇𝑡 . The government’s budget constraint is∑
𝑠∈𝑆

𝑃𝑠,𝑡𝐺𝑠,𝑡 = 𝑇𝑡 . (A.36)

The standard deviation of government spending in every sector 𝑠 is time-varying and

follows the process:

𝜎
𝑔

𝑠,𝑡 = (1 − 𝜌𝜎𝑔 ) log 𝜎𝑔 + 𝜌𝜎𝑔 log 𝜎
𝑔

𝑠,𝑡−1 + 𝜎𝜎𝑔𝜀
𝜎,𝑔
𝑠,𝑡 . (A.37)
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Figure A.8: Impulse Responses to Sector 2 Uncertainty Shock

(a) Baseline
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(b) Cobb Douglas Production
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Note: Model sectoral impulse response functions to a one-standard-deviation sectoral uncertainty
shock in sector 2 (𝜀𝜎2,𝑡).

We refer to 𝜀
𝜎,𝑔
𝑠,𝑡 ∼ 𝒩(0, 1) as a sectoral demand uncertainty shock as it captures

innovations to the volatility of the stochastic process for sectoral government spending.

Figure A.7 compares the responses of sectoral employment and inflation to a one-

standard-deviation supply uncertainty shock (panel a) to a demand uncertainty shock

(panel b) in sector 2 under our empirically based calibration. As the Figure shows,

the source of uncertainty does not affect the qualitative patterns of the responses in

the three sectors. Compared to supply uncertainty, however, demand uncertainty has
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a stronger effect in sector 1 and 3 relative to sector 2.

Finally, we consider the sensitivity of the model to different assumptions about the

complementarity between labor and intermediate inputs in production. Figure A.8

compares our baseline economy with complementarity in production (𝜗 = 0.4) in panel

a to an economy with Cobb-Douglas production function (𝜗 → 1) in panel b. More

substitutability in production does not alter the qualitative patterns but reduces the

size and the persistence of the drop in employment in the downstream sector (sector

3) in response to the sectoral productivity uncertainty shock.
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