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Abstract
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power to stimulate the real economy with limited inflationary consequences. In contrast, under
aggregate or sector-specific supply shocks, networks amplify cascades, leading to fast increases
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that it is the novel interaction of networks with pricing cascades that allows us to quantitatively
match the surges in inflation and the repricing frequency in the post-Covid era.
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1 Introduction

The dynamics of aggregate prices and quantities over the business cycle has long been a central

theme in economics. Recent events, such as the Covid pandemic and the Russian invasion of

Ukraine, have brought revived attention to the topic, along with new evidence on the cyclical

properties of the key macro variables. First, following a prolonged period of stability, we have

witnessed the possibility of large inflationary swings in advanced economies, marked by persistent

double-digit rates of price growth in the US, the UK and the Euro Area. All while the movements

in aggregate activity have been milder and transitory. Second, we have learned that much the

inflationary surge has come from rising frequency at which firms adjust their prices (Montag and

Villar, 2023; Cavallo et al., 2024). Third, large granular shocks, hitting specific sectors such as

energy and agriculture, have caused sizable consequences for the rest of the economy, despite their

relatively small share in aggregate activity. While informative, such evidence cannot be analyzed

through the lens of existing, and immensely influential, theoretical frameworks, featuring linearized,

single-sector setups with a constant frequency of adjustment (Woodford, 2004; Gaĺı, 2015). Such a

discrepancy calls for a new framework to analyze aggregate prices and quantities over the business

cycle – and this paper develops one.

Our novel general equilibrium framework features a previously unexplored combination of three

crucial ingredients. First, a multi-sector structure with a fully unrestricted input-output architec-

ture, allowing to capture empirically-realistic production networks. Second, firms’ making pricing

decisions in an optimal state-dependent manner, so that both the extensive and the intensive mar-

gins of adjustment are endogenous. Third, a fully non-linear solution strategy, tracing out the exact

response of the economy to arbitrarily large shocks, either aggregate or sector-specific. The interac-

tion of our three ingredients delivers a novel theoretical mechanism, namely pricing cascades: large

movements in aggregates triggering possibly self-reinforcing adjustment decisions at the extensive

margin. Crucially, networks can either dampen or amplify cascades, depending on the type of

shock hitting the economy. For demand shocks, such as monetary interventions, networks dampen

cascades, leading to muted price responses with a near-constant frequency of adjustment in equilib-

rium. In contrast, networks amplify cascades following either aggregate or sectoral supply shocks,

with strong price responses led by extensive margin. As a result, the novel mechanism of pricing

cascades allows our framework to produce realistic monetary non-neutrality, while simultaneously
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generating substantial inflationary surges following reasonably-sized and structurally-interpretable

shocks. When estimated to Euro Area data, the interaction of networks with cascades allows our

model to jointly match the surges in inflation and the repricing frequency in the post-Covid era.

For demand shocks, such as central bank monetary interventions, production networks shrink

the magnitudes of desired price changes at the firm level, which in turn compresses the sizes of price

gaps for all firms. As a result, the presence of networks dampens pricing cascades, lowering the

response of the aggregate repricing frequency, ceteris paribus. Consequently, much larger monetary

stimuli are feasible in equilibrium, as much larger shocks are required to reach the limit where

all firms choose to adjust prices and the economy becomes money-neutral. Quantitatively, in a

model estimated to match sectoral pricing moments in the Euro Area, under production networks

a one-time monetary intervention can stimulate aggregate GDP by a maximum of 5%; meanwhile,

removing input-output linkages shrinks the maximum possible stimulus to just over 2%.

In contrast, large aggregate and sector-specific supply shocks interact with the production net-

work in a manner that is completely opposite to that under demand shocks. In particular, produc-

tion networks amplify the firm-level desired price changes following supply shocks, hence expanding

the price gaps. As a result, they amplify cascades in pricing, making the decision to adjust more

likely ceteris paribus. As a result, large negative TFP shocks can lead to very fast increases in the

aggregate repricing frequency, leading to substantial inflationary spikes. Quantitatively, following

an aggregate TFP shock of -10%, production networks double the equilibrium fraction of adjusting

firms and more than triple the impact response of inflation (from 5% to 17% monthly). Moreover,

large TFP shocks to sectors with a high degree of network centrality, corresponding to important

suppliers to other producers in the economy, can also drive up the aggregate repricing frequency,

and thus create large aggregate inflationary responses, evolving non-linearly in the size of the shock.

As a further quantification of the role played by the interaction of networks with pricing cascades,

we subject our model to the key structural shock series experienced by the Euro Area economy in

the (post-)Covid years (2020-2024), and compare the model-implied dynamics of aggregate inflation

and repricing frequency to that observed in the data. In particular, we feed in four shock series,

corresponding to aggregate nominal demand, aggregate labor wedge, as well as the dynamics of

energy and food prices. We find that the model successfully matches the five percentage point

increase in the aggregate repricing frequency, as well as the aggregate inflation surge up to 11%
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at the peak. In contrast, an otherwise identical model without networks generates at most a one

percentage point increase in aggregate repricing frequency, as well as an aggregate inflation surge

to only 5% at the peak. These results highlight the quantitative importance of our novel theoretical

channel – the interaction of networks with pricing cascades – for explaining aggregate business cycle

dynamics.

Literature review Our paper contributes to at least two broad strands of the literature. First,

we add to the vast literature on state-dependent pricing in macroeconomics; see Costain and Nakov

(2024) for a recent survey.1 Under state-dependent pricing, the probability of a price change is

affected by idiosyncratic and aggregate shocks, in contrast with time-dependent models such as

Taylor (1979) or Calvo (1983). Our main contribution is to the literature on general equilibrium

implication of state-dependent pricing, marked by the works of Golosov and Lucas (2007), Gertler

and Leahy (2008) and Midrigan (2011) in the context of a single-sector model with small aggregate

shocks and fixed menu costs.2 This framework has been further explored analytically by Alvarez

and Lippi (2022) and others, whose results provide model-based sufficient statistics linking the

dynamics of macro aggregates to moments that can be measured in firm-level data. Subsequent

work also considers one-sector models with state-dependent pricing subjected to large aggregate

shocks, such as the papers of Karadi and Reiff (2019), Cavallo et al. (2024) and Blanco et al.

(2024a). As for multi-sector models with state-dependent pricing, the seminal work by Nakamura

and Steinsson (2010) studies the transmission of monetary shocks in a setup with heterogeneous

pricing and roundabout production. More recent work by Carvalho and Kryvtsov (2021) studies

a multi-sector framework with heterogeneous state-dependent pricing, but without networks, to

rationalize aggregate price adjustment facts.

Relative to the aforementioned papers, we contribute by developing a general equilibrium model

with an unrestricted input-output structure that we solve fully non-linearly for any aggregate or

sector-specific shocks, either demand- or supply-side. We also introduce a novel theoretical channel

that comes from the interaction of networks with pricing cascades.

Second, our paper is related to the growing literature on production networks and aggregate
1See also Nakamura and Steinsson (2013) and Klenow and Malin (2010) for earlier surveys.
2Several papers have developed “second generation” SDP models in which the price change probability is a smoothly

increasing function of the gain from adjustment, e.g. Caballero and Engel (1992), Nakamura and Steinsson (2008),
Costain and Nakov (2011), instead of the step function it is in the fixed menu cost model.
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fluctuations. The seminal work by Acemoglu et al. (2012) considers a flexible-price setup and shows

how production networks can amplify sector- or firm-specific shocks to create aggregate fluctuations.

Subsequent work by Baqaee and Farhi (2020) studies aggregation properties in inefficient economies

with networks. A separate strand of this literature analyzes linearized models with production

networks and time-dependent pricing, both positively (Pasten et al., 2020; Ghassibe, 2021; Afrouzi

and Bhattarai, 2023) and normatively (Rubbo, 2023; La’O and Tahbaz-Salehi, 2022).

We contribute to this literature by studying non-linear aggregate fluctuations in a setup with

state-dependent pricing and arbitrarily large aggregate or sector-specific shocks.

Roadmap The remainder of the paper is structured as follows. Section 2 outlines the optimiza-

tion problem faced by each type of agent in the economy and the numerical strategy to solve the

equilibrium dynamics. Section 3 explains the key model mechanisms in a simplified version of our

setup. Section 4 outlines our procedure for estimating the structural parameters of the model to

match key sectoral micro-pricing moments for the Euro Area. Section 5 shows our quantitative

results for monetary shocks. Section 6 turns to quantitative results for aggregate and sector-specific

TFP shocks. Section 7 considers extensions to our baseline results. Section 8 describes our quan-

tification exercise, where we assess the ability of our model to explain the aggregate dynamics of

inflation and repricing frequency in the Euro Area. Section 9 concludes.

2 Model

We begin by introducing our theoretical model, which presents a novel combination of three key

ingredients. First, it features a number of sectors populated by firms interconnected by production

networks, which facilitate trade in intermediate inputs, both within and across sectors. Second,

firms make optimal pricing decisions subject to menu costs. Third, we allow for both aggregate,

sector-specific and firm-level shocks, and present a numerical strategy that allows to compute the

economy-wide equilibrium dynamic response to an arbitrarily large disturbance of any origin.

2.1 Overview

Time is discrete and indexed by t ∈ {0, 1, 2, ...}. The economy is populated by three (types of)

agents: households, firms and the government. There is a continuum of identical households, each
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consuming output and supplying labor. Firms are subdivided into N sectors, indexed by i ∈

{1, 2, ..., N}, each sector containing a continuum of monopolistically competitive firms of measure

one; we use Φi to denote the set of all firms in sector i. The government consists of the central

bank, which conducts policy by setting money supply, and the fiscal authority, which collects taxes

from firms and rebates them to households in a lump-sum fashion.

2.2 Households

The representative households chooses a sequence of consumption, labor supply, and one-period

nominal bond holdings to maximize expected lifetime utility:

max
{Ct,Lt,Bt}t≥0

E0

∞∑
t=0

βtu(Ct, Lt), (1)

subject to the period-by-period budget constraint

PC
t Ct + Et{Λt,t+1Bt+1} ≤ Bt +WtLt +

N∑
i=1

∫ 1

0
Di,t(j)dj + Tt, (2)

where Ct is consumption, Lt is labor supply, Bt is the level of nominal bond holdings, Tt is the level

of lump-sum transfers from the government, Di,t(j) are the dividends received lump-sum from firm

j in sector i at time t, ΠC
t =

(
PC

t /P
C
t−1

)
is the gross CPI inflation rate, Wt is the nominal wage

and Λt,t+1 is the nominal stochastic discount factor of the household.

Total final consumption Ct is given by an aggregator over sector-specific varieties:

Ct = C(C1,t, ..., CN,t) (3)

where C(·) is homogeneous of degree one and non-decreasing in each of the arguments. The house-

hold chooses consumption of each of the sector-specific varieties to minimize total expenditure∑
i Pi,tCi,t, subject to the aggregator in (3). The minimal cost of assembling such a basket of sectoral

varieties aggregating to Ct = 1 pins down the consumption price index as PC
t = PC(P1,t, ..., PN,t),

where PC is homogeneous of degree one and non-decreasing in each of the arguments.

Sectoral final consumption Ci,t is in turn given by the following aggregator over firm-specific
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varieties:

Ci,t =
{∫ 1

0
[ζi,t(j)Ci,t(j)]

ϵ−1
ϵ dj

} ϵ
ϵ−1

, (4)

where ϵ > 1 is the within-sector elasticity of substitution, Ci,t(j) is the final demand for the output

of firm j ∈ [0, 1] in sector i at time t, and ζi,t(j) is a firm-specific idiosyncratic quality process. The

quality process follows a random walk in logs:

log ζi,t (j) = log ζi,t−1 (j) + σiεi,t (j) , (5)

where εi,t(j) is an i.i.d. Gaussian innovation with mean zero and standard deviation of one. The

final demand for firm j in sector i is given by:

Ci,t(j) = ζi,t(j)ϵ−1
(
Pi,t(j)
Pi,t

)−ϵ

Ci,t, (6)

and the sectoral price index of sector i is given by:

Pi,t =

∫ 1

0

(
Pi,t(j)
ζi,t(j)

)1−ϵ

dj

 1
1−ϵ

. (7)

The representative household is also subject to a cash-in-advance constraint, which requires

that the nominal money holdings are sufficient to cover the aggregate nominal final demand:

PC
t Ct ≤ Mt. (8)

The aggregate money supply process {Mt}t≥0 is set by the central bank, and agents treat this

process as exogenous. An alternative is to consider a central bank which conducts monetary policy

by setting the nominal interest rate according to a Taylor rule; we consider such an extension in

Section 7.1.

We now specify the functional forms for household preferences. First, for household preferences

over aggregate consumption and labor supply, we use the log-linear preferences of Golosov and

Lucas (2007):

Assumption 1 (Golosov-Lucas preferences). The utility function over consumption and labor sup-
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ply is log-linear: u(Ct, Lt) = logCt − Lt.

Under such preferences, we obtain the following intra-temporal labor supply condition: Wt

P C
t

=

Ct. When combined with the cash-in-advance constraint (8), it implies that the nominal wage

equals money supply in every period: Wt = Mt. In addition, the nominal stochastic discount factor

satisfies: Λt,t+1 = β
P C

t Ct

P C
t+1Ct+1

= β Mt
Mt+1

.

As for aggregation across final consumption of sectoral varieties, in the baseline model we assume

it to take the Cobb-Douglas form:

Assumption 2 (Consumption aggregation). The consumption aggregator C(·) is given by:

C(C1,t, ..., CN,t) = ιC
N∏

i=1
C

ωC
i,t

i , (9)

where ιC ≡
∏N

i=1 ω
C
i

−ωC
i is a normalization term and

∑
i ω

c
i = 1, ωc

i ≥ 0,∀i.

Under this assumption, the equilibrium sectoral final consumption shares are constant over

time: ωC
i,t ≡ Pi,tCi,t

P C
t Ct

= ωC
i . In Section 7.3 we consider a more general CES aggregator over sectoral

consumption varieties.

2.3 Firms: production

The production function of firm j in sector i is given by:

Yi,t(j) = 1
ζi,t(j)

×Ai,t × Fi [Li,t(j), Xi,1,t(j), ..., Xi,N,t(j)] , (10)

where Fi(·) is homogeneous of degree one and non-decreasing in inputs; Li,t(j) is the labor used by

firm j in sector i at time t, Xi,k,t(j) is intermediate inputs bought by firm j in sector i from sector

k at time t. In addition, Ai,t is an exogenous sector-specific total factor productivity process, while

ζi,t(j) is the firm-level idiosyncratic quality process introduced in (5).

The intermediates demand Xi,k,t(j) is in turn an aggregator over intermediates bought from

each firm in sector k:

Xi,k,t(j) =
{∫ 1

0

[
ζk,t(j′)Xi,k,t(j, j′)

] ϵ−1
ϵ dj′

} ϵ
ϵ−1

, (11)
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where Xi,k,t(j, j′) is intermediates bought by firm j in sector i from firm j′ in sector k, which satisfies

the following demand condition in equilibrium: Xi,k,t(j, j′) = ζk,t(j′)ϵ−1
(

Pk,t(j′)
Pk,t

)−ϵ
Xi,k,t(j).

Each firm chooses its labor and intermediate inputs in order to minimize the total cost of

production, subject to the production technology in (10). The latter delivers the following marginal

cost function for firm j in sector i at time t:

MCi,t(j) = ζi,t(j) × Qi(Wt, P1,t, ..., PN,t;Ai,t) (12)

where Qi(·) is the common component of the marginal cost index for all firms within a sector,

which strictly falls in Ai,t and is homogeneous of degree one and non-decreasing in the prices of all

inputs.

In our baseline model, we assume that production technology takes a Cobb-Douglas form for

all firms in all sectors:

Assumption 3 (Production technology). The production technology Fi(·) for a firm j in sector i

is given by:

Fi[Li,t(j), Xi,1,t(j), ..., Xi,N,t(j)] = ιiLi,t(j)αi

N∏
k=1

Xi,k,t(j)ωik , (13)

where ιi ≡ α−αi
i

∏
ω−ωik

ik is a normalization term and αi +
∑

i ωik = 1, αi, ωik ≥ 0,∀i.

Under this assumption, the equilibrium labor cost shares and the input-output cost shares are

constant over time and the same for all firms within a sector: αi,t ≡ WtLi,t(j)
MCi,t(j)Yi,t(j) = α, ωi,k,t ≡

Pk,tXi,k,t(j)
MCi,tYi,t(j) = ωik. As with household preferences, in Section 7.3 we relax the Cobb-Douglas as-

sumption and consider a more general CES production function.

2.4 Firms: equilibrium size

The goods market clearing condition for firm j in sector i is given by:

Yi,t(j) = Ci,t(j) +
N∑

k=1

∫ 1

0
Xk,i,t(j′, j)dj′. (14)
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Aggregating up to the level of sectors, multiplying both sides by Pi and dividing by aggregate final

nominal demand PC
t Ct, one can express the sectoral sales share (Domar weight) λi ≡ Pi,tYi,t

P C
t Ct

as:

λi,t = ωC
i,t +

N∑
k=1

ωki,tλk,t × µ−1
k,t , (15)

where µ−1
k is the sales-weighted harmonic average of firm-level markups in a sector k : µ−1

k,t =∫ 1
0

1
µk,t(j′) × Pk,t(j)Yk,t(j)

Pk,tYk,t
dj. Using the downward sloping demand condition for each firm, one can

rewrite µ−1
k,t as:

µ−1
k,t = ∆k,t

Mk,t
, ∆k,t ≡ (Pk,t/Mt)ϵ

∫ 1

0

(
Pk,t(j′)
ζk,t(j′)Mt

)−ϵ

dj′, Mk,t ≡ Pk,t

Qk,t
, (16)

where ∆k,t is a measure of price dispersion within the sector and Mk,t is a measure of sectoral

markup. Stacking the equation for sales shares across sectors, we can write it as:

λt = ωC ,t + Ω̃T
t λt =⇒ λt = (I − Ω̃T

t )−1ωC ,t (17)

where Ω̃t is a N ×N matrix whose [i, j] entry is given by [Ω̃t]i,j = ωij,t

{
∆i,t

Mi,t

}
. Having calculated

the sectoral sales shares, one obtains the sectoral total output as Yi,t = λi,t ×Mt/Pi,t and then the

size of an individual firm as Yi,t(j) = ζi,t(j)ϵ−1
(

Pi,t(j)
Pi,t

)−ϵ
Yi,t.

2.5 Firms: pricing

The nominal profit of firm j in sector i at time t is given by:

Di,t(j) = [(1 − τi,t)Pi,t(j) −MCi,t(j)] × Yi,t(j), (18)

where τi,t is an exogenous sector-specific and time-varying sales tax levied by the government.3

Denoting by P̃i,t(j) ≡ Pi,t(j)
ζi,t(j)Mt

the firm’s quality-adjusted real price and by P̃i,t ≡ Pi,t

Mt
the sectoral

3The proceeds of these taxes are then rebated to households as a lump-sum transfer Tt =∑N

i=1 τi,t

∫ 1
0 Pi,t(j)Yi,t(j)dj.
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real price index, we can write the firm-level real profits D̃i,t(j) ≡ Di,t(j)
Mt

as:

D̃i,t(j) =
(
Pi,t

Mt

)ϵ−1
×
[
(1 − τi,t)

Pi,t(j)
ζi,t(j)Mt

− Qi,t

Mt

]
×
(

Pi,t(j)
ζi,t(j)Mt

)−ϵ

× λi,t

= D̃

(
P̃i,t(j), τi,t,

{
P̃k,t,∆k,t, Ak,t

}N

k=1

)
. (19)

Note that keeping track of the firm-level real profits requires knowing the firm’s real quality-

adjusted price, the own sectoral sales tax, as well as the real sectoral prices, price dispersions and

productivities of all sectors in the economy.

Resetting the nominal price Pi,t(j) involves the firm paying a sector-specific and possibly time-

varying menu cost κi,t measured in units of labor. The optimal reset price maximizes the firm’s

value, taking into account that this new price may not change for some period of time. In particular,

when the nominal price does not change, the log of quality-adjusted real price pi,t(j) ≡ log P̃i,t(j)

evolves according to

pi,t(j) = pi,t−1(j) + log
(
Pi,t−1(i)
ζi,t(j)Mt

)
− log

(
Pi,t−1(j)

ζi,t−1(j)Mt−1

)
= pi,t−1(j) − σiεi,t −mt, (20)

where mt ≡ ∆ logMt.

Without loss of generality, let ηi,t(p) denote the probability that a firm in sector i with a quality

adjusted log relative price p resets its price at t . Consider a firm with a real quality adjusted price

p at the end of period t, and let p+ ≡ (p − σiεi,t+1(j) − mt+1). Then this firm’s real value at the

end of period t is given by the following Bellman equation:

Vi,t(p) = D̃i,t(p) + βEt

[
{1 − ηi,t+1 (p+)}Vi,t+1(p+) + ηi,t+1 (p+)

(
max

p′
Vi,t+1

(
p′)− κi,t+1

)]
, (21)

which consists of the current period real profits D̃i,t(p), as well as the discounted expected contin-

uation value. The latter is computed taking into account that at time t+ 1 the nominal price does

not change with probability 1 − ηi,t+1(·), whereas with probability ηi,t+1(·) the firm pays the menu

cost and optimally resets the nominal price.

Our formulation of the pricing problem covers a wide range of existing models of price setting,
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corresponding to the different functional forms of ηi,t(·). In the baseline setup of our model, we

consider a specific functional form for the probability of adjustment function ηi,t(·). In particular,

following Golosov and Lucas (2007), we assume that a firm adjusts if and only if the value gain

from adjustment in a given period exceeds the menu cost:

Assumption 4 (Ss pricing). Consider a firm in sector i with the quality adjusted log relative price

p at time t. Then the probability that this firm adjusts its nominal price is given by:

ηi,t(p) = 1(Li,t(p) > 0) (22)

where 1(·) is the indicator function, and

Li,t (p) = max
p′

Vi,t
(
p′)− Vi,t(p) − κi,t (23)

is the gain from adjustment (or loss from inaction), net of the menu cost.

Note that although here we specify a problem of price setting under nominal rigidities, our setup

can automatically handle rigidities in nominal wage setting as well by appropriately parameterizing

the input-output structure. In particular, consider a setup with a sector called the labor union (LU),

such that it only uses labor in production (αLU = 1) and moreover it is the only sector purchasing

labor directly from households (α−LU = 0). Instead, other sectors purchase labor indirectly from

the labor union as an intermediate input, such that ωi,LU represents the empirical cost share of

labor for sector i. Then any rigidities in the price setting of the labor union sector are isomorphic

to nominal wage rigidities. Moreover, the gap between the nominal wage Wt and the price index

of the labor union sector PLU,t has a natural interpretation as the aggregate labor wedge.4

2.6 Equilibrium definition and solution method

In addition to the goods market clearing condition in (14), the equilibrium in our economy is also

characterized by clearing of the labor market:

Lt =
N∑

i=1

∫ 1

0
Li,t(j)dj +

N∑
i=1

κi,t

∫ 1

0
ηi,t(pi,t(j))dj, (24)

4More formally, the labor wedge is the gap between the nominal marginal rate of substitution across consumption
and labor P C

t × MRSCL
t = Wt and the nominal cost of labor faced by firms PLU,t.

12



as well as by clearing in the market for bonds, which are in zero net supply: Bt = 0.

Having specified the optimality and market clearing conditions, we can now formally define the

decentralized equilibrium in our economy:

Definition 1 (Equilibrium). The equilibrium is a collection of prices {Pi,t(j)|j ∈ Φi}N
i=1, alloca-

tions
{
Yi,t(j), Li,t(j), Ci,t(j), {Xi,r,t(j, j′)|j′ ∈ Φr}N

r=1 |j ∈ Φi

}N

i=1
, wage Wt and bond holdings Bt,

which given the realizations of firm-level quality process {ζi,t(j)|j ∈ Φi}N
i=1, sectoral productivities

{Ai,t}N
i=1, sectoral sales tax rates {τi,t}N

i=1 and money supply Mt satisfy agent optimization and

market clearing conditions in every period.

We now briefly outline our solution strategy, which we use to compute equilibrium prices and

quantities given the realizations of exogenous processes. Full details of the numerical strategy are

given in Appendix C.

As a first step, we compute the steady-state of our economy, defined as the equilibrium evalu-

ated at the point where money supply growth and sectoral TFPs are at their unconditional mean

values, and the firm-level prices are in their stationary distribution. In particular, for each sector

we numerically solve the stationary Bellman equation and firms’ price distributions on an evenly

spaced grid of log quality adjusted real prices with step size ∆p, pj ∈
[
p, p+ ∆p, ..., p

]
, j = 1, .., J

grid points, so that Vj = V (pj). In the algorithm, introduced in Appendix C, we jointly search

across firm-level prices in each sector and sector-specific sales taxes {τ i}N
i=1, so that we satisfy the

equilibrium conditions and obtain steady-state real sectoral price indices equal to one.

Next, we compute the non-linear responses to a sequence of monetary and TFP shocks. We

operate under the assumption of perfect foresight over aggregate and sectoral exogenous shocks,

while maintaining uncertainty over the idiosyncratic innovations. To compute the responses, we

first assume that there exists a finite period T , at which the economy is back in steady state. Then,

starting from a guess for the sequences of sectoral and aggregate variables, we iterate backward

from t = T to t = 0 to solve for the micro value functions. Having obtained the micro value

functions, we iterate forward from t = 0 to t = T , and numerically aggregate to obtain sectoral

and aggregate variables. We repeat this backward-forward iteration until convergence. Appendix

C formally details the algorithm to perform the backward-forward iteration.
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3 Pricing cascades and networks: formal results

We now use a simplified version of our model in order to formally introduce the notion of pricing cas-

cades: large movements in aggregates creating possibly self-reinforcing price adjustment decisions

at the extensive margin. Moreover, we present analytical results regarding the novel interaction of

pricing cascades with networks. In particular, we formally show that networks dampen cascades

whenever the aggregate cycle is driven by demand shocks, whereas they amplify cascades driven by

supply shocks. We also present several examples with particular network arrangements in order to

solidify the intuition behind our novel theoretical results.

3.1 Static economy

In order to obtain intuition regarding the transmission of large shocks in our model, we consider a

simplified setup obtained under two additional assumptions. First, we assume the economy to be

static in the sense that agents fully discount the future:

Assumption 5 (Myopia). Agents fully discount the future in their objective function, so that β = 0.

In particular, this setting implies that any firm’s value function is simply given by contempo-

raneous profits, and hence the optimal quality-adjusted real reset price for any firm in a sector i is

given by:

P̃ ∗
i,t = 1

1 − τi,t

ϵ

ϵ− 1 × 1
Ai

N∏
k=1

P̃ωik
i,t = Γi,t × Q̃i,t. (25)

where Γi,t ≡ 1
1−τi,t

ϵ
ϵ−1 is the (exogenous) desired markup, whose variation across time and sectors

is pinned down by the movements in the sectoral tax rates τi,t.

Second, we assume a specific form of time-variation of the sector-specific menu cost κi,t:

Assumption 6 (Sectoral menu costs). The sector-specific menu cost follows the following process:

κi,t = κi(1 − τi,t)[P̃i,t/P̃
∗
i,t]ϵ−1λi,t, where κi is a sector-specific constant.

The above two assumptions allow us to derive closed-form results regarding the interaction

between networks, price adjustment decisions at the extensive margin, and the type of shocks

hitting the economy.

The decision to change prices is based on whether the value gain from adjustment exceeds

the menu cost. In the static setup, we can obtain a tractable approximation for the gain from
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adjustment as a function of the price gap, or the difference between the current and the optimal

reset price:

Lemma 1 (Adjustment gains). Suppose Assumptions 1-5 hold. Let p̃i,t(j) ≡ log P̃i,t(j) − log P̃ ∗
i,t be

the price gap for a firm j in sector i at time t. Then the profit gain from price adjustment satisfies:

D̃∗
i,t(j) − D̃i,t(j) = 1

2(ϵ− 1)(1 − τi,t)[P̃i,t/P̃
∗
i,t]ϵ−1λi,t × [p̃i,t(j)]2 + O[p̃i,t(j)]3 (26)

where D̃∗
i,t(j) is profits at the optimal reset price, Pi,t is the real sectoral price index and λi,t is the

sectoral sales share (Domar weight).

To illustrate the interaction between networks and price adjustment decisions, consider the

initial period (t = 0) in our economy. If the firm chooses to not adjust its nominal price, then the

quality-adjusted real price in the initial period is given by:

log P̃i,0(j) = pi,−1(j) − σiεi,0(j) −m0 (27)

where pi,−1(j) is the initial (exogenous) quality-adjusted real price of firm j in sector i, εi,0(j) is the

realization of the firm-level quality shock in period t = 0, and m0 ≡ log(M0/M−1) is the realization

of money growth at t = 0. Given the expression for the optimal reset price in (25), we can write

the firm-level price gap in the initial period as:

p̃i,0(j) = −σiεi,0(j) −m0 − γi,0 + ai,0 −
N∑

k=1
ωik log P̃k,0 + (pi,−1(j) − γi). (28)

where γi ≡ log ϵ
ϵ−1

1
1−τ i

, ai,0 ≡ logAi,0 and γi,0 ≡ log Γi,0 − γi.

Without loss of generality, normalize pi,−1(j) = log ϵ
ϵ−1 ; then given the realizations of aggregate

and sectoral variables, the magnitude of the price gap of the specific firm j is pinned down by the

realization of its idiosyncratic quality innovation εi,0(j). We can use the approximate profit gain

in Lemma 1 to determine the sector-specific inaction regions, defining the ranges for idiosyncratic

innovations under which the firm will choose not to adjust:

Lemma 2 (Inaction region). Suppose Assumptions 1-6 hold. Given the realizations of aggregate

and sectoral variables and normalizing pi,−1(j) = log ϵ
ϵ−1

1
1−τ i

, let εi,0 and εi,0 be thresholds such

15



Figure 1: Networks and inaction regions

(a) Dampening under monetary shocks

(b) Cascades under TFP/markup shocks

Notes: the figure shows the contribution of production networks to the movements in the inaction region follows
monetary and aggregate TFP shocks, respectively.

that a firm in sector i will not adjust the price if it draws an innovation in [εi,0, εi,0]. Then,

[σiεi,0, σiεi,0] = −m0 − γi,0 + ai,0 −
N∑

k=1
ωik log P̃k,0 ±

√
2κi

ϵ− 1 , (29)

where m0 ≡ log(M0/M−1), γi,0 ≡ log Γi,0 − γi, ai,0 ≡ logAi,0 and γi ≡ log ϵ
ϵ−1

1
1−τ i

.

Given the realizations of monetary, productivity, and desired markup shocks, which are indepen-

dent of the presence of input-output linkages, we can now derive the effect of removing input-output

linkages (ωi,k = 0,∀i, k) on the firm-level decision to adjust its price.

Consider an increase in the money supply m0 > 0. According to Lemma 2, this increase in

money supply, ceteris paribus, implies a leftward shift of the inaction region. In other words, more

extreme (negative) realizations of idiosyncratic innovations are needed to prevent adjustment. At

the same time, Lemma 2 also implies that as long as the pass-through of the money supply to
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sectoral prices is incomplete (log P̃k,0 < 0, ∀k), the presence of networks attenuates the leftward

shift of the inaction region for all firms that have a non-zero cost share of intermediate inputs. As

a result, this weakly lowers the probability of price adjustment for any firm, creating dampening

in price changes. Panel (a) of Figure 1 provides a graphical illustration of this mechanism. In the

following proposition, we formalize the notion that, all else fixed, networks decrease the firm-level

probability of adjustment following a monetary shock, thus dampening cascades:

Proposition 1 (Cascades and demand shocks). Suppose Assumptions 1-6 hold. Consider an in-

crease in the money supply m0 > 0. Then, as long as the pass-through of the money supply to

sectoral prices is incomplete (log P̃k,0 < 0,∀k), production networks (weakly) lower the probability

of adjustment for any firm following the monetary shock.

In contrast, consider a sectoral productivity deterioration ai,0 < 0. According to Lemma 2, this

productivity change creates a leftward shift of the inaction region for all firms in sector i. Moreover,

as long as this productivity decline leads to a rise in price indices of other sectors (log P̃k,0 > 0, ∀k),

then Lemma 2 also implies that networks further amplify the leftward shift in the inaction region

for all firms in sector i, as long as the cost share of intermediates in that sector is non-zero. In other

words, even more extreme (negative) realizations of idiosyncratic innovations are needed to justify

non-adjustment. As a result, contrary to the case of monetary shocks, the presence of networks

weakly raises the probability of price adjustment for any firm in sector i, thus amplifying pricing

cascades. Panel (b) of Figure 1 illustrates this mechanism graphically.

Note that an identical mechanism of cascades also applies in the case of shocks to desired

markups. Following an increase in desired markups, γi,0 > 0, there is a leftward shift in the

inaction region, which is further moved to the left as long as the markup shock is inflationary in

the aggregate (log P̃k,0 > 0, ∀k). In the following, we formalize the notion that networks create

cascades in price adjustment decisions after TFP and markup shocks:

Proposition 2 (Cascades and supply shocks). Suppose Assumptions 1-6 hold. Consider a decrease

in sectoral TFP ai,0 < 0 or an increase in sectoral desired markup γi,0 > 0. Then, as long as such

shocks lead to a rise in price indices of other sectors (log P̃k,0 > 0, ∀k), production networks (weakly)

increase the probability of adjustment for any firm in any other sector.

In addition, note that a productivity or desired markup shock in a sector i can, in principle,
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increase the probability of price adjustment for firms in any other sector i′. This is true as long

as the price indices of sectors used as suppliers by sector i′ (k : ωi′k > 0) rises following the

productivity deterioration or markup increase in sector i.

3.2 Simple examples

We now solidify the intuition behind the formal results on cascades with the aid of several exam-

ples. In particular, we return to the dynamic version of our model, but consider concrete network

arrangements in order highlight the key mechanisms. To facilitate further comparability between

monetary and TFP shocks, for the remainder of this subsection we assume that both follow AR(1)

in levels with persistence ρ ∈ (0, 1).

Example 1 : roundabout production economy

First, we consider a one-sector (N = 1) roundabout economy, where firms trade intermediate inputs

with other firms in the same sector, as in the work of Basu (1995). Figure 2(a) illustrates such

an arrangement graphically. Naturally, in the limit where we set the cost share of labor to one

(α1 = 1), the one-sector economy collapses to that of Golosov and Lucas (2007), where firms only

use labor in production.

We use this simple example to illustrate how the presence of the network affects the response of

the aggregate fraction of adjusting firms to monetary and productivity shocks of different sizes. As

can be seen in the bottom panel of Figure 2(a), when there are no networks (α1 = 1), monetary and

productivity shocks are isomorphic in their effect on aggregate frequency. However, as soon as we

add the roundabout production structure (α1 < 1), the aggregate adjustment frequency responds

much faster to productivity shocks relative to monetary shocks. This is because under monetary

shocks, the network structure shrinks the desired price changes and the price gaps, thus dampening

cascades, which leads to slower increases in the aggregate fraction of adjusters. In contrast, under

TFP shocks, the presence of networks expands movements in desired price changes and hence the

price gaps, thus amplifying cascades at the firm-level, leading to faster increases in the aggregate

fraction of adjusters.
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Figure 2: Three example economies

(a) Roundabout production economy (b) Two-sector vertical chain economy (c) N -sector vertical chain economy

Notes: the figure shows three example economies, as well as the responses of aggregate frequency of adjustment to
monetary and TFP shocks.

Example 2 : two-sector vertical chain economy

For our second example, we consider a two-sector economy (N = 2), which illustrates how the

position of a sector in the network affects the transmission of sectoral productivity shocks to

aggregate frequency. The top panel of Figure 2(b) presents the arrangement graphically: the

upstream sector (U) only uses labor in production and supplies its output as an intermediate input

to the downstream sector (D). Importantly, the two sectors have the same size in steady-state

equilibrium, in the sense of having identical (cost-based) Domar weights. Moreover, their pricing

moments are also the same in steady-state, hence their only ex ante difference comes from the

position in the network.

We now consider sector-specific productivity shocks of different sizes and record their effect on

the aggregate adjustment frequency. In the bottom panel of Figure 2(b) one can see that large
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shocks to the upstream sector deliver faster increases in the aggregate frequency, relative to equally

sized shocks to the downstream sector. This is another way in which networks amplify cascades:

shocks to the upstream sector affect the marginal cost, the optimal reset price, and hence the price

gaps, of the downstream sector. As a result, shocks to the upstream sector trigger extensive margin

price adjustment decisions both in the upstream and in the downstream sector. The opposite,

however, is not true: shocks to the downstream sector only affect price gaps in the downstream

sector itself and do not affect price adjustment decisions in the upstream sector.

This simple example illustrates an important point: when it comes to the effect of a sector-

specific shock on aggregates, the position of the shocked sector in the network can matter over and

above its size. In particular, here shocks to the upstream sector have a stronger effect on aggregate

adjustment frequency, even though it is as large as the downstream sector in steady state. This

runs contrary to a number of established network-irrelevance results, where the presence of networks

make no difference over and above its effect on equilibrium size (Hulten, 1978; Baqaee and Farhi,

2020).

Example 3 : N-sector vertical chain economy

With our third example, we would like to illustrate how the interaction between the network position

and pricing cascades extends beyond the two-sector arrangement. In particular, as depicted in the

top panel of Figure 2(c), we consider an N -sector vertical chain economy. In such a setup, Sector 1

is the most upstream sector, which uses labor to produce a good that is supplied as an intermediate

to Sector 2, which then supplies intermediates to Sector 3 and so on. Sector N is the least upstream

sector, as it sells everything it produces as a final good to households. As before, all the N sectors

have the same steady-state pricing moments and are equally big in the sense of having identical

(cost-based) Domar weights. The only relevant dimension of heterogeneity is their position in the

network.

In the bottom panel of Figure 2(c), we set N = 10 and plot the aggregate frequency response to

large (−20%) sector-specific productivity shock to each sector. One can see that the shock to the

most upstream Sector 1 delivers the largest increase in aggregate frequency. Moreover, the aggregate

frequency response falls monotonically as we move down the supply chain and consider increasingly

less upstream sectors. As before, this represents the interaction of networks with pricing cascades:
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shocks to more upstream sectors affect, directly or indirectly, marginal costs and hence price gaps

in a larger number of sectors, thus triggering a bigger increase in aggregate adjustment frequency.

4 Full model with Euro Area data

We now move to the quantitative analysis of our full dynamic model. In this section we outline

the strategy to bring our model to the Euro Area data. In particular, we discipline the structural

parameters of the model in order to make it consistent with the Euro Area economy disaggregated

to 38 sectors. The household preferences and firms’ production function parameters are estimated

to match the observed consumption and input-output shares in the World Input-Output Tables. As

for the sector-specific menu costs and variances of idiosyncratic shocks, those are estimated to fully

match the observed sectoral frequencies and standard deviations of price changes in the PRISMA

dataset for the Euro Area.

4.1 Parameterization and Calibration

We discipline the structural parameters of our model to the Euro Area data at monthly frequency.

Table 1 summarizes our calibration.

For the aggregate parameters, the households’ discount factor is set to β = 0.961/12 as in

Golosov and Lucas (2007). The within-sector elasticity of substitution across varieties is ϵ = 3 as

in Midrigan (2011). We assume that aggregate money supply follows a random walk with drift:

logMt = π + logMt−1 + εM
t , (30)

where π is the trend growth rate for money supply, which is also the equilibrium level of trend

inflation; εM
t is an i.i.d. mean zero money growth innovation. The steady-state money growth rate

is π = 2% per year, in line with the inflation target of the European Central Bank (ECB). As for

the sectoral total factor productivities, we assume those to follow an AR(1) process:

logAi,t = ρ logAi,t−1 + εA
i,t, (31)

where ρ ∈ (0, 1) is the persistence parameter and εA
i,t is an i.i.d. mean zero sector-specific produc-
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tivity innovation. We set the persistence of TFP processes equal to ρ = 0.9.

We calibrate our economy to 38 production sectors of the Euro Area economy, following the

classification in the World Input-Output Database (WIOD). The final consumption shares {ωC
i }N

i=1

and the input-output cost shares {ωik}N
i,k=1 are taken from the 2014 input-output tables for the Euro

Area based on WIOD.5 Regarding the sectoral cost shares of labor {αi}N
i=1, they are taken from

the 2014 National Income Accounts for the Euro Area, published by the EU KLEMS database.6

In order to capture the possibility that wages are also sticky, we introduce an auxiliary labor union

sector. In particular, we assume that the labor union sector is the only one that directly purchases

labor from households and then sells it to the rest of the sectors as an intermediate input. In

general, we work with N = 39 sectors: 38 production sectors and the auxiliary labor union sector.

Unlike in Section 3.1 above, we do not allow time variation in the sectoral menu costs. Instead,

we consider the more conventional fixed menu cost setup (Golosov and Lucas, 2007), allowing the

menu costs to vary in the cross section only:

Assumption 6′ (Fixed menu costs). The sector-specific menu cost follows the following process:

κi,t = κi, where κi is a sector-specific constant.

This leaves us with two parameters per sector to estimate: the menu cost κi, and the standard

deviation of firm-level shocks σi. In line with evidence in Gautier et al. (2023), we assume that the

sectors “Coke and Petroleum Products” and “Mining and Quarrying” have fully flexible prices at

monthly frequency. We calibrate the price setting parameters in the labor union sector to match

the frequency and standard deviation of nominal wage changes in Costain et al. (2022). For the

remaining 36 sectors, we estimate the parameters {κi}N
i=1 and {σi}N

i=1 to match the frequency and

standard deviation of price changes in each sector in the Euro area, taken from Gautier et al.

(2024), in steady state.

We also parameterize two auxiliary economies, for the purpose of benchmarking them against

our baseline setup. First, we estimate the firm-level pricing parameters in a counterfactual econ-

omy without input-output linkages, for the same set of sector-specific frequencies and standard
5We make use of the EMuSe Calibration Toolkit developed by Hinterlang et al. (2023), which constructs the Euro

Area input-output table by combining accounts of individual countries in the WIOD.
6The database can be accessed at https://economy-finance.ec.europa.eu/

economic-research-and-databases/economic-databases/eu-klems-capital-labour-energy-materials-and-service_
en.
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Table 1: Parameter values (Euro Area, monthly)

Aggregate parameters

β 0.961/12 Discount factor (monthly) Golosov and Lucas (2007)
ϵ 3 Goods elasticity of substitution Midrigan (2011)
π 0.02/12 Trend inflation (monthly) ECB target
ρ 0.90 Persistence of the TFP shock Half-life of seven months

Sectoral parameters

N 39 Number of sectors Data from Gautier et al. (2024)
{ωC

i }N
i=1 Sector consumption weights World IO Tables

{ωik}N
i,k=1 Sector input-output matrix World IO Tables

{αi}N
i=1 Sector labor weights World IO Tables

Firm-level pricing parameters

{κi}N
i=1 Menu costs Estimated to fit frequency, std dev.

{σi}N
i=1 Std. dev. of firm-level shocks of ∆p from Gautier et al. (2024)

deviations of price changes in steady state. Such an economy features no linkages across the 38

production sectors, which are only linked to the labor union sector instead (ωi,LU = 1, ∀i ̸= LU).

Second, we consider an economy with input-output linkages, but featuring time-dependent price

setting as in Calvo (1983). The latter setup corresponds to having constant sector-specific pricing

hazards (ηi(p) = ηi, ∀i) and zero menu costs (κi = 0, ∀i). We therefore estimate sector-specific

constant hazards and variances of idiosyncratic shocks to match the same sectoral frequencies and

standard deviations of price changes as in the steady state of our baseline setup.

4.2 Sectoral characteristics

In order to better understand the cross-sectional properties of the sectors we consider in our quan-

titative setup, we introduce two different measures of sectoral centrality. First, in order to capture

the full degree to which a sector is important as a buyer of intermediate inputs from the rest of the

economy, we use the following customer centrality metric:

Customer Centralityi ≡
N∑

j=1
(I − Ω)−1

ij − 1 (32)
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where [Ω]ij = ωij is the matrix of input-output cost shares. Intuitively, the customer centrality

measure captures the total reliance of a sector on intermediate inputs, both direct and indirect.

Naturally, if a sector only uses labor in production, its customer-centrality measure collapses to zero.

Table B.1 in the Appendix reports the customer centrality measure for each of the 38 production

sectors. The two sectors with the largest customer centrality are ”Coke and petroleum products”

(4.35) and ”Chemicals and chemical products” (4.25), followed by ”Paper and paper products”

(3.97) and ”Food and beverages” (3.94), while the smallest customer centrality is in ”Education”

(1.55).

Second, in order to capture the degree to which a sector is important as a provider of interme-

diate inputs to the rest of the economy, we introduce the following supplier centrality metric:

Supplier Centralityi ≡
N∑

j=1
(I − ΩT )−1

ij − 1 (33)

The supplier centrality measure captures the total importance of a sector as a seller, either directly

or indirectly, of intermediate inputs to the rest of the economy. The value of supplier centrality for

each of the 38 production sectors is reported in Table B.1. The distribution of supplier centrality

features a heavy right tail, with three sectors having a disproportionally larger measure than the

rest: those are ”Administration and support” (7.59), ”Legal, accounting, management” (6.51) and

”Chemicals and chemical products” (6.18). The sector with the smallest supplier centrality is

”Fishing and aquaculture” (0.11).

5 Quantitative results: monetary shocks

For our first set of quantitative results, we present the general equilibrium dynamics of our economy

following monetary shocks of different sizes. First, we show that the aggregate repricing frequency

response to large monetary shocks is substantially attenuated by the presence of networks, so that

the effect of cascades dampening is quantitatively sizable . As a result, the economy with networks

features much stronger monetary non-neutrality, which manifests in a substantial flattening of the

fully non-linear Phillips Curve. Second, we study sectoral frequency and price responses, and

show that,ceteris paribus, sectors with a larger customer centrality exhibit larger movements in the

fraction of adjusting firms and feature more size-dependence in their sectoral price responses.
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5.1 Aggregate dynamics

Figure 3(a) shows the scaled (per % shock) responses of aggregate CPI inflation, aggregate GDP,

as well as the unscaled fraction of adjusting firms to monetary shocks of two different magnitudes:

1% and 10%. Two key features are apparent. First, the scaled response of inflation increases in the

size of the monetary shock, which represents a strong size effect. As can be seen in the frequency

panel, this happens as the fraction of adjusting firms increases rapidly with larger shocks, reaching

almost 30% for the 10% monetary shock.

Second, as shown in Figure 3(b), the contribution of production networks to the magnitudes

of responses differs markedly between shocks of different sizes. For the small 1% shock, networks

dampen the response of inflation and, as a result, amplify the response of aggregate GDP. This is

the effect of production networks known from the prior literature, which employs linearized models

with time-dependent pricing: input-output linkages create pricing complementarities, dampening

inflation and amplifying the consumption response. At the same time, for the large 10% shock, the

amplification of the aggregate GDP response due to networks is much greater. Importantly, this

is because the 10% monetary shock delivers a markedly smaller increase in the repricing frequency

relative to the economy without networks, which is the cascades dampening effect introduced earlier.

In Figure 4(a), we further investigate the interaction between networks and the response of

repricing frequency by looking at a wide range of shock sizes and signs. One can see that networks

consistently dampen the response of aggregate repricing frequency to monetary shocks of all sizes

that we consider. For example, following a 10% monetary expansion, the aggregate frequency

rises close to 45% in the multi-sector economy without networks, but increases only to 27% in an

otherwise identical economy with input-output linkages.

In order to further quantify the contribution of shock dampening to aggregate inflation re-

sponses, we decompose the effect of the money shock on inflation into three channels, following

Blanco et al. (2024a) and Costain and Nakov (2011). Note that, up to a first-order approximation,

inflation in the absence of the shock is equal to

π =
∫
p̃η(p̃)dg(p̃) (34)

where p̃ is the desired log price change, η(p̃) is the adjustment hazard, and g(p̃) is the ergodic
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Figure 3: Effect of networks on aggregate responses

(a) Responses of aggregates to monetary shocks

(b) Network contribution to aggregates’ responses

Notes: the figure shows the responses of aggregate GDP, inflation and frequency of adjustment in response to mon-
etary shocks of different sizes.
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Figure 4: Aggregate frequency of adjustment after monetary shocks

(a) Aggregate frequency response (b) Contribution of the extensive margin

Notes: the figure shows the impact responses of aggregate frequency of adjustment to monetary shocks of different
sizes, with and without networks.

distribution of desired price changes across firms and sectors. The money shock increases all firms’

desired price changes to p̃+α, where α = p∗
1 − p∗ + ∆m and where p∗

1 is the average across sectors

of the log reset price in the first period after the money shock and p∗ is the average across sectors

of the log reset price in the absence of the shock. The money shock changes the inflation rate

to π1 =
∫

(p̃ + α)η1(p̃)dg(p̃) where η1(p̃) is the new adjustment hazard after the shock. Following

Blanco et al. (2024a), the change in inflation can then be decomposed into

∆π = α

∫
η(p̃)dg(p̃)︸ ︷︷ ︸
Calvo

+α

∫
(η1(p̃) − η(p̃))dg(p̃)︸ ︷︷ ︸

extensive

+
∫
p̃(η1(p̃) − η(p̃))dg(p̃)︸ ︷︷ ︸

selection

. (35)

In Figure 4b we show the resulting decomposition of the differential inflation responses in our

model with networks compared to that without networks. The difference between the network and

no-network cases is explained mainly by the selection effect for smaller shocks, and by the extensive

margin component for shocks greater than 5 percent in absolute value. Therefore, for large shocks,

most of the network contribution to the slowing down of the inflation response works through the

dampening in pricing.

The dampening effect of networks on the repricing frequency has important implications for the

responses of CPI inflation and aggregate consumption to large monetary interventions. In Figure
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Figure 5: Inflation and GDP responses to monetary shocks

(a) Impact inflation response (b) Impact GDP response

Notes: the figure shows the impact responses of inflation and GDP to monetary shocks of different sizes, in different
configurations of the model.

5 (a), we show that as the size of the monetary shocks increases, inflation in our baseline economy

rises in a non-linear fashion: a 5% shock delivers 2% inflation on impact, whereas tripling the shock

to 15% delivers a five-fold increase of inflation to 10%. At the same time, the figure also shows that

an otherwise identical economy without networks features inflation rising even faster with larger

monetary shocks. The fact that inflation rises relatively more slowly in the economy with networks

reflects mainly the slower response of the fraction of adjusters, as documented in Figure 4. In order

to quantify the importance of nonlinearity and state-dependent pricing, in Figure 5 (a) we also

consider a version of our model with time-dependent pricing (Calvo, 1983), calibrated to match the

sectoral frequencies of adjustment in steady state. Under such a time-dependent setup, even when

solved fully non-linearly, inflation is rising more slowly as the monetary shock gets larger. The

latter reflects the contribution of both the selection effect (for smaller shocks) and the extensive

margin effect (for larger shocks) in delivering faster pricing increases in the state-dependent pricing

model.

Figure 5 (b) shows that in the baseline economy with networks, the aggregate consumption

response is hump-shaped in the size of monetary shocks and is maximized following a 12% monetary

expansion, delivering an increase of almost 6%. At the same time, the equivalent economy without

networks has its consumption response maximized following a 5% monetary shock, corresponding
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Figure 6: Output amplification

Notes: the figure shows the contribution of networks to the impact responses of GDP to monetary shocks of different
sizes.

to a smaller increase of just over 3%. The higher maximal response of consumption under networks,

as well as the fact that it occurs following a larger monetary shock, reflect the slower response of

the fraction of adjusters, as documented in Figure 4. Figure 5 (b) (a) also shows the responses in

the alternative setup with time-dependent Calvo (1983) pricing. With time-dependent pricing, one

can see that even for very large shocks and a non-linear solution, the time-dependent setup has

aggregate consumption rise quasi-linearly in the size of the monetary shock. Moreover, the non-

linear time-dependent pricing results deviate substantially from the non-linear state-dependent

solutions.

In order to formally measure the contribution of networks to the output response, in Figure

6 we construct, for each size of the monetary shock, the difference between the output response

with and without networks, as a fraction of the former. One can see that for small monetary

shocks, the contribution is in the neighborhood of 10-20%. Such magnitudes are consistent with

prior estimates of network contributions in linearized time-dependent setups: for example, Ghassibe

(2021) estimates the contribution to be just below 30% in such a setup. At the same time, one can

also appreciate that as the size of the shock increases, the contribution of the network increases

dramatically, reaching almost 80% for a 15% monetary expansion. This reflects the fact that for

such large shocks, the fraction of adjusters rises much less in the economy with networks, delivering

a much larger aggregate pass-through to inflation and hence a larger consumption response.
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Figure 7: Phillips curves

Notes: the figure shows the fully non-linear Phillips curves in the various configurations of the model.

Figure 7 illustrates the trade-off between output stimulus and inflation under monetary in-

terventions of different sizes. In particular, the figure traces a non-linear “Phillips curve” in the

cumulative output gap–CPI inflation space, under different model configurations. In the network-

based baseline economy, a cumulative output stimulus up to 5% or so can be achieved with little

inflationary response, reflecting a locally flat Phillips curve. However, in a counterfactual economy

without networks, the Phillips curve is steeper for small shocks and low output gap values. This

suggests “flattening” of the Phillips curve due to networks, documented in previous studies under

time-dependent pricing. Moreover, once the shocks are sufficiently large, the Phillips curve with-

out networks becomes backward bending, with a maximum possible cumulative output stimulus

of around 15%. This happens because, under very large shocks, the fraction of adjusters increases

much faster in the economy without networks, as documented in Figure 4.

5.2 Disaggregated dynamics

Having analyzed the behavior of macroeconomic aggregates, we now move to studying sector-level

behavior following monetary shocks of different sizes.
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Figure 8: Sectoral responses vs total intermediates exposure

(a) Sectoral frequency responses (b) Size-dependence of sectoral prices

Notes: the figures plots the responses of frequencies and sectoral price indices to a large monetary shock.

To better understand the role production networks play in dampening frequency responses, in

Figure 8 (a) we plot a linear relationship between the sectoral frequency responses and a measure of

customer centrality, given by the sum of rows of the Leontief inverse matrix, representing the total

(direct and indirect) exposure of a sector to purchases of intermediate inputs from other sectors.

As can be seen, a higher centrality of customers is associated with a smaller increase in frequency

after the 10% monetary shock.

Similarly, we also investigate the association between customer centrality and the degree of size

dependence in sectoral price responses to small vs. large monetary shocks. In Figure 8 (b) we

plot a measure of size dependence in sectoral price responses, given by the difference in normalized

responses to 10% and 0.1% monetary shocks, against the measure of customer centrality. Consis-

tently with our mechanism, a higher total exposure to intermediate inputs lowers size dependence

in the sectoral price response.

6 Quantitative results: TFP shocks

For our second set of quantitative results, we turn to the general equilibrium dynamics following

aggregate and sector-specific total factor productivity (TFP shocks). First, we show that following

large aggregate TFP shocks, the economy with networks features much stronger response of the
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repricing frequency, implying that the cascades amplification channel is indeed quantitatively im-

portant. The amplification of cascades in turn generates much stronger response of aggregate for

a given shock, relative to the otherwise identical economy with time-dependent pricing. We also

show that sectoral with a larger customer centrality exhibit stronger responses of the fraction of ad-

justers and more size dependence in sectoral price responses following large aggregate TFP shocks.

Second, our results suggest that TFP shocks specific to sectoral with a large supplier centrality

lead to more sizeable movements in the aggregate repricing frequency.

6.1 Aggregate TFP shocks

6.1.1 Aggregate dynamics

In Figure 9 (a), we report normalized responses of aggregate GDP and CPI inflation, as well as

the aggregate fraction of adjusters in response to two negative aggregate TFP shocks: -1% and

-10%. Just as with monetary shocks in the previous section, there is substantial size dependence:

for the -1% shock the normalized response of GDP is -1%, whereas it is just under -2% for the -10%

shock. At the same time, the normalized response of CPI inflation increases in the magnitude of

the aggregate TFP shock, implying that the aggregate price changes rise more than proportionally

in the size of the innovation. Quantitatively, the -1% shock generates a normalized impact response

of CPI inflation of 0.6%, whereas the -10% corresponds to a normalized response of almost 1.7%

on impact. Key to the observed size dependence is the endogenous response of the fraction of

adjusters: for the -1% shock it remains unchanged, whereas the larger -10% shock brings the

fraction of adjusters to almost 80%.

In order to understand the contribution of networks to the observed size dependence, in Figure

9 (b) we additionally document the responses to the same aggregate TFP in an otherwise identical

economy without networks. For the -1% shock, networks amplify the response of aggregate GDP by

a factor 2, while the normalized response of CPI inflation is nearly 0.3% without networks, compared

to 0.6% under networks. Significantly, for the larger shocks of -10%, the network amplification of

both aggregate consumption and CPI inflation is greater than under the small -1% shock. When it

comes to the response of inflation, this is the opposite of what we observed under monetary shocks,

where the amplification of inflation response was weakening as shocks became larger. To understand

the difference, it is instructive to look at the response of adjustment frequencies. One can see that
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Figure 9: Responses to aggregate TFP shocks

(a) Responses of aggregates to aggregate TFP shocks shocks

(b) Network contribution to aggregates’ responses

Notes: the figure shows the responses of aggregate GDP, inflation and frequency of adjustment in response to aggregate
TFP shocks of different sizes.
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Figure 10: Aggregate frequency responses to aggregate TFP shocks

(a) Aggregate frequency response (b) Contribution of the extensive margin

Notes: the figure shows the impact responses of aggregate frequency of adjustment to aggregate TFP shocks of different
sizes, with and without networks.

for the -10% shock, the fraction of adjusters increases substantially more in the economy with

networks. This is the exact opposite of what is observed under monetary shocks, in which networks

dampen the response of adjustment frequencies, and which represents the cascades effect.

In Figure 10(a), we further investigate the interaction between the aggregate repricing frequency

and the size of the aggregate TFP shock. Contrary to what we established for monetary shocks,

networks consistently and substantially amplify the response of the aggregate fraction of adjusters

to aggregate TFP shocks. For example, following a -10% aggregate TFP shock, the economy with

networks predicts a rise in the fraction of adjusters to 75%, while in an otherwise identical model

without networks the corresponding increase in the aggregate adjustment frequency is up to just

below 40%.

In Figure 10(b) we show the decomposition of the differential inflation responses in our model

with networks compared to the one without networks. The difference between the network and

no-network cases is explained mainly by the selection effect for smaller shocks, and by the frequency

component for aggregate TFP shocks greater than 3 percent in absolute value.

The fact that networks amplify the response of adjustment frequency to aggregate TFP shocks

also has notable implications for the dynamics of aggregate CPI inflation and GDP. In Figure 11

(a), we plot the impact response of aggregate CPI inflation to aggregate TFP shocks of different
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Figure 11: Inflation and output responses to aggregate TFP shocks

(a) Impact inflation response (b) Impact GDP response

Notes: the figure shows the responses of aggregate inflation and GDP to large aggregate TFP shocks under different
configurations of the model.

signs and sizes. The inflation response rises much faster in the economy with networks relative to

the no-network benchmark, being almost 3.5 times higher after a -10% shock. We also report the

inflation responses in an economy with networks, but with time-dependent (Calvo, 1983) pricing,

matching the same sectoral frequencies of adjustment in steady state. One can see that the economy

with time-dependent pricing predicts much smaller inflation responses.

6.1.2 Disaggregated dynamics

We now turn to analyzing the responses of individual sectors to aggregate TFP shocks of different

sizes.

In Figure 12(a), we plot a relationship between the sectoral frequency responses to the -10%

aggregate TFP shock and the measure of customer centrality. There is a clear positive relationship

between the two: ceteris paribus, increasing a sector’s total exposure to intermediate inputs in-

creases the fraction of firms in that sector that choose to adjust following the large aggregate TFP

shock.

The established relationship between frequency response and exposure to intermediate inputs

also has implications for the degree of size dependence in sectoral price dynamics. To see that, in

Figure 12(b) we plot the linear relationship between a measure of sectoral price size dependence,
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Figure 12: Sectoral responses to aggregate TFP shock vs total intermediates exposure

(a) Sectoral frequency responses (b) Size-dependence of sectoral prices

Notes: the figure shows the responses of sectoral frequency and sectoral price indices to large aggregate TFP shocks.

given by the difference between normalized responses to -10% and -0.1% aggregate TFP shocks,

and the sectoral customer centrality. The estimated relationship is positive, implying that a higher

total exposure to intermediate inputs is associated with a greater degree of size dependence in the

sectoral price response to a large aggregate TFP shock.

6.2 Sectoral TFP shocks

We now turn to the study of the transmission of sector-specific TFP shocks. We focus on the

transmission of large contractionary sectoral shocks, modeled as a -20% reduction in sector-specific

TFP.

In Figure 13(a), we show the responses of the aggregate fraction of adjusting firms to sector-

specific TFP shocks. First, for all sectors, networks amplify the aggregate frequency response to

sector-specific TFP shock. Second, for the majority of sectors, the effect of their own shock on

aggregate frequency is relatively modest and not much bigger than in the otherwise identical econ-

omy without networks. Third, for a number of sectors, such as “Food and Beverages”, “Chemicals

and Chemical Products” and “Warehousing”, networks deliver a substantial amplification of their

own TFP shocks on aggregate adjustment frequency.

We also study the response of aggregate CPI inflation to sectoral TFP shocks. Specifically,
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Figure 13: Aggregate responses to sectoral TFP shocks

Notes: the figure shows the responses of sectoral frequency and sectoral price indices to large aggregate TFP shocks.

in Figure 13(b) we depict normalized impact responses of aggregate CPI inflation to large (-20%)

negative sectoral TFP shocks. First, networks amplify the aggregate CPI inflation responses for

all sectoral TFP shocks. Second, just as with aggregate frequencies, for the majority sectors,

the network amplification is relatively modest. Third, some sectors are an exception: “Food and

Beverages”, “Mining and Quarrying” and “Chemicals and Chemical Products” have their own TFP

shocks affect the aggregate CPI inflation response substantially.

In Figure 14, we investigate the relationship between a sector’s supplier centrality and the

aggregate consequences of that sector’s TFP shocks. In Figure 14(a), one appreciates a very strong
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Figure 14: Aggregate responses to sectoral TFP shock vs sector centrality

(a) Sectoral frequency responses (b) Core inflation response

Notes: the figure shows the responses of sectoral frequency and sectoral price indices to large aggregate TFP shocks.

positive relationship between the effect of a sectoral TFP shock on the aggregate frequency of

adjustment and the centrality measure of that sector.

7 Extensions and robustness checks

In this section present three extensions to our baseline model. First, we consider a version of our

economy in the cashless limit, where the central bank conducts monetary policy by setting the

nominal interest rate, which endogenously responds to aggregate inflation and output according

to a Taylor rule. Second, we relax the assumption of fixed menu costs, and consider a version of

our economy with random free adjustment opportunities. Third, we extend our baseline model

with a constant elasticity of substitution (CES) aggregation across sectors, which allows for the

consumption and input-output shares to vary endogenously along the intensive margin.

7.1 Endogenous monetary policy

In our baseline results, the central bank conducts policy by setting an exogenous path of money

supply. We now consider an extension that adds realism to the monetary policy conduct. In par-

ticular, we use the cashless limit setup of Woodford (2004) and Gaĺı (2015), where the central bank

conducts policy by setting the level of the nominal interest rate, which also responds endogenously
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to movements in macroeconomic aggregates. In particular, we assume that the nominal interest

rate i follows a Taylor-type rule:

log(1 + i) = log(Π/β) + ϕπ log(ΠC
t /Π) + εi

t, (36)

where Π is the steady-state level of CPI inflation, ϕπ > 0 pins down the strength of the central

bank reaction to inflation deviations from target and εi
t is the monetary policy shock.

In Appendix D.2 we detail the full alternative version of our model in the cashless limit with

the Taylor-type rule for the nominal interest rate. Here we present an overview of the key results.

In Figure D.3 we report the responses of aggregate frequency and GDP to monetary shocks of

different sizes. Just as in the cash economy, networks dampen cascades: the response of aggregate

frequency is larger in the economy without networks. As before, this leads to stronger monetary

non-neutrality. As for supply shocks, in Figure D.4 we report the responses of aggregate frequency

and CPI inflation to aggregate TFP shocks of different sizes. Here we once again find that net-

works amplify cascades, since the frequency of adjustment responses stronger in the economy with

networks, adding non-linearity to the inflation response.

7.2 Random menu costs

In our baseline results, we work under the assumption that nominal price re-setting is subject to

a fixed sector-specific menu cost as in Golosov and Lucas (2007). In order to illustrate that our

novel channel of interaction between networks and pricing cascades is not limited to the fixed menu

cost setup, as an extension, we consider a random menu cost setup. More specifically, we use the

CalvoPlus setup of Nakamura and Steinsson (2010), which assumes that each period a randomly

selected fraction of firms within each sector draws a menu cost of zero, whereas the complementary

fraction is still subject to the fixed menu cost.

Formally, the CalvoPlus setup corresponds to the following functional form of the probability

of adjustment function ηi.t(.):

Assumption 4′ (CalvoPlus pricing). Consider a firm in sector i with the quality adjusted log
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relative price p at time t. Then the probability that this firm adjusts its nominal price is given by:

ηi,t(p) = ℓi + (1 − ℓi) × 1(Li,t(p) > 0) (37)

where ℓi is the sectoral probability of drawing a zero menu cost, 1(·) is the indicator function, and

Li,t (p) = max
p′

Vi,t
(
p′)− Vi,t(p) − κi (38)

is the gain from adjustment (or loss from inaction), net of the menu cost.

Crucially, as the non-zero menu cost tends to infinity (κi → ∞), the pricing problem collapses

to the time-dependent model of Calvo (1983), as only the randomly selected fraction ℓi in each

sector gets to adjust. At the same time, setting the probability of drawing a zero menu cost to zero

(ℓi = 0) collapses the pricing problem in that sector to the fixed menu cost setup of Golosov and

Lucas (2007).

In order to quantitatively discipline the probabilities of free adjustment, we estimate them so

that, in steady state around 75% of all price adjustments are free in each sector, following Nakamura

and Steinsson (2010) and Blanco et al. (2024b). As before, the non-zero menu costs and standard

deviation of idiosyncratic shocks are estimated to jointly match the sector-specific frequencies and

standard deviations of price changes in the Euro Area.

In Figure D.5 we study the responses of aggregate repricing frequency and GDP to monetary

shocks of different sizes under CalvoPlus pricing. In panel (a) one can see that the response of

aggregate repricing frequency, both with and without networks, is dampened relative to otherwise

identical economies with fixed menu costs. This is because the presence of free adjustment oppor-

tunities implies that much larger shocks are needed for firms to get pushed out of their inaction

region. At the same time, just like in the economy with fixed menu costs, the economy with net-

works features smaller frequency movements, which is the effect of dampening pricing cascades. As

for the GDP responses in panel (b), the economy with networks and random menu costs features

much stronger non-neutrality than an otherwise identical economy without networks.

As for the propagation of supply shocks, in Figure D.6 we report the responses of aggregate

repricing frequency and CPI inflation to aggregate TFP shocks of different sizes. Panel (a) show

that, as with monetary shocks, the introduction of random menu costs dampens the responses of
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frequency to aggregate TFP shocks, both with and without networks. At the same time, one can

see that conditional on CalvoPlus pricing, the economy with networks features stronger movements

in aggregate frequency, implying that networks amplify cascades, just as in the economy with fixed

menu costs. The amplification of pricing cascades creates a strong nonlinearity in aggregate CPI

dynamics, as can be seen in panel (b). For a -10% aggregate TFP shock, networks amplify the

aggregate CPI response from 0.03 to 0.08 on impact.

7.3 Alternative elasticity of substitution across sectors

In our baseline analysis, we use Cobb-Douglas aggregation across sectors, as well as a Cobb-Douglas

production technology. In this subsection we relax this assumption, and consider more general

constant elasticity of substitution (CES) aggregation across sectoral consumptions, as well as across

productive inputs.

First, we consider the following CES final consumption aggregator:

Assumption 2′ (CES consumption aggregation). The consumption aggregator C(·) is given by:

C(C1,t, ..., CN,t) =
(

N∑
i=1

ωC
i

1
θcC

θc−1
θc

i,t

) θc
θc−1

, (39)

where θc > 0 is the elasticity of substitution across sectoral varieties and
∑

i ω
C
i = 1, ωC

i ≥ 0,∀i.

Under this assumption, the equilibrium final consumption shares are given by:

ωC
i,t ≡ Pi,tCi,t

PC
t Ct

= ωC
i ×

P̃ 1−θc
i,t∑N

k=1 ω
C
k P̃

1−θc
k,t

(40)

which is constant in the special case when the sectoral consumption aggregator is Cobb-Douglas

(θc = 1). It follows that the final consumption shares are time-varying and depend on relative

movements in (real) sectoral price indices. Whenever final sectoral varieties are complements (θc ∈

(0, 1)), a relative increase in a sectoral price index leads to a rise in that sector’s final consumption

share, and vice versa whenever the varieties are substitutes (θc > 1).

Similarly, we also assume the following CES production technology:

41



Assumption 3′ (CES production technology). The production technology Fi(·) for a firm j in

sector i is given by:

Fi[Li,t(j), Xi,1,t(j), ..., Xi,N,t(j)] = 1
ζi,t(j)

×Ai,t ×
(
α

1
θi
i N

θi−1
θi

i,t (j) +
N∑

k=1
ω

1
θi
ikX

θi−1
θi

i,k,t (j)
) θi

θi−1

, (41)

where θi > 0 is the elasticity of substitution across inputs and αi +
∑

i ωik = 1, αi, ωik ≥ 0,∀i.

Such a production technology delivers the following equilibrium cost shares of labor and inter-

mediate inputs:

αi,t ≡ WtNi,t(j)
MCi,t(j)Yi,t(j)

= αi × 1
αi +

∑N
k′=1 ωik′P̃ 1−θi

k′,t

(42)

ωik,t ≡ Pk,tXi,k,t(j)
MCi,t(j)Yi,t(j)

= ωik ×
P̃ 1−θi

k,t

αi +
∑N

k′=1 ωik′P̃ 1−θi
k′,t

(43)

which are constant in the special case when the production function is Cobb-Douglas (θi = 1). As

with consumption aggregation, time variation in the input cost shares is pinned down by relative

movements in (real) input prices. As before, whenever inputs are complements, a relative increase

in the price of an input leads to an increase in the cost share of that input, and vice versa whenever

inputs are substitutes.

We now revisit our key quantitative exercises in an economy with fixed menu costs and CES ag-

gregation. We calibrate θc = θi = 0.001, ∀i, to consider an economy where goods are almost perfect

complements, capturing the potential difficulty of substituting both consumption and production

varieties. This may represent the supply chain disruptions that we observed during and after the

Covid pandemic across the globe.

In Figure D.7, we study the propagation of monetary shocks in our economy with CES aggre-

gation. First, once can see that, just like under Cobb-Douglas, networks dampen the response of

frequency to monetary shocks. In other words, our key mechanism of interaction of networks and

the extensive margin continues to hold under CES aggregation. Quantitatively, conditional on the

presence of networks, moving from Cobb-Douglas to CES with θc = θi = 0.001,∀i delivers slightly

larger frequency movements for expansions and slightly smaller frequency movements under mon-
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etary contractions. This is because under complements, sectors with rising prices see their input

and consumption shares rise, thus creating a pro-inflation asymmetry.

As for supply disturbances, in Figure D.8 we study the propagation of aggregate TFP shocks.

Just as in the economy with Cobb-Douglas, networks amplify the response of aggregate repricing

frequency to aggregate TFP shocks. Therefore, our key mechanism that networks amplify pricing

cascades continues to hold under CES aggregation. Also, as with monetary shocks, the fact that

sectoral varieties are complements creates a pro-inflation asymmetry: conditional on networks,

CES aggregation amplify frequency movements after negative TFP shocks, and dampens frequency

movements following positive TFP shocks.

8 Application: post-COVID inflation in the Euro Area

We would now like to assess whether the novel interaction between networks and pricing cascades

is important for quantitatively explaining macroeconomic dynamics in the Euro Area in the (post-

)Covid era. To do that, we feed four shock series into our model, corresponding to four major

drivers of business cycles: money supply, energy price movements, food price movements and the

dynamics of earnings in the labor market. We show that when subject to those four series, our

model successfully captures the rise in the aggregate repricing frequency as well as the surge in

consumer price inflation in the Euro Area. At the same time, removing either state-dependent

pricing or networks dramatically worsens the quantitative performance of the model.

8.1 Matching selected time series

In our exercise, we consider four exogenous shock series. First, we feed in the Euro Area nominal

GDP in order to approximate the aggregate money supply series {Mt}2024:6
2019:1. Second, we are going

to estimate an exogenous TFP process in the labor union sector {AUNION
t }2024:6

2019:1 so as to exactly

match the Euro Area nominal hourly earnings series in equilibrium. Third, we fit an exogenous

TFP process in the “Mining and Quarrying” sector {AENERGY
t }2024:6

2019:1 in order to exactly match the

real IMF Energy Price Index in equilibrium. Finally, we also feed in an exogeneous TFP series in

the “Crop and Animal Production” sector {AFOOD
t }2024:6

2019:1 in order to exactly match the real IMF

Food Price Index.
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Figure 15: Explaining the observed surge in frequency and inflation surge

(a) Baseline model: menu costs and networks

(b) Alternative models

Notes: the figure shows the model-implied changes in aggregate frequency of adjustment and aggregate CPI inflation
versus the actual observed values in the Euro Area. Panel (a) considers the baseline model with production networks,
whereas panel (b) considers an an otherwise identical economy without networks.

8.2 Explaining the surge in frequency and inflation

Figure 15 shows the actual vs. model-implied changes in aggregate frequency of adjustment and

aggregate CPI inflation in the Euro Area. In panel (a), one sees that the baseline non-linear

model with state-dependent pricing and production networks successfully produces a surge in the

aggregate frequency of adjustment of the magnitude observed in the Euro Area microdata. In

addition, the baseline model can also generate an increase in aggregate CPI inflation of the same

magnitude as observed in the actual data.

At the same time, as can be seen in panel (b) of Figure 15, an otherwise identical model without
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production networks fails to match the data, both when it comes to the frequency of adjustment

and when it comes to CPI inflation. One sees that the aggregate frequency of adjustment remains

essentially flat in the model without networks, apart from a minor uptick at the very beginning. At

the same time, the model without networks generates an inflation increase only up to 4% annualized,

while in the data it increased to as much as 10%.

9 Conclusions

In this paper, we develop and solve a novel quantitative dynamic general equilibrium model that

allows us to study the transmission of large aggregate and sector-specific shocks in economies with

realistic input-output linkages and fully optimal, state-dependent pricing decisions. Our frame-

work makes predictions about the interactions of production networks with pricing decisions at

the extensive margin, which is also quantitatively relevant for the dynamics of macroeconomic

aggregates.

For aggregate nominal shocks, such as a change in the money supply, production networks

shrink the magnitudes of desired price changes at the firm level, which in turn compresses the sizes

of price gaps for all firms. As a result, the presence of networks slows the extensive margin of

price adjustment decisions, lowering the response of the aggregate repricing frequency. At the same

time, large aggregate and sector-specific total factor productivity (TFP) shocks interact with the

production network in a manner opposite to that under monetary shocks. In particular, production

networks amplify firm-level desired price changes following TFP shocks, expanding the price gaps,

and making the decision to adjust more likely, ceteris paribus. As a result, large negative TFP

shocks can lead to fast increases in the aggregate repricing frequency, and to rapid inflationary

surges.
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A Proofs

Proof of Lemma 1. We want to find a second-order approximation of the firm-level profit function
D̃i,t(j) in the log quality-adjusted real price of that firm log P̃i,t(j) near the optimum log P̃ ∗

i,t. By
definition of the optimal reset price, ∂D̃i,t(j)

∂ log P̃i,t(j) |P̃i,t(j)=P̃ ∗
i,t

= 0. As for the second derivative, one can
show that:

∂2D̃i,t(j)
∂ log P̃i,t(j)2 =

[
(1 − τi,t)e(1−ϵ) log P̃i,t(j)(1 − ϵ)2 − ϵ2Q̃i,te

−ϵ log P̃i,t(j)
]

× P̃ ϵ
i,tYi,t. (A.1)

Evaluating the second derivative at log P̃ ∗
i,t, and after some algebra one obtains:

∂2D̃i,t(j)
∂ log P̃i,t(j)2 |P̃i,t(j)=P̃ ∗

i,t(j) = −(ϵ − 1)(1 − τi,t)
[
P̃i,t/P ∗

i,t

]ϵ−1
λi,t. (A.2)

Therefore, one can write the second-order approximation as:

D̃i,t = D̃∗
i,t + 1

2
∂2D̃i,t(j)

∂ log P̃i,t(j)2 |P̃i,t(j)=P̃ ∗
i,t(j) × [p̃i,t(j)]2 + O[p̃i,t(j)3], (A.3)

where p̃i,t(j) ≡ [log P̃i,t(j)−log P̃ ∗
i,t] is the firm-level price gap. Inserting the expression for the second

derivative, one obtains:

D̃∗
i,t − D̃i,t = 1

2(ϵ − 1)(1 − τi,t)
[
P̃i,t/P̃ ∗

i,t

]ϵ−1
λi,t × [p̃i,t(j)]2 + O[p̃i,t(j)3]. (A.4)

Proof of Lemma 2. Focusing on period t = 0, a firm adjusts its price if the profit gain from
adjustment exceeds the menu cost:

D̃i,0(j)∗ − D̃i,0(j) ≥ κi,0 (A.5)

Using the approximation for the profit gain in Lemma 1, as well as the menu cost form in Assumption
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6, one can further rewrite the adjustment condition as:

1
2(ϵ − 1)(1 − τi,0)

[
P̃i,0/P̃ ∗

i,0

]ϵ−1
λi,0 × [p̃i,0(j)]2 ≥ κi(1 − τi,0)[P̃i,0/P̃ ∗

i,0]ϵ−1λi,0, (A.6)

=⇒ [p̃i,0(j)]2 ≥ 2κi

ϵ − 1 . (A.7)

Using the expression for the price gap in (28), as well as the normalization pi,−1(j) = log ϵ
ϵ−1

1
1−τ i

,
the adjustment condition becomes:

∣∣∣∣∣−σiεi,0(j) − m0 − γi,0 + ai,0 −
N∑

k=1
ωik log P̃k,0

∣∣∣∣∣ ≥
√

2κi

ϵ − 1 . (A.8)

Therefore, the inaction region is given by:

[σiεi,0, σiεi,0] = −m0 − γi,0 + ai,0 −
N∑

k=1
ωik log P̃k,0 ±

√
2κi

ϵ − 1 , (A.9)

where m0 ≡ log(M0/M−1), γi,0 ≡ log Γi,0 − γi, ai,0 ≡ log Ai,0 and γi ≡ log ϵ
ϵ−1

1
1−τ i

Proof of Proposition 1. Before providing a proof for Proposition 1, it is useful to formally estab-
lish an auxiliary technical result:

Lemma A1. Define f+(x; c) ≡ Φ(c+x)−Φ(−c+x) and f−(x; c) ≡ Φ(c−x)−Φ(−c−x), where c > 0
is a parameter and Φ(.) is standard normal CDF. Then both f+(x; c) and f−(x; c) are decreasing in
x for all x > 0.

Proof. First, consider f+(x; c). Notice that f
′

+(x) = Φ′(c + x) − Φ′(−c + x) = ϕ(c + x) − ϕ(−c + x),
where ϕ(.) is standard normal PDF. Hence, f

′

+(0) = ϕ(c) − ϕ(−c) = 0. As for any x ∈ (0, c],
one can deduce that f

′

+(x) = ϕ(c + x)︸ ︷︷ ︸
<ϕ(c)

− ϕ(−c + x)︸ ︷︷ ︸
>ϕ(−c)

< 0. Further, for any x > c it follows that

f
′

+(x) = ϕ(c + x) − ϕ(−c + x) < 0, since standard normal PDF is decreasing in positive inputs. All
in all, we conclude that f

′

+(x) < 0 for all x > 0.
Similarly, f

′

−(x) = −Φ′(c − x) + Φ′(−c − x) = −ϕ(c − x) + ϕ(−c − x). As before, f
′

−(0) =
−ϕ(c) + ϕ(−c) = 0. For any x ∈ (0, c], f

′

−(x) = − ϕ(c − x)︸ ︷︷ ︸
>ϕ(c)

+ ϕ(−c − x)︸ ︷︷ ︸
<ϕ(−c)

< 0. As for any x > c,

f
′

−(x) = −ϕ(c − x) + ϕ(−c − x) < 0, since standard normal PDF is increasing in negative inputs. In
total, we conclude that f

′

−(x) < 0 for all x > 0.
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Armed with the additional result in Lemma A1, we are now ready to prove Proposition 1. Con-
sider a monetary expansion m0 > 0. The probability that a firm draws an idiosyncratic innovation
that lies in the inaction region following the monetary expansion is given by:

Pr(εi,0 ≤ εi,0(j) ≤ εi,0) = Φ
(

1
σi

√
2κi

ϵ − 1 − 1
σi

{
m0 +

N∑
k=1

ωik log P k,0

})

− Φ
(

− 1
σi

√
2κi

ϵ − 1 − 1
σi

{
m0 +

N∑
k=1

ωik log P k,0

})

= f−

(
1
σi

{
m0 +

N∑
k=1

ωik log P k,0

}
; 1

σi

√
2κi

ϵ − 1

)
, (A.10)

where f−(.) is defined in Lemma A1. Now, as long as the pass-through of the monetary expansion to
sectoral prices is incomplete, log P̃k,0 < 0, ∀k, it follows that m0 +

∑N
k=1 ωik log P k,0 < m0. Moreover,

since f−(.) is falling in its positive inputs, it immediately follows that:

f−

(
1
σi

{
m0 +

N∑
k=1

ωik log P k,0

}
; 1

σi

√
2κi

ϵ − 1

)
> f−

(
1
σi

m0; 1
σi

√
2κi

ϵ − 1

)
. (A.11)

Hence, ceteris paribus, the probability of drawing a shock in the inaction region following a monetary
expansion is higher in the economy with networks.

Similarly, consider a monetary contraction m0 < 0. The probability that a firm draws an id-
iosyncratic innovation that lies in the inaction region following the monetary contraction is given
by:

Pr(εi,0 ≤ εi,0(j) ≤ εi,0) = Φ
(

1
σi

√
2κi

ϵ − 1 + 1
σi

{
−m0 −

N∑
k=1

ωik log P k,0

})

− Φ
(

− 1
σi

√
2κi

ϵ − 1 + 1
σi

{
−m0 −

N∑
k=1

ωik log P k,0

})

= f+

(
1
σi

{
−m0 −

N∑
k=1

ωik log P k,0

}
; 1

σi

√
2κi

ϵ − 1

)
, (A.12)

where f+(.) is defined in Lemma A1. Now, as long as the pass-through of the monetary contraction
to sectoral prices is incomplete, log P̃k,0 > 0, ∀k, it follows that −m0 −

∑N
k=1 ωik log P k,0 < −m0.

Moreover, since f+(.) is falling in its positive inputs, it immediately follows that:

f+

(
− 1

σi

{
m0 +

N∑
k=1

ωik log P k,0

}
; 1

σi

√
2κi

ϵ − 1

)
> f+

(
− 1

σi
m0; 1

σi

√
2κi

ϵ − 1

)
. (A.13)
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Hence, ceteris paribus, the probability of drawing a shock in the inaction region following a monetary
contraction is higher in the economy with networks.

Proof of Proposition 2. Consider a productivity deterioration ai,0 < 0 and/or a rise in desired
markups γi,0 > 0 in sector i. The probability that a firm in sector i′ (which may or may not be the
same as i) draws an idiosyncratic innovation that lies in the inaction region following productivity
deterioration/markup increase in sector i is given by:

Pr(εi′,0 ≤ εi′,0(j) ≤ εi′,0) = Φ
(

1
σi′

√
2κi′

ϵ − 1 − 1
σi′

{
−ai′,0 + γi′,0 +

N∑
k=1

ωi′k log P k,0

})

− Φ
(

− 1
σi′

√
2κi′

ϵ − 1 − 1
σi′

{
−ai′,0 + γi′,0 +

N∑
k=1

ωi′k log P k,0

})

= f−

(
1

σi′

{
−ai′,0 + γi′,0 +

N∑
k=1

ωi′k log P k,0

}
; 1

σi′

√
2κi′

ϵ − 1

)
,

(A.14)

where f−(.) is defined in Lemma A1. Now, as long as the productivity deterioration/markup increase
in sector i leads to a rise in sectoral prices of all other sectors, log P̃k,0 > 0, ∀k, it follows that
−ai′,0 + γi′,0 +

∑N
k=1 ωik log P k,0 > −ai′,0 + γi′,0, ∀i′. Moreover, since f−(.) is falling in its positive

inputs, it immediately follows that:

f−

(
1

σi′

{
−ai′,0 + γi′,0 +

N∑
k=1

ωi′k log P k,0

}
; 1
σi′

√
2κi′

ϵ − 1

)
< f−

(
1

σi′
{−ai′,0 + γi′,0} ; 1

σi′

√
2κi′

ϵ − 1

)
.

(A.15)
Hence, ceteris paribus, the probability that a firm in sector i′ draws shock in the inaction region
following a productivity deterioration/markup increase in sector i is lower in the economy with
networks.

Similarly, consider a productivity improvement ai,0 > 0 and/or a fall in desired markups γi,0 < 0
in sector i. The probability that a firm in sector i′ (which may or may not be the same as i) draws an
idiosyncratic innovation that lies in the inaction region following productivity improvement/markup
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decrease in sector i is given by:

Pr(εi′,0 ≤ εi′,0(j) ≤ εi′,0) = Φ
(

1
σi′

√
2κi′

ϵ − 1 + 1
σi′

{
ai′,0 − γi′,0 −

N∑
k=1

ωi′k log P k,0

})

− Φ
(

− 1
σi′

√
2κi′

ϵ − 1 + 1
σi′

{
ai′,0 − γi′,0 −

N∑
k=1

ωi′k log P k,0

})

= f+

(
1

σi′

{
ai′,0 − γi′,0 −

N∑
k=1

ωi′k log P k,0

}
; 1

σi′

√
2κi′

ϵ − 1

)
,

(A.16)

where f+(.) is defined in Lemma A1. Now, as long as the productivity improvement/markup decrease
in sector i leads to a fall in sectoral prices of all other sectors, log P̃k,0 < 0, ∀k, it follows that
−ai′,0 + γi′,0 +

∑N
k=1 ωik log P k,0 < −ai′,0 + γi′,0, ∀i′. Moreover, since f+(.) is falling in its positive

inputs, it immediately follows that:

f+

(
− 1

σi′

{
ai′,0 − γi′,0 −

N∑
k=1

ωi′k log P k,0

}
; 1
σi′

√
2κi′

ϵ − 1

)
< f+

(
− 1

σi′
{ai′,0 − γi′,0} ; 1

σi′

√
2κi′

ϵ − 1

)
.

(A.17)
Hence, ceteris paribus, the probability that a firm in sector i′ draws shock in the inaction region
following a productivity deterioration/markup increase in sector i is lower in the economy with
networks.

Note that while we provide a proof for sector-specific productivity/markup shocks, results are
equivalent for aggregate productivity/markup shocks. This is the case since an aggregate productivity
shock a is merely a combination of equally-sized sector-specific productivity shocks ai = a, ∀i, and
similarly for an aggregate markup shocks.
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B Additional calibration details (Euro Area)

Table B.1: Sectors with Consumption Weights, Suppliers, and Customers Centrality

Sector Name Consumption Supplier Customer
Share Centrality Centrality

Crop and animal production 0.0290 2.1266 3.4452
Fishing and aquaculture 0.0039 0.1070 3.2103
Mining and quarrying 0.0051 2.5263 3.1919
Food and beverages 0.1430 3.2264 3.9448
Textiles, clothes, leather 0.0403 1.4829 3.6296
Wood and wooden products 0.0044 1.3072 3.6121
Paper and paper products 0.0079 2.6301 3.9664
Printing and recorded media 0.0035 1.0667 3.3331
Coke and petroleum products 0.0398 3.0308 4.3485
Chemicals and chemical products 0.0162 6.1838 4.2462
Pharmaceuticals 0.0140 0.7374 3.4977
Rubber and plastic 0.0088 2.0056 3.7245
Non metallic minerals 0.0066 0.9865 3.3615
Metal products 0.0081 3.2480 3.1201
Computer and electronics 0.0175 1.9379 3.2884
Electrical equipment 0.0115 1.4046 3.3162
Machinery 0.0066 2.1823 3.3086
Motor vehicles 0.0514 1.5453 3.8439
Other transport 0.0057 0.8266 3.6416
Furniture 0.0224 0.6181 3.1077
Repair of machinery 0.0030 1.1591 2.9322
Land and pipeline transport 0.0398 3.6878 2.9952
Warehousing 0.0125 3.9047 3.1653
Accommodation and food services 0.1475 1.0026 2.9424
Publishing 0.0138 0.7571 2.9781
Movies, video, TV 0.0131 1.2814 2.9446
Computer and information services 0.0069 2.5026 2.4193
Financial services 0.0391 4.4781 2.6784
Insurance and pension 0.0502 1.4619 3.2978
Legal, accounting, management 0.0079 6.5099 2.2538
Architectural/engineering services 0.0037 2.0129 2.3319
Science and R&D 0.0020 0.2637 2.4415
Advertising and marketing 0.0020 1.1808 2.8706
Other professional activities 0.0069 0.9650 2.3978
Administration and support 0.0293 7.5903 2.4434
Education 0.0261 0.5206 1.5508
Healthcare 0.0743 0.2930 2.0342
Other personal services 0.0765 1.3971 2.3334
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Figure B.2: Distributions of supplier and customer centrality (Euro Area, 38 sectors)

(a) Supplier centrality (b) Customer centrality

Notes: the figure shows the responses of sectoral frequency and sectoral price indices to large aggregate TFP shocks.

C Details of the numerical algorithm

C.1 Steady state computation on a grid

For each sector, we solve the stationary Bellman equation and price distribution on an evenly

spaced grid of log prices Γ with step size ∆p, pj ∈
[
p, p+ ∆p, ..., p

]
, j = 1, .., J grid points, so

that Vj = V (pj). The expectation E [V (p− σεt+1 − π)|p = pj ] is calculated as T V where we define

transition matrix

T =



T1,1 T1,2 · · · T1,J

T2,1 T2,2 · · · T2,J

...
... . . . ...

TJ,1 TJ,2 · · · TJ,J


.

with elements

Tj,k =
∫ pk+1/2

p=pk−1/2

ψ

(
p− (pj − π)

σ

)
dp = Ψ

(
pk+1/2 − (pj−π)

σ

)
− Ψ

(
pk−1/2 − (pj − π)

σ

)
,

and where pk−1/2 ≡ (pk−1 + pk)/2, pk+1/2 ≡ (pk + pk+1)/2, ψ(·) is the standard normal probability

density function, and Ψ(·) is the standard normal cumulative distribution function.
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Figure B.3: Matching pricing moments for each sector

We also define the vectors

ϕ =



ϕ1

ϕ2
...

ϕJ


, η =



η1

η2
...

ηJ


, V =



V1

V2
...

VJ


, D =



D1

D2
...

DJ


The Bellman equation in matrix notation is then given by

V = D + β
[
T ((1 − η) · V ) + T

(
η ·
(
ϕ′V − κw

))]
where · denotes element-by-element multiplication. Vector ϕ distributes unit probability mass to
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grid points adjacent to p∗ according to the logit formula

ϕ = exp(V /χ)∑
Γ exp (V /χ)

with χ = 0.0005. Note that ϕ′V performs smooth maximization as in eq.(21).

To solve the problem for N sectors with input-output linkages, we use the following algorithm.

Start with a guess for the vector of steady-state price dispersions ∆k and sectoral taxes τk, then:7

1. Given π = π, compute the transition matrix T

2. Using W
M ≡ w = 1, compute8 ωik = ωik × (Pk/M)1−θi

αi+
∑N

k′=1 ωik′ (Pk′ /M)1−θi
= ωik

3. λ is given by eq.(15) and η by eq.(22)

4. With that, construct the profit matrix D as in eq.(19)

5. Iterate backward on the value function V above to convergence

6. To compute the distribution, iterate forward on

g = (1 − η) · (T ′g) + ϕη′ (T ′g
)
. (C.1)

until convergence of g.

7. Given the distribution, compute the residual vectors resid1 and resid2 as in

resid1 = ∆k − (Pk/M)ϵ
∫ 1

0

(
Pk(j′)
ζk(j′)M

)−ϵ

dj′, (C.2)

resid2 = Pk/M −
∫ 1

0

(
Pk(j′)
ζk(j′)M

)1−ϵ

dj′ (C.3)

8. Search for a vector of sectoral price dispersions and taxes such that resid → 10−14.
7We start with the guess ∆k = 1 and τk = −1/ϵ
8We are searching for taxes τk such that the steady state equilibrium is symmetric in sectoral prices, Pk/M = 1
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C.2 Solving for impulse-responses in sequence space

We compute fully non-linearly the responses to an MIT shock in the space of sequences, iterating

backward in time on the value function and forward in time on the law of motion of the distribution,

under the assumption of perfect foresight. The steps are similar to those for computing the steady

state; only this time we keep track of the sequences over time. We start by guessing sequences

for time t from 1 to T = 500 months, for sectoral prices and price dispersions (our starting guess

simply equals the steady-state value for these variables). The key assumption is that all stationary

variables must return to steady state by period T . Given this initial guess, we compute the price

of the final good and consumption over time using their definitions. Given that, we calculate λt

as in eq.(15). We compute the profits Dt as in eq.(19). Iterating backward in time from t = T to

t = 0, we solve for the value function as in eq.(21). Given the value function, we can compute the

gain from adjustment Lt and the adjustment hazard ηt. Once the backward iteration on the value

function reaches period 0, we start from the steady-state distribution and iterate forward in time

on the law of motion of the price distribution from period 1 until period T . Given the distribution,

we can compute via eq.(7) the sectoral price indices, and by

∆k,t ≡ (Pk,t/Mt)ϵ
∫ 1

0

(
Pk,t(j′)
ζk,t(j′)Mt

)−ϵ

dj′

the sectoral price dispersions. This provides us with an updated guess, with which we repeat the

previous steps until the change in the sequences (of sectoral prices and price dispersions) becomes

near zero.

D Additional results, extensions and robustness

D.1 Additional figures for main text

In Figure D.1 (a) we report the impact responses of sectoral fractions of adjusters to a 10% monetary

shock. First, for all sectors, the fraction of adjusters increases by more in the economy without

networks, relative to the baseline economy with input-output linkages. For some sectors, such as

“publishing”, the percentage of adjusters increases to almost 100%.

Beyond frequency responses, in Figure D.1 (b) we additionally document impact responses of
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sectoral price indices, normalized by the size of the monetary shock (10%). Like with the frequency

responses, the baseline economy with networks features a smaller response relative to an otherwise

identical economy without networks.

In Figure D.2(a) we report responses of sector-specific fractions of adjusting firms to a -10%

aggregate TFP shock. First, for all sectors the fraction of adjusters is larger in the baseline economy

with networks, relative to the otherwise identical economy without networks. Second, for a number

of sectors, such as “Warehousing” and “Land and Pipeline Transport” the fraction rises almost

to 100% following the shock. At the same time, for some other sectors, such as “Computer and

Information Services”, the frequency rises relatively modestly.

In Figure D.2(b) we additionally report the impact responses of sector-specific prices to a -10%

aggregate TFP shock. Importantly, for all sectors, the overall price response is larger in an economy

with networks, relative to the otherwise identical economy without networks.

D.2 Cashless limit

The representative household chooses a sequence of consumption, labor supply and one-period

nominal bond holdings to maximize expected lifetime utility:

max
{Ct,Lt,Bt}t≥0

E0

∞∑
t=0

βtu(Ct, Lt), (D.1)

subject to the period-by-period budget constraint

PC
t Ct +Bt = (1 + it−1)Bt−1 +WtLt +

N∑
i=1

∫ 1

0
Di,t(j)dj + Tt, (D.2)

where Ct is consumption, Lt is labor supply, Bt is the level of nominal bond holdings, Tt is the level

of lump-sum transfers from the government, Di,t(j) are the dividends received lump-sum from firm

j in sector i at time t, ΠC
t =

(
PC

t /P
C
t−1

)
is the gross CPI inflation rate, Wt is the nominal wage

and it is the nominal interest rate set by the central bank.

The nominal interest rate is set by the central bank according to the following Taylor rule:

log(1 + it) = log(Π/β) + ϕπ log(ΠC
t /Π) + εi

t, (D.3)
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where Π is the steady-state level of CPI inflation, ϕπ > 1 pins down the strength of the central

bank’s reaction to inflation deviations from target and εi
t is the monetary policy shock.

We assume the following form of households’ preferences:

u(Ct, Lt) = C1−σ
t − 1
1 − σ

− L1+φ
t

1 + φ
. (D.4)

Note that the Golosov-Lucas log-linear preferences which we use in the main text arise as a special

case when σ → 1 and φ = 0.

Given the presence of possibly non-zero steady-state inflation and the non-stationarity of the

quality processes, we appropriately normalize our variables. Unlike in the main text, where we

normalize by money supply, in the current cashless setting, we instead normalize by the aggregate

CPI price level PC
t−1. In particular, we let P̃i,t(j) ≡ Pi,t(j)

ζi,t(j)P C
t−1

be the quality-adjusted real price,

P̃i,t ≡ Pi,t

P C
t−1

be the real sectoral price, and W̃t ≡ Wt

P C
t−1

be the real wage. Then the equilibrium

conditions for the aggregate real variables are given by:

C−σ
t = βEt

[
1 + it
ΠC

t+1
C−σ

t+1

]
(D.5)

Cσ
t L

φ
t = W̃t/ΠC

t (D.6)

Lt = ΠC
t

Ct

W̃t

[
1 −

N∑
i=1

λi,t

(
1 − ∆i,t

Mi,t

)]
+

N∑
i=1

κi,t

∫ 1

0
ηi,t(j)dj. (D.7)

where λi,t is the sectoral Domar weight (sales) share, ∆i,t is the within-sector dispersion of real

prices and Mi,t is the sectoral markup, which are given by:

λi,t = ωC
i,t +

N∑
k=1

ωk,i,tλk,t
∆i,t

Mi,t
, ∆i,t ≡ P̃ ϵ

i,t

∫ 1

0
P̃i,t(j)−ϵdj, Mi,t ≡ P̃i,t

Q̃i,t
. (D.8)

The real sectoral price indices and marginal costs in turn satisfy:

P̃ 1−ϵ
i,t =

∫ 1

0
P̃i,t(j)1−ϵdj, Q̃i,t = Qi

[
W̃t, P̃1,t, ..., P̃N,t;Ai,t

]
, ΠC

t = PC
[
P̃1,t, ..., P̃N,t

]
.

(D.9)
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If the nominal price is not adjusted, then the quality-adjusted real price evolves according to:

pi,t(j) = pi,t−1(j) − σiεi,t(j) − πC
t−1, (D.10)

where πC
t−1 ≡ log ΠC

t−1.

The per-period real profits of a firm are given by:

D̃i,t(j) = P̃ ϵ−1
i,t

[
(1 − τi,t)P̃i,t(j) − Q̃i,t

]
P̃i,t(j)−ϵ × λi,t × Ct × ΠC

t . (D.11)

Finally, consider a firm with real quality-adjusted price p at the end of period t, and let p+ ≡

(p − σiεi,t+1(j) − πC
t ), where πC

t ≡ log ΠC
t . Then this firm’s real value at the end of period t is

given by the following Bellman equation:

Vi,t(p) = D̃i,t(p) +

+ βEt

[
{1 − ηi,t+1 (p+)}

C−σ
t+1

C−σ
t

ΠC
t

ΠC
t+1

Vi,t+1(p+)
]

+

+ βEt

[
ηi,t+1 (p+)

C−σ
t+1

C−σ
t

ΠC
t

ΠC
t+1

(
max

p′
Vi,t+1

(
p′)− κi,t+1W̃t+1

)]
.
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Figure D.1: Sectoral responses to a monetary shock

Notes: the figure shows the responses of sectoral frequency and sectoral price indices to large aggregate TFP shocks.
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Figure D.2: Sectoral responses to a aggregate TFP shock

Notes: the figure shows the responses of sectoral frequency and sectoral price indices to large aggregate TFP shocks.
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Figure D.3: Frequency and GDP responses to monetary shocks: Taylor rule

(a) Aggregate frequency response (b) Impact GDP response

Notes: the figure shows the impact responses of aggregate frequency of adjustment to monetary shocks of different
sizes, with and without networks.

Figure D.4: Frequency and inflation responses to agg. TFP shocks: Taylor rule

(a) Aggregate frequency response (b) Impact inflation response

Notes: the figure shows the impact responses of aggregate frequency of adjustment to monetary shocks of different
sizes, with and without networks.
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Figure D.5: Frequency and GDP responses to monetary shocks: CalvoPlus

(a) Aggregate frequency response (b) Impact GDP response

Notes: the figure shows the impact responses of aggregate frequency of adjustment to monetary shocks of different
sizes, with and without networks.

Figure D.6: Frequency and inflation responses to agg. TFP shocks: CalvoPlus

(a) Aggregate frequency response (b) Impact inflation response

Notes: the figure shows the impact responses of aggregate frequency of adjustment to monetary shocks of different
sizes, with and without networks.
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Figure D.7: Frequency and GDP responses to monetary shocks: CES aggregation

(a) Aggregate frequency response (b) Impact GDP response

Notes: the figure shows the impact responses of aggregate frequency of adjustment to monetary shocks of different
sizes, with and without networks.

Figure D.8: Frequency and inflation responses to agg. TFP shocks: CES aggregation

(a) Aggregate frequency response (b) Impact inflation response

Notes: the figure shows the impact responses of aggregate frequency of adjustment to monetary shocks of different
sizes, with and without networks.
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