

# Price Synchronization and Cost Pass-through in Multiproduct Firms: Evidence from Danish Producer Prices

Luca Dedola (ECB & CEPR) Mark S. Kristoffersen (FH) Gabriel Zuellig (DN & KU)

Inflation in a Changing Economic Environment ECB, Frankfurt, 23-24 September 2019

Disclaimer: The views expressed here are our own and do not necessarily reflect those of the ECB or Danmarks Nationalbank.

# **Micro Price Stickiness & Monetary Neutrality**

- <u>State-dependent</u> models can generate real effects similar to time-dependent price-setting when "selection" weak
  - If multiproduct firms synchronize their price changes (Midrigan 2011, Alvarez & Lippi 2014, Karadi & Reiff 2018)
- Micro evidence on actual price setting by <u>multiproduct</u> firms
  - Bhattarai & Schoenle (2014), Bonomo et al. (2019)
- <u>This paper</u>: Extensive (selection) and intensive margin of price adjustment in response to cost shocks in multiproduct firms
  - Micro data underlying Danish Producer Price Index (PPI)
  - Merge price and firm cost data

#### **Main Results**

- <u>Extensive margin</u> (whether to change prices):
  - Imperfect within & across firm synchronization of price changes
  - State-dependent pricing: Probability of changing prices affected by aggregate, industry and firm cost shocks
- <u>Intensive margin</u> (how much to change prices):
  - Despite state-dependence, small "selection" bias
- Cost-shocks pass-through heterogeneous
  - Less than complete (<<1) but immediate for import prices
  - Complete (≈1) but delayed for energy prices/oil supply shocks
  - Firms with 5+ products adjust less to import prices

# Roadmap

#### 1. Data and descriptive statistics

- 2. Empirical approach
- 3. Results

# **Data: Prices and Firms**

- Monthly goods prices for <u>Danish PPI</u> covering 70+% total sales of industrial production, 1993-2017
  - 3500 monthly prices for domestic and export transactions
  - 2900 monthly imported input prices
  - Median duration of price reporting: 115 months
  - 1140 firms (not representative sample)
- Merge with firm-level cost data:
  - Accounting data: Annual cost shares, 1994-2016
  - VAT filings: Monthly/quarterly sales & input purchases, 2001-2017
  - Labor costs: Monthly wage bill and hours worked, 2007-2017

# **Summary Statistics for Prices and Firms**

|                           | All    | 1    | 1-3  | 3-5   | 5-7   | 7+    |
|---------------------------|--------|------|------|-------|-------|-------|
| No. of firms              | 1140   | 146  | 548  | 231   | 128   | 87    |
| Median employment (FTE)   | 155.0  | 42.6 | 65.5 | 138.6 | 148.3 | 483.1 |
| Median employment per goo | d 33.2 | 42.6 | 26.2 | 34.8  | 25.5  | 48.5  |
| Median age                | 26.0   | 25.0 | 25.0 | 28.0  | 24.0  | 29.0  |
| Share of total prices     | 100.0  | 2.1  | 20.2 | 22.8  | 16.7  | 38.1  |
| Median no. of products    | 5.0    | 1.0  | 3.0  | 4.0   | 5.8   | 11.5  |

Note: Summary statistics on distribution of firms and prices across distinct bins of single- and multiproduct firms.

#### **Frequency of Price Increases & Decreases**



- Median frequency ≈10% => 8 months price duration
- Seasonal patterns in January, April, July, October (Nakamura & Steinsson, 2008 and IPN)

### **Average Price Changes**



Average absolute size of Δp ≈7%

• "Sales" only 0.3% (3.8% of decreases but smaller drop)

### Size Distribution of Non-zero Price Changes



- Large mass of small Δp (Alvarez, Le Bihan & Lippi 2016)
- Distribution very similar across firms' # of goods

# Roadmap

- 1. Data and descriptive statistics
- 2. Empirical approach
- 3. Results

## **Price Adjustment to Cost Shocks**

- Under <u>flex prices</u>,  $\Delta p = \Delta markup + \Delta (marginal cost)$ 
  - <u>Structural</u> cost pass-through:  $\partial \Delta p / \partial (\Delta (marginal cost))$
  - Pass-through < 1 when markup absorbs cost increases

### **Price Adjustment to Cost Shocks**

- Under <u>flex prices</u>,  $\Delta p = \Delta markup + \Delta (marginal cost)$ 
  - <u>Structural</u> cost pass-through:  $\partial \Delta p / \partial (\Delta (marginal cost))$
  - Pass-through < 1 when markup absorbs cost increases
- Under <u>sticky prices</u> adjustment through <u>extensive</u> and <u>intensive</u> margin
  - With infrequent adjustment downward bias if  $\Delta p=0$  included
  - Looking only at ∆p≠0 leads to selection bias with statedependent extensive margin
  - Both margins matter for inflationary effects of cost shocks: OLS of Δp on costs gives overall elasticity, but not structural

# **Estimating Extensive and Intensive Margins**

- To correct for selection bias use two-stage "Heckit" approach
- Jointly model both margins following Bourguignon et al. (2007): 1st stage multinomial logit selection

 $\Delta p_{i,j,t}^* = \beta^1 Z_{i,j,t} + \eta_{i,j,t} \rightarrow \qquad \Pr(r_{i,j,t} = -1, 0, 1) = \Phi(\beta Z_{i,j,t})$  $\Delta p_{i,j,t,r=1} = \beta^2 X_{i,j,t,r=1} + u_1$ 

# **Estimating Extensive and Intensive Margins**

- To correct for selection bias use two-stage "Heckit" approach
- Jointly model both margins following Bourguignon et al. (2007): 1st stage multinomial logit selection

 $\Delta p_{i,j,t}^* = \beta^1 Z_{i,j,t} + \eta_{i,j,t} \rightarrow \qquad \Pr(r_{i,j,t} = -1, 0, 1) = \Phi(\beta Z_{i,j,t})$  $\Delta p_{i,j,t,r=1} = \beta^2 X_{i,j,t,r=1} + u_1$ 

• u correlated with  $\eta$ , assume function of estimated probabilities:

$$\Delta p_{i,j,t,r=1} = \beta^2 X_{i,j,t,r=1} + u_1$$
  
=  $\beta^2 X_{i,j,t,r=1} + \gamma_1 m(\Pr_1) + \sum_{r=(-1,0)} \gamma_r \left( m(\Pr_r) \frac{\Pr_r}{(\Pr_r - 1)} \right) + \omega_1$ 

• Non-parametric identification, X subset of Z

# **Estimating Extensive and Intensive Margin**

- Identification by exploiting price synchronization in multiproduct firms and frequency seasonality (all excluded from 2<sup>nd</sup> stage X):
  - Share of same and opposite-signed price changes within firm and sector (excluding i-th price)
  - Month fixed effects
  - Also standard deviation of specific price in last 5 years

### **Dependent Variable in Selection Step**



Probabilities of cumulative price changes

• 40% of cumulated  $\Delta p=0$  even after 12 months

# **Estimating Intensive Margin**

- Marginal cost = input prices weighted by shares in total variable costs (Amiti et al. 2018)
- Local projections to estimate t+h cost pass-through:

 $\Delta p_{i,j,t+h} = \alpha + \beta^E \varphi^E_{j,t-1} \Delta p^E_t + \beta^I \varphi^I_{j,t-1} \Delta p^M_{j,t} + \partial X_{i,j,t} + u_{i,j,t+h}$ 

- Firm-level cost shocks:
  - Δenergy price x cost share of energy(t-1) average 1.7%
  - Δimport prices x cost share of imports(t-1) average 28%

# **Estimating Intensive Margin**

- Marginal cost = input prices weighted by shares in total variable costs (Amiti et al. 2018)
- Local projections to estimate t+h cost pass-through:

 $\Delta p_{i,j,t+h} = \alpha + \beta^E \varphi^E_{j,t-1} \Delta p^E_t + \beta^I \varphi^I_{j,t-1} \Delta p^M_{j,t} + \partial X_{i,j,t} + u_{i,j,t+h}$ 

- Firm-level cost shocks:
  - Δenergy price x cost share of energy(t-1) average 1.7%
  - Δimport prices x cost share of imports(t-1) average 28%
- Further firm controls (in X): change in firm hourly wages, change in total variable costs, change in total sales; firm size and #products
  - Also proxy for markup with prices of competitors (2 digit level)
  - Aggregate controls: CPI, NEER (and sector FE)

# **Energy and Imported Input Prices**

#### **Danish Energy Price Index**

#### **Average Imported Input Price**



- Both approximately random walks (shocks *i.i.d.*)
  => Pass-through similar across horizons
- But small common component in energy prices

# Roadmap

- 1. Data and descriptive statistics
- 2. Empirical approach
- 3. Results

# **Results #1: Determinants of Extensive Margin**

- Within and across firms synchronization of price changes
  - Within-firm share of price changes of opposite sign
  - Increasing in number of products of firm

- Evidence of state-dependent pricing -- Probability of changing prices affected by firm, industry and aggregate shocks
  - 1% increase in CPI raises probability  $\Delta p>0$  by 0.56%
  - 1% increase in import prices raises probability  $\Delta p>0$  by 0.28%

# **Extensive Margin: Synchronization**

|                                               | All      |                                               | 3        |
|-----------------------------------------------|----------|-----------------------------------------------|----------|
| Marg. effect on probability of price increase |          | Marg. effect on probability of price decrease |          |
| Fraction of pos. price changes in firm        | 6.34***  | Fraction of pos. price changes in firm        | 2.28***  |
|                                               | (0.04)   |                                               | (0.04)   |
| Fraction of neg. price changes in firm        | 2.74***  | Fraction of neg. price changes in firm        | 4.09***  |
|                                               | (0.04)   |                                               | (0.03)   |
| Fraction of pos. price changes in industry    | 0.080    | Fraction of pos. price changes in industry    | -0.25*** |
|                                               | (0.06)   |                                               | (0.06)   |
| Fraction of neg. price changes in industry    | -0.202** | Fraction of neg. price changes in industry    | -0.073   |
|                                               | (0.06)   |                                               | (0.06)   |

#### Imperfect synchronization within and across firms

# **Extensive Margin: Synchronization**

|                                               | All      |                                               | , , , , , , , , , , , , , , , , , , , |
|-----------------------------------------------|----------|-----------------------------------------------|---------------------------------------|
| Marg. effect on probability of price increase |          | Marg. effect on probability of price decrease |                                       |
| Fraction of pos. price changes in firm        | 6.34***  | Fraction of pos. price changes in firm        | 2.28***                               |
|                                               | (0.04)   |                                               | (0.04)                                |
| Fraction of neg. price changes in firm        | 2.74***  | Fraction of neg. price changes in firm        | 4.09***                               |
|                                               | (0.04)   |                                               | (0.03)                                |
| Fraction of pos. price changes in industry    | 0.080    | Fraction of pos. price changes in industry    | -0.25***                              |
|                                               | (0.06)   |                                               | (0.06)                                |
| Fraction of neg. price changes in industry    | -0.202** | Fraction of neg. price changes in industry    | -0.073                                |
|                                               | (0.06)   |                                               | (0.06)                                |
|                                               |          |                                               |                                       |

#### Imperfect synchronization within and across firms

## **Extensive Margin: Changing # of Products**

|                                               | All        | 1-5        | 5+      |
|-----------------------------------------------|------------|------------|---------|
| Marg. effect on probability of price increase |            |            |         |
| Fraction of pos. price changes in firm        | 6.34***    | 5.27 * * * | 7.83*** |
|                                               | (0.04)     | (0.04)     | (0.06)  |
| Fraction of neg. price changes in firm        | 2.74 * * * | 2.39***    | 2.87*** |
|                                               | (0.04)     | (0.05)     | (0.07)  |
| Fraction of pos. price changes in industry    | 0.080      | 0.333 * *  | 0.037   |
|                                               | (0.06)     | (0.11)     | (0.08)  |
| Fraction of neg. price changes in industry    | -0.202**   | -0.43***   | -0.104  |
|                                               | (0.06)     | (0.13)     | (0.08)  |

Within firm synchronization increasing, but effect small Across firm synchronization decreasing with # of products

#### **Extensive Margin: State Dependence**

|                                                | All                          |                                                | X /                        |
|------------------------------------------------|------------------------------|------------------------------------------------|----------------------------|
| Marg. effect on probability of price increase  |                              | Marg. effect on probability of price decrease  |                            |
| Fraction of pos. price changes in firm         | 6.34 * * * (0.04)            | Fraction of pos. price changes in firm         | 2.28***<br>(0.04)          |
| Fraction of neg. price changes in firm         | 2.74 * * * (0.04)            | Fraction of neg. price changes in firm         | 4.09***<br>(0.03)          |
| Fraction of pos. price changes in industry     | 0.080 (0.06)                 | Fraction of pos. price changes in industry     | -0.25***<br>(0.06)         |
| Fraction of neg. price changes in industry     | -0.202**<br>(0.06)           | Fraction of neg. price changes in industry     | -0.073<br>(0.06)           |
| Avg. price change in industry, excl. firm      | 0.14***                      | Avg. price change in industry, excl. firm      | -0.15***                   |
| Energy price change x lagged energy cost share | $(0.03) \\ -0.371 \\ (0.38)$ | Energy price change x lagged energy cost share | (0.03)<br>-0.172<br>(0.34) |
| Import price change x lagged import cost share | 0.28***                      | Import price change x lagged import cost share | -0.29***                   |
|                                                | (0.04)                       |                                                | (0.04)                     |
| CPI, log difference                            | 0.557*                       | CPI, log difference                            | -1.00***                   |
|                                                | (0.28)                       |                                                | (0.27)                     |

State-dependence wrt industry, firm and aggregate variables (Energy price significant after 3 months)

#### **Results #2: Intensive Margin**

- Despite state-dependence, little evidence of selection bias
  - Bias correction terms significant but small
- Cost-shocks pass-through heterogeneous
  - Less than complete (<<1) but immediate for import prices
  - Complete (≈1) but gradual for energy prices/oil supply shocks
  - Firms with 5+ products adjust less to import prices

# Heterogeneous Cost Pass-Through: OLS

Energy cost pass-through, incl. zero changes

Import price pass-through, incl. zero changes



# Heterogeneous Cost Pass-Through

#### (a) Energy cost pass-through

#### (b) Import price pass-through



Dynamics robust to excluding lags of energy and import costs (Caveat: OLS (HAC) standard errors)

# Heterogeneous Cost Pass-Through: Oil Shock

#### (a) Oil price surprise pass-through

#### (b) Import price pass-through



Negative oil supply shock (i.i.d.), Baumeister & Hamilton (2019)

# Heterogeneous Cost Pass-Through: # Goods

#### Firms with **#** Goods ≤5

#### Firms with # Goods>5



Import price pass-through, excl. zero changes

Import price pass-through, excl. zero changes

Heterogeneity in markup adjustment (despite competitors prices)? But very similar responses to energy prices/oil shocks

#### To conclude

- Multiproduct firms' extensive and intensive margin of price adjustment
- <u>Synchronization and state-dependence</u> in extensive margin:
  - Price change probability increasing with fraction of other prices changing, higher with more products
  - Affected by firm, industry and aggregate shocks
- <u>Cost and firm heterogeneity</u> in intensive margin:
  - Adjustment to energy/oil shocks larger than to import prices
  - Firms with more products adjust by less to import prices
- Still preliminary, next up: markups, non-linearities, domestic and export prices, monetary shocks,...

# **Price Setting by Multiproduct Firms**

- **Does simple**  $\Delta p$  pattern depend on # of goods by firm?
  - Alvarez-Lippi (2014): Δp frequency (N) and size depend on n

$$E\left[N\left(\Delta p_{i}\right)\right] = \frac{n\sigma^{2}}{\overline{y}} = \frac{n\sigma^{2}}{\sqrt{2\left(n+2\right)\frac{\sigma^{2}\psi}{B}}} \uparrow \text{ in } n$$
$$E\left\|\Delta p_{i}\right\| = \frac{\sqrt{\overline{y}}}{\frac{n-1}{2}Beta\left(\frac{n-1}{2},1/2\right)} = \frac{\left(2\left(n+2\right)\frac{\sigma^{2}\psi}{B}\right)^{1/4}}{\frac{n-1}{2}Beta\left(\frac{n-1}{2},1/2\right)} \downarrow \text{ in } n$$

- Consistent evidence in Bhattarai & Schoenle (2014) for US PPI
  - We find little relation between # goods and  $\Delta p$  frequency & size

### What We Do

- Empirical analysis of relative price adjustment in a <u>currency</u> area during housing bust in the US Great Recession
- Build new dataset of <u>regional (MSA) consumption prices</u>, combined with data on sectoral costs and activity:
  - Based on BLS CPI Research database for 73 MSAs
    - Public CPI data for 27 largest MSAs
    - BLS micro data for smaller MSAs
- <u>Decomposition</u> of real exchange rate adjustment between goods and services (ex-rents) across US MSAs
- Empirical approach: (sectoral) prices, employment, wages,..., regressed on local house prices as a measure of demand – both OLS and IV

## Main Results: Missing Internal Devaluation

- Little real exchange rate adjustment to asymmetric housing bust within US "currency area"
  - Evidence that the relative price of (non-tradable) services does not fall more than relative price of (tradable) goods
  - <u>Relative price of goods</u> insensitive to house prices
  - <u>Relative price of services</u> negatively related to house prices
- <u>Heterogeneity</u> in price adjustment across related sectors
  - Price of Food at home <u>falls</u> with bust in house prices
     Stroebl & Vavra 2018 (S&V18)
  - Price of Food away from home significantly increases

### **Selected Literature**

- Large literature on the link between regional prices and wages, and regional business cycles (Blanchard & Katz 1992)
- Recent contributions:
  - Local employment and demand effects of house price shocks: Mian, Rao & Sufi (2013), Mian & Sufi (2014), Aladangady (2016), Kaplan, Mitman & Violante (2016)
  - Local prices/markups using store-level scanner data: Coibion et al. (2014), Stroebl & Vavra (2018), Beraja, Hurst & Ospina (2016), Kaplan et al. (2016), Anderson, Rebelo & Wong (2018)
  - <u>Regional Phillips Curves</u>: Fitzgerald & Nicolini (2014)
  - <u>Regional and sectoral adjustment</u> in currency areas: Philippon & Midrigan (2014), Beraja et al. (2016), Martin & Philippon (2017), Galí & Monacelli (2018) – and Nakamura & Steinsson (2014) on fiscal shocks,...

# **Stylized Adjustment Mechanism**

- Demand for locally produced tradables depends on overall aggregate demand in currency area
- Non-tradable (services) demand depends on local demand *D* and relative prices:

$$logY_{l,N} = -\epsilon_N \cdot (1 - \alpha_N) \cdot (p_{l,N} - p_{l,T}) + logD^l$$

• A <u>fall</u> in *D* can be cushioned by a <u>fall in relative prices</u>  $(p_{l,N} - p_{l,T})$ and in local marginal cost (function of labor demand):

$$p_{l,N} = log\mu_{l,N} + \gamma_N logW_l + (1 - \gamma_N) logl_{l,N}$$
$$p_{l,T} = (log\mu_{l,T}) + \gamma_T logW_l + (1 - \gamma_T) log(L_l - l_{l,N})$$

• Ceteris paribus, fall in relative price will result in *rer* depreciation:  $rer_l \downarrow = (p_{l,T} - p_T) + \alpha_{NT} \cdot [(p_{l,NT} - p_{l,T}) \downarrow - (p_{NT} - p_T)]$  $rer_l \downarrow = q_{l,G} + \alpha_S \cdot [q_{l,S} \downarrow - q_{l,G}]$ 

# **Procyclical Markup Adjustment?**

- S&V18 shows that positive elasticity of scanner grocery prices is due to procyclical markup adjustment
  - Similar finding with BLS index no "trading down" (Jaimovich, Rebelo & Wong 2108)
- Evidence consistent with non-homothetic preferences (Bertoletti & Etro 2017):

$$\mu^l = 1 + \frac{y^l}{\gamma * costs}$$

- Markup then falls with local income/wealth if costs acyclical (Anderson, Rebelo & Wong 2018)
- But then why are markups countercyclical in restaurants, and services in general, beyond movements in costs?

### **Countercyclical Markup Adjustment?**

• Static oligopoly model after Atkeson & Burstein (2008): Markup function of market shares and within/across sectors elasticities  $(\theta_j, \varphi)$ 

$$\mu_j = \frac{\epsilon_j}{\epsilon_j - 1}, \epsilon_j = \theta_j - (\theta_j - \varphi) \cdot share_j$$

- Markup rises (elasticity falls) when market share rises (# of firms falls) if (θ<sub>j</sub> φ) > 0
- Evidence with other measures of markups than labor shares?
  Bils, Klenow and Malin (2018): try share of intermediate inputs