Anastasiia Antonova
Aix-Marseille School of Economics

STATE-DEPENDENT PRICING AND COST-PUSH INFLATION IN A PRODUCTION NETWORK ECONOMY
State-dependent pricing and cost-push inflation in a production network economy
by Anastasiia Antonova

1 Introduction

Is observed inflation demand-push or cost-push? Phillips curve
\[\hat{p} = \hat{\beta}_0 + \hat{\beta}_1 t + \hat{\epsilon}_{t+1} + \hat{\eta}_t \]

Where residual \(\hat{\eta}_t \) comes from? Sectoral shocks. (ex. Oil sector)
\(\hat{\epsilon}_{t+1} = \epsilon(\text{shocks, prod. network, price rigidity}) \)

State-dependent vs non-state-dependent price rigidity (ex. Menu-cost vs Calvo)

State-dependence = rigidity depends on shock size

NK + IO-network literature relies on non-state-dep. pricing (Erceg 2000, Aoki 2001, Rubbo 2022, La'O et al. 2022)

Yet, numerous empirical evidence of state-dep. pricing (Nakamura et al. 2008, Eichenbaum et al. 2011, Campbell et al. 2014, Carvalho et al. 2021 –)

This project: role of state-dependent pricing in shaping cost-push effect in NK IO-network model

2 Framework/Main results

NK production network model with distinctive feature: information friction resulting in state-dependent price rigidity

Main results (theoretical/empirical/quantitative)
- State-dep. may reverse the sign of cost-push effect
- 70% of US sectors have evidence of state-dep. pricing
- State-dep. affects size/sign of cost-push effect in US

3 State-dependent price rigidity

Suitable "state" variable? Sectoral marginal cost vector
\[m_{st} = m_0 + \frac{1}{1-a} \Delta \eta_{st} \]

I define relevant state in sector \(i \) as \(\Delta \eta_{si} = \sum_j \eta_{sj} \) where \(\eta_{sj} \) elements of Leonidin inverse \(L_{ij} \), sectoral productivities

Intuition: \(z \) cares about productivity of its suppliers

Tractable state-dep. pricing: sticky information + heterogeneous inattention. Firms in sector \(i \)
- track changes in \(\Delta \eta_{si} \), that is \(\Delta \eta_{si} = \Delta \eta_{sij} - \Delta \eta_{sij} \)
- those with low inattention \(z < |\Delta \eta_{si}| \) update their info.

Price flexibility \(F_{ij} = \text{share updating info.} \)
\[F_i(\Delta \eta_{si}) = \tilde{F}_i + f_i(t) \cdot \beta_i \cdot \text{mean}(\Delta \eta_{si}) \]

\(\tilde{F}_i \) is average price flexibility in sector \(i \)
\(f_i \) state dependency parameter

4 State-dependence estimation

Model response of prices to shocks yields \(\tilde{F}_i, f_i \) estimates

Intuition: strong average response = flexible prices; response depends on \(\Delta \eta_{si} \) = state-dependence

Data/Methodology:
- prices, wages, consumption, hours worked for \(-360 \) sectors, 80% of cons. basket, monthly freq. for US; IO-network for model calibration
- compute sectoral shocks from the model
- estimate each \(F_0, f_0 \) model-based IV regression

5 Phillips curve/decomposition

Consumer price inflation Phillips curve
\[\hat{p}_t = \hat{\beta}_0 + \hat{\beta}_1 t + \hat{\epsilon}_{t+1} + \hat{\eta}_t \]

where \(\hat{\eta}_t \) are price gaps (efficient minus true prices)
\(\tilde{F}_i \) is diagonal matrix of sectoral flexibility \(f_i \)

Cost-push inflation decomposition
\[\hat{\eta}_t = \hat{\delta}_1 F_m \hat{\eta}_t + \hat{\delta}_2 \tilde{F}_m \hat{\epsilon}_m + \hat{\theta}_m \tilde{F}_m \hat{\epsilon}_m \]

Cost-push decomposition
\[\hat{\eta}_t = \hat{\eta}_t^{\text{cost}} + \hat{\eta}_t^{\text{reset}} + \hat{\eta}_t^{\text{shock}} + \hat{\eta}_t^{\text{demand}} \]

Interpretation: reset prices \(\hat{\eta}_t^{\text{reset}} = \hat{\eta}_t^{\text{reset}} + \Delta \eta_{\text{cost-push}} \), Main effect obtains if \(\hat{\eta}_t^{\text{reset}} = \hat{\eta}_t^{\text{reset}} + \Delta \eta_{\text{cost-push}} \)

6 Example: commodity shock

Two commodities: Oil, Grain (fully flexible prices)

Two final goods: FO and FG (flexibility: \(\hat{F}_0 \) \(\hat{F}_0 \))

Oil grain shocks: \(\hat{\epsilon}_{t, FO} \) \(\hat{\epsilon}_{t, FG} \)

Oil shock: \(\hat{\epsilon}_{t, FO} = \frac{1}{1-a} \Delta \eta_{t, FO} \)

Grain shock: \(\hat{\epsilon}_{t, FG} = \frac{1}{1-a} \Delta \eta_{t, FG} \)

Non-state-dep.: let \(\hat{F}_0 > \hat{F}_0 \) under neg. oil shock \(\hat{\eta}_t^{\text{cost}} > 0 \)

State-dep.: oil shock: \(\hat{F}_0 > \hat{F}_0 \) grain shock: \(\hat{F}_0 < \hat{F}_0 \)

Under neg. oil/gain shock \(\hat{\eta}_t^{\text{cost}} < 0 \)

State-dependence reverses cost-push effect!

7 Flexibility/State-dependence estimates

(a) Average price flexibility (b) State-dep. of price flexibility

Figure 1: Price flexibility/state-dependence estimates

Average price flexibility \(\hat{F}_i \) and state-dependence parameter estimates \(f_i \) across 364 sectors, sectors are weighted by consumption shares \(s_i \); variation is plotted only for 90%-level significant estimates; estimates insignificant at 90% level are forced to zero; interpretation of state-dependence parameter \(f_i \): i.e., increase in \(\Delta \eta_{si} \) above its time average leads to price flexibility increase of \(f_i \% \).

Figure 2: Link with relevant state volatility

(a) Average price flexibility (b) State-dep. of price flexibility

Average price flexibility estimates \(\hat{F}_i \) and state-dependence parameter estimates \(f_i \) are plotted against the time average volatility of sector-relevant productivity state \(\Delta \eta_{si} \); sectors are weighted by consumption shares \(s_i \); estimate insignificant at 90% level are forced to zero; linear regressions within the group of significant estimates; correlation coefficient for panel (a) is 0.44 and correlation coefficient for panel (b) is -0.25.

8 Cost-push effect in the US

Figure 3: Cost-push inflation and state-dependence pricing

Note: Grey dotted line plots observed CPI inflation.

9 Discussion

- State-dependence plays different roles in shaping cost-push inflation throughout recent history
 - amplification post-Great Recession
 - sign reversal/amplification post-Covid
- Recent high inflation in the US is only partially cost-push (demand/expectations factors might be more important)