ECB Operations Managers Group Meeting

5 October 2017, ECB, Frankfurt

Francis Gross
Senior Advisor
DG Statistics

Artificial Senses
Measuring finance and the economy at the speed and scale relevant in the digital age – vision, architecture, infrastructure

The views expressed in this document represent the personal opinion of the author, not necessarily the positions of the ECB or the ESCB.
warm-up and context
Object recognition and identification in a complex environment

Mr. A

representation $A(X)$

conceive

perceive

identify

name

sign, language, document, data

object X
Recognition and identification of material objects

Mr. A Mrs. B

representation A(X) representation B(X)

object X

identify ?

perceive ?

listen

name, sign, language, document, data

see, read

www.ecb.europa.eu ©
Recognition and identification of abstract objects

Abstract Object X

representation A(X)
Mr. A

listen

name, sign, language, document, data

representation B(X)
Mrs. B

see, read
Trust in data – What when?

• What when many names and documents, from many sources, representing abstract objects, are stored by many people, independently, in many computers, condensed into data that is separated from documents and authors, and travels alone to other computers, via other people or directly?

• When data is processed into new data in many places in the network?

• When data generated through computing travels on?

• When processed data is used to generate human-readable statements?

• When data volumes are too high, paths too long and hard-to-know for the reader to validate her understanding of the statement?

• What when some of that data is used to steer machines that act for real?

What can we do to responsibly trust the outcomes and use them further?
30-50% annual growth of data in finance
50% unstructured

1 Zettabyte = 1 ZB = \(10^{21}\) byte = 1 Bn Tb

Data volumes are exploding, more data has been created in the past two years than in the entire previous history of the human race.

By 2020, our accumulated digital universe will grow from 4.4 ZB in 2015 to around 44 ZB.

Prof. Schellnhuber, speaking about climate change
The digital explosion has changed the conversation among humans

The diagram illustrates the change in conversation dynamics between humans and machines. The shift from a predominant human interaction to an increased machine engagement is depicted.
Technology made the world smaller and the markets bigger

Technology gives every market participant global reach
Markets grow globally integrated
Countries and markets are increasingly orthogonal realities

Countries need national measurement, but
“Local” is now just one view on an integrated global reality
statistics (i.e. measurement)

and

the digital age
The report shows a growing gap in value chain and globalisation statistics:

- More demands on statistics as the world grows more complex and globalised
- Shrinking capability to capture the finer details needed to build a bigger picture

Statistics improve, but while we keep improving the world changes even faster

“Data gaps lead to policy gaps”: “Because the picture of economic globalization provided by current official statistics is incomplete, the causal links to economic welfare indicators such as employment and wages tend be weak and unconvincing, allowing a set of highly charged, politically motivated, and unproductive debates over the basic facts”

The report concludes that progress requires data, old and new, to be:

“all tied together by enterprise identifiers that make ownership clear, even when it extends across borders”, calling for an “integrated international data platform”, “international business registers” that identify the ownership structures of enterprises across borders”
• Securities database: CSDB
• Statistical registers: EGR, RIAD
• Reporting schemes: Anacredit, EMIR, SFT
• Business registers: DG JUST’s BRIS: Business Register Interoptn System
• Data Standardisation: DG FISMA’s Financial Data Standardisation project

That is not enough

Why?
Make finance and the economy measurable again

- The world we measure is globally integrated at micro-level, in real time;
- Many systems exchange data, across borders, sectors and functions.

- Multiple ways to refer to a same object harm quality and cost of data.
- When things get faster, more global and complex, feasibility suffers, then stops.
- If we all refer to an object the same way, processes are faster, safer, cheaper

- For legal entities, that points to a need for globally unique identification,
- For use by all, across all sectors: business, administration, statistics, etc

- Ideally, statistical data systems should all use the same entity identifier that businesses (reporting agents) and administrations use in their systems. Globally.
measurement and control
The San hunter shoots his arrow, kills the prey.
His senses are sufficient.
He doesn't need measurement.

The pilot of a night flight sees airport lights,
Yet he needs measurement of altitude, speed, etc. to land safely.
His senses need to be augmented through measurement.

Our senses don't perceive finance at all,
We need artificial senses.
We need measurement, i.e. statistics, and more.
• Measurement is a necessary condition for staying in control
• Measurement is effective only if at scale and speed of the system measured
• For modern finance, the relevant scale is global, the relevant speed is real time.
• Control and Risk are sides of the same coin. Control suits engineering better.
Additional specifications for economic and financial statistics

- Economic and financial statistics are akin to artificial senses
- Artificial senses should work at the speed and scale of the system observed
- The demands of the digital, global world suggest:

 Four additional specifications for statistics, for reflection:
 - Global integration of measurement
 - Speed of measurement near real time
 - Flexibility, to remain effective when surprises happen
 - Fast drill-down to enable fine diagnostics & surgical intervention

- Existing means might not stretch far enough.
- Some radical departures might be needed.
- The new specifications offer collateral benefits also for business.
Design challenge for the architecture of a measurement system

Real-world Heterogeneity VS. Technology-driven Need for Homogeneity

in Languages
Data practices
Technical systems
Legal systems
Cultures

• The problem has grown global and deep, beyond direct solution design
• Another, an evolutionary strategy is needed:
 • Implement feasible change that delivers fast improvements and has
 • Transformational power to inspire and enable more positive change
Vision
Vision: technical tool, not flight of fancy

• A way we choose to view the world

• A representation that structures our perception, shapes our action

The solar system
heliocentric (right)
vs.
Geocentric (left)

In red: orbit of Mars

• “All models are wrong; some models are useful” George E.P. Box, statistician

• “It is the theory that decides what we can observe” Albert Einstein

• “Combining visions gives us more possibilities” Hans Poser, philosopher
Vision 1

A set of Closed Systems (national economies) with Perturbations (international trade and investment)

Vision 2

VS.

A Global Network of Contracts among a Global Population of Agents
Vision

Implications for measurement
For a business: my exposures, my counterparties, my environment

For any business, the relevant system is now effectively global – either directly or indirectly; impacts can unfold fast across continents and sectors.

For an authority: *de jure*, *my function in the system, in my jurisdiction*
de facto, *in the digital age: the whole system, globally*

All authorities, whatever function and jurisdiction they are responsible for, look at and interact in the same system. There is no more “*ceteres paribus*”.

In the digital age, we all share the same, global, relevant system
Complexity is, when the system doesn’t fit in one head

otherwise, we could figure it out…

we need data to build information our brains (and machines) can handle

Corollary: the system is likely to surprise us

otherwise we would have figured it out…

hence we are likely to face questions we didn’t expect and

we will need data we didn’t collect in advance. We couldn’t have known…

In the digital age, even large-scale developments can unfold very fast

we must know quickly what is happening, to act timely and safely;

data we need but don’t have must be collected at once and

all that data must be analysed in real time. Ideally.
When a (potentially) critical development appears, there is mutual benefit in all parties coming to rapid agreement on facts, analysing from there and coordinating actions where and when needed and possible.

Can we do that? Also when things accelerate and surprise us?

A starting point could be:

all perceive the same “reality”; our perceptions are consistent

BUT

What “reality” can that be in a global, abstract system?
Reality could be those abstract things we all, across society, agree upon. Where can such wide consensus on abstract things be found?

The most powerful and constant engine of social consensus is law:

- Law confers a quasi-physical quality of reality, also on abstract objects
- Law establishes the existence and identity of parties and contracts
- Law can mandate basic representation of such abstract objects

- Each entity that can formally be party to a contract,
- Each formal contract

is recognised in one of the legal systems that exist in the world
Where to start?

That idea could lead us to the common goal to build

A single, global system for representing each and every party and contract that is recognised by a legal system somewhere.

A kind of “mechanical skeleton” of finance and the economy

• Identity and basic description of each party, each contract
• Strictly standardised identifiers and basic data
• Public good
• Serving as operational infrastructure for industry and authorities alike
• Designed and operated in good global, inter-sectoral cooperation
Formal social consensus is established by law:
Abstract objects anchored in law are socially real. They are facts.

Contracts are the Relationships among the Parties

G20-backed, publicly governed, privately operated Global LEI System is a start.
Vision 1

A set of **Closed Systems** (national economies) with **Perturbations** (international trade and investment)

* cash, goods, services

Measurement under Vision 1

Diagram showing levels of macro and micro with various categories: Global, Region, Country, Agent, Contract, Flow.*
Measurement under Vision 2

Vision 2

A Global Network of Contracts among a Global Population of Agents

* cash, goods, services

Global

- Global micro-data resource

Region

- Regional analysis

Country

- National analysis

Agent

- Agent analysis

Contract

- Contract data

Flow

- Flow data

www.ecb.europa.eu ©
Implications of vision for measurement: data practices matter

<table>
<thead>
<tr>
<th>data practices</th>
<th>digital age</th>
<th>Vision 1</th>
<th>Vision 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>"pen-&-paper" age</td>
<td>not really compatible</td>
<td>could deliver good measurement</td>
<td>could reduce cost and risk in business</td>
</tr>
<tr>
<td></td>
<td>slow</td>
<td>has transformational power</td>
<td>not feasible</td>
</tr>
<tr>
<td></td>
<td>crude</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>expensive</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* humans create data specifically for statistics & reporting, reduce volume at source

** not afraid of large data volumes. Data from operations straight into measurement
Contractual footprint of a country:
• All agents with a relationship to government; all contracts linking them to others

Contractual footprint of a corporate group:
• All agents “belonging” to the group; all contracts linking them to other agents

Exposures of an agent:
• Contractual footprint: 1st generation – 2nd generation – etc.
• Idea: notion of “flows of liability” across the system; detection of concentrations

International value chain analysis:
• Chains of contracts across the economy

Existing concepts could be measured better; new ones might be imagined
A layered view of data for standardisation and harmonisation treatment

Sophisticated Data
- high-level concepts

Skeleton-derived Data
- Harmonised language
- Broad standards (e.g. accounting, statistical standards, dictionaries)
- Standardised language
- Standardised calculation formulae
- Embedded in regulatory reporting

Skeleton Data
- Objects anchored in law
- Globally standardised
- Stored in a public-good Utility
- Mandated by law

socially agreed “facts”
Algorithmic Contract Type Unified Standard

The ACTUS logic:
- The contract seen as a mathematical function that represents parties’ agreement about
- who pays how much to whom, when and under what circumstances?

* delivery of a service can be seen as an event in this conceptual framework

for more on ACTUS: www.actusfrf.org
ACTUS: representation of contracts

- ACTUS could represent a diverse population of contracts in a single language

Ledger of events relevant to contracts
- Real world events
- Contract events, Market events
- Services
- Human events (decisions)

Ledger of contracts

Ledger of assets
- Asset flows

Ledger of parties
- Cash flows

State of the System
distributed ledger
- measurement, statistics
- simulations (Monte-Carlo...), projections, diagnosis, analysis

- ACTUS could complete the Skeleton infrastructure

for more on ACTUS: www.actusfrf.org
Institutional fragmentation

Fragmented measurement

Coexistence

&

Mutual Benefit

• New things become possible

• Some things get better

• Other things stay as are

One global data infrastructure

Integrated global reality
Identity

and

Representation of identity
Identity is cultural and political - It will remain local and diverse

Representation of identity must be globally standardised, for all
 • To ensure effectiveness of large, networked information system
 • To enable trust in data systems too large, complex and fast for human brains
A first step has been implemented: the Global Legal Entity Identifier System is operational.
Identity is local and diverse – Its representation must be global and standardised

The Global LEI System is a Public Good Infrastructure that offers a globally standardised representation of the identity granted by local authority to a legal entity.
Market logic points to late adopter behaviour:

- LEI benefits to a business once all its counterparts have an LEI
- Early adopters have early cost, slow return and the risk of not being followed
- Late adopters have immediate benefits, lower costs and lowest risk

➢ There is no incentive for early LEI adoption through pure market forces

Market forces likely to kick in once LEI adoption is certain:

- The LEI has characteristics of an infrastructure
- Certainty of full coverage increases value, lowers risk, eases investment
- Beyond a critical coverage threshold, market forces will accelerate adoption

➢ Legally mandated registration is the necessary first step

Chicken and Egg: Authorities can put in the decisive Chicken
“The current situation is very costly for market participants. The many different proprietary identifiers and local identifiers cause difficulties as they are incomplete, overlapping, and insufficiently accurate and do not guarantee a level playing field. While the drawbacks of the current situation are known and undisputed, resistance to change by the markets is due to the fact that unique identifiers are a public good. They need to be introduced and maintained by legislation. The mandatory requirement to use the LEI should be extended to all financial instruments and not only to specific market segments.”

Keynote by Vítor Constâncio, Vice-President of the ECB, at the joint conference of the EU Commission and ECB on European Financial Integration, Brussels, 19 May 2017

Legal compulsion is essential for data quality and a level playing field among industry participants

Regulators must mandate use of the Global LEI System

Source: Financial Times; letter responding to an article by Gillian Tett «a bubble gum fix for finance»
GLEIS

facts, figures, status
The global LEI ROC Charter

The ROC
(Regulatory Oversight Committee)

Executive Committee

The GLEIF
(Global Legal Entity Identifier Foundation)

Board of Directors

LOU 1
(Local Op. unit)

LOU 2
(Local Op. unit)

LOU n
(Local Op. unit)
LEI - where do we stand?

Governance:

<table>
<thead>
<tr>
<th>ROC participation</th>
<th>as members</th>
<th>as observers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Organisations</td>
<td>72</td>
<td>19</td>
</tr>
<tr>
<td>of which: EU</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Int</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>Countries</td>
<td>45</td>
<td>10</td>
</tr>
</tbody>
</table>

Operations:

- Over 540,000 LEIs issued
- Level 2 data: collection started in May
- 30 LEI issuers, of which 8 LOUs, 22 pre-LOUs
- Further candidates applying to become LOUs
Data Model

The GLEIS delivers **Level 1 data**
- ID card of the entity represented
- No real legal issues

The GLEIS will deliver **Level 2 data**
- Relationship data
- Link entities identified at level 1
- First generation: immediate / ultimate parents, accounting consolidation
- Some legal issues (e.g. confidentiality)

The GLEIS does not deliver **Network / group representations**
- Can be built from Level 1 and Level 2 data by users, e.g. EGR, RIAD
- Likely to be highly diverse, tailored to user needs
- Potential for commercial value-added products
What will the Global LEI System offer? What is the users’ domain?

- Entities and the relationships among them (e.g. contracts) represent facts: same for all
- Entities and relationships are building material for (group) structures
- (Group) structures reflect the users’ very individual choices and views
... and finally
Authorities as Architects of the Data Ecosystem

MORE REPORTING, faster, better, flexible

LESS BURDEN, lower cost, lower risk, better operations

Governance

Legal compulsion

Financing (Initial/steady) - Level playing field

Set standards - Help industry solve its data problem

More & better reporting - Less reporting burden

Low cost reporting - Fast, flexible measurement & analysis

Data science, sampling & statistics

Fast ad hoc data collections - Fast computing

Area-wide coverage - Very large-scale data

Micro-data - Near-time reporting

Complex, turbulent, fast markets - Global industry & markets

Global crises & contagion

Surprising questions - Near-time analysis

Data quality at source

Standardised basic data, globally

Registers as public good - Fully Automated processing

Dictionaries for higher level language

Authorities

Governance - Legal compulsion

Financing (Initial/steady)

Set standards

Level playing field

Help industry solve its data problem

Fast, flexible measurement & analysis

Data science, sampling & statistics

More & better reporting - Less reporting burden

Fast ad hoc data collections - Near-time reporting

Fast computing

Near-time analysis
Francis Gross

Senior Adviser
Directorate General Statistics
European Central Bank
Sonnemannstrasse 22, D-60314 Frankfurt am Main
off: +49 69 1344 7513
mob: +49 160 746 84 82
fax: +49 69 1344 7056
email: francis.gross@ecb.int