

The design of the prototype does not pre-empt any technology decisions nor commit the Eurosystem to providing a digital euro

ECB-PUBLIC

How to interact with the Digital Euro N€XT settlement API
The Digital Euro N€XT settlement API is based on a UTXO model. This implies
authorization of transactions is facilitated by confirmation of the predicates of the input
UTXO, which is done using digital signatures. To be able to build a valid Digital Euro
transaction a keypair is required. Which algorithm to use and the additional steps required
for a successful settlement are described in the following sections, which will detail the
steps:

- Creating a keypair

- Generating an address

- Funding

- Building a transaction

- Signing a transaction

General byte[] encoding

All binary datatypes are encoded in Base64, as defined in the OpenAPI specification. The
following java example illustrates how an array of three bytes is encoded to Base64. In the
example the array [0,255,128] (using signed bytes: [0,-1,-128]) will be encoded as the
string "AP+A".

ByteBuffer b = ByteBuffer.allocate(3);
b.put((byte) 0).put((byte) 255).put((byte) 128);
String encoded = Base64.getEncoder().encodeToString(b.array());

Everywhere a byte[] is transferred over the API this conversion has to be made.

Creating a keypair

The initial version of the Digital Euro prototype uses ECDSA-256 signatures. Many
languages provide tools to generate ECDSA signatures out of the box. See the following
example in Java:

KeyPairGenerator kpg = KeyPairGenerator.getInstance("EC");
kpg.initialize(256);
KeyPair kp = kpg.generateKeyPair();
Key pub = kp.getPublic();
Key priv = kp.getPrivate();

The design of the prototype does not pre-empt any technology decisions nor commit the Eurosystem to providing a digital euro

ECB-PUBLIC

Generating an address

Addresses used in the prototype are double-hashed public keys. The formula for
calculation is ripemed160(sha256(pubKey)) where pubKey is the public key in X.509
format. Continuing the example above using the cryptographic library Bouncy Castle for the
Ripemed160 Hash:

byte[] pubKey = kp.getPublic().getEncoded();
MessageDigest md = MessageDigest.getInstance("sha-256");
var sha256 = md.digest(pubKey);
byte[] address = new byte[20];
RIPEMD160Digest digest = new RIPEMD160Digest();
digest.update(sha256, 0, 32);
digest.doFinal(address, 0);

Funding

The current implementation is a temporary solution of the funding process (a future
release is likely to include DCAs for intermediaries). The process is initiated by invoking
POST request to the endpoint /fundingRequest, containing the following information:

- IBAN for source of funding

- Value to be funded

- Address to be credited

For example the request body of a funding request could look like:

{

"callbackUrl": "http://localhost:8080",
"iban": "EU000001"
"amount": 100,
"receiverAddress": "KVNGhLGXy4rSxGn1c+eUN5l4Z84="

}

The UTXO received upon a funding or settlement request has the following structure:

- Serial number: a unique identifier of the UTXO.

- Amount: the value of the UTXO. In the range of [0,9.223.372.036.854.775.807]

The design of the prototype does not pre-empt any technology decisions nor commit the Eurosystem to providing a digital euro

ECB-PUBLIC

- Witness program commitment: the hash of the witness program. This is dependent
on witness type. For P2PKH it is the public key.

These UTXO can be used as input for consecutive transactions without any decoding or
modification.

Building a transaction

Building a transaction is the association of inputs and outputs. Inputs are the UTXO that
were received during a previous settlement or funding process and can be used as is -
without any decoding or encoding. Outputs are a list of hashed public keys (see Generating
an address) together with the desired value to spend to this output. The sum of all output-
amounts must always match the sum of the input-amounts. An example of such an
unsigned transaction is shown below:

"inputs": [
 {
 "amount": 100,
 "witnessProgramCommitment": "KVNGhLGXy4rSxGn1c+eUN5l4Z84=",
 "serialNumber": "R0VORVNJU19UWF9JRAAAAAE="
 }
],
"outputs": [
 {
 "amount": 100,
 "witnessProgramCommitment": "GyxGucbbdZeKxDoKP86k+ByR24k="
 }
]

Signing a transaction

The final step in building a valid transaction is authorizing the inputs. To do so, each input
requires a witness, which contains the following information:

- WitnessType: A string representing the type (and structure) of the witness. “P2PKH”
for a standard transaction.

- WitnessProgram: A byte[] representing the X.509 encoded public key corresponding
to the hash in the input.

- WitnessData: A signature of the transaction hash (sha256(inputs, outputs)).
Calculating the transaction hash requires all data in the inputs and outputs to be
concatenated. Byte arrays can simply be appended. Numbers are serialized using big
endian encoding. A 64bit amount of 100 will thus need to be converted to the array [0,

The design of the prototype does not pre-empt any technology decisions nor commit the Eurosystem to providing a digital euro

ECB-PUBLIC

0, 0, 0, 0, 0, 0, 100]. This array can then be used to calculate the sha256
transaction id.

Signature signature = Signature.getInstance("NONEwithECDSA");
 signature.initSign(privKey);
 signature.update(transactionHash);
 byte[] witnessData = signature.sign();

	How to interact with the Digital Euro N€XT settlement API
	General byte[] encoding
	Creating a keypair
	Generating an address
	Funding
	Building a transaction
	Signing a transaction

