

Assessing competitiveness and longrun growth: origins of technological changes in G7 and BRIC countries

Konstantīns Beņkovskis (Bank of Latvia) Ludmila Fadejeva (Bank of Latvia) Robert Stehrer (Wiener Institut für Internationale Wirtschaftsvergleiche) Julia Wörz (Oesterreichische Nationalbank)

Competitiveness and productivity

- Competitiveness and productivity are close synonyms
 - World Economic Forum "... defines competitiveness as the set of institutions, policies and factors that determine the level of productivity of a country."
- Here we analyse the contributions from TFP (interpreted as technological progress) at the industry level to an economy's long-term growth potential
- Improvements over traditional Solow residual approach
 - allow for non-constant returns to scale and changes in utilization of inputs
 - o evaluate TFP at industry level and aggregate via input-output framework
 - o take into account open economy characteristics

LATVIIAS BANKA Derivation of TFP at industry level Cost minimization problem

- Follow Basu and Kimball (1997)
- Allows for non-constant returns to scale
- Cost minimization problem of a representative firm:
 - o adjustment costs for changes in capital and labour
 - o may change utilization of inputs (capital, labour)

$$\min_{S,E,H,N,I,R} E\left(\sum_{\tau=0}^{\infty} \beta^{\tau} \left(wLG(E,H)V(S) + wL\Psi(R/L) + P^{I}K\Phi(I/K) + P^{N}N\right)\right)$$

$$Y = F(KS, LHE, N, Z) = Z\left((KS)^{s_{K}} (LHE)^{s_{L}} N^{s_{N}}\right)^{\gamma}$$

$$\dot{K} = (1 - \delta(S))K + I$$

$$\dot{L} = R$$

LATVIIAS BANKA Derivation of TFP at industry level Evaluation of unobserved utilization

Changes in output are given by:

inputs contain capital, total hours worked and intermediate inputs

$$d\chi = s_K dk + s_L (dl + dh) + s_N dn$$

$$\uparrow \qquad \uparrow \qquad \uparrow$$

$$changes in \qquad changes in \qquad changes in total \qquad changes in input \qquad capital \qquad hours worked \qquad intermediate input$$

unobserved changes in utilisation is a function of observables

$$du = \beta_1 dh + \beta_2 \left(dp^N + dn - dp^I - dk \right) + \beta_3 \left(di - dk \right)$$

changes in utilization

changes in hours per head

changes in intermediate consumption to capital

changes in investments to capital

LATVIIAS BANKA Aggregation of TFP Direct and indirect effects

- Industry specific TFP growth informs about direct effects from technological change on the economy
 - o However, technological changes in one industry is multiplied through interlinkages among sectors
 - o Depending on strength and type of interlinkages (i.e. structure of intermediate use) aggregate TFP is affected differently by technology shocks in different industries
- Final use analysis allows to study the full effect of TFP on different GDP components
 - o Theory postulates that TFP shocks affecting consumption have a different impact than TFP shocks affecting investment
- In addition analysis of ToT shocks, which are important for open economies

Aggregation of TFP Stylized Input-Output table

	Product 1	Product 2	Trade product	Consumption	Total input
Domestic Product 1	P_1N_{11}	$P_{1}N_{21}$	P_1X_1	P_1C_1	P_1Y_1
Product 2	$P_{2}N_{12}$	$P_{2}N_{22}$	P_2X_2	P_2C_2	P_2Y_2
Trade product	$P^{M}_{1}M_{1}$	$P^{M}_{2}M_{2}$		$P^{M}{}_{C}C^{M}$	$P^{M}M$
Value added	$/VA_1$	VA_2			VA
Financial account		•••	$P^{M}M-P^{X}X$		•••
Total output /	P_1Y_1	P_2Y_2	$P^{M}M$	$P^{C}C$	

Matrix **B** Represents shares of intermediate inputs in total output

Matrix **S**_C Represents structure of final consumption

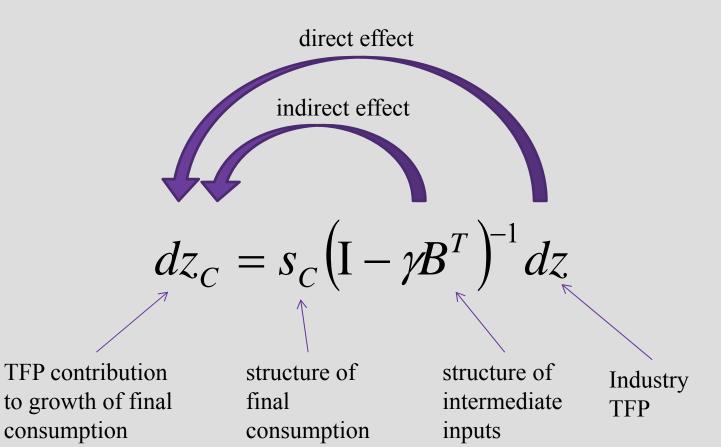
LATVIIAS BANKA Aggregation of TFP Derivation of aggregated contribution

Some mathematical transformations:

$$dy_{i} = \gamma_{i}^{*} \left(s_{Ki} dk_{i} + s_{Li} \left(dl_{i} + dh_{i} \right) + \sum_{j} s_{Nij} dn_{ij} \right) + \gamma_{i}^{*} du_{i} + dz_{i}$$

$$dc_{i} = \gamma_{i}^{*} \left(s_{Ki} dk_{i} + s_{Li} \left(dl_{i} + dh_{i} \right) + \sum_{j} s_{Nij} dc_{j} \right) + \gamma_{i}^{*} du_{i} + dz_{i}$$

$$dc = \gamma s_{K} dk + \gamma s_{L} \left(dl + dh \right) + \gamma B^{T} dc + \gamma du + dz$$


$$dc = \left(\mathbf{I} - \gamma B^{T} \right)^{-1} \gamma s_{K} dk + \left(\mathbf{I} - \gamma B^{T} \right)^{-1} \gamma s_{L} \left(dl + dh \right) + \left(\mathbf{I} - \gamma B^{T} \right)^{-1} \gamma du + \left(\mathbf{I} - \gamma B^{T} \right)^{-1} dz$$

Aggregated TFP contribution to final consumption growth:

$$dz_C = s_C \left(\mathbf{I} - \gamma \mathbf{B}^T \right)^{-1} dz$$

Aggregation of TFP Main equation

Description of the database

- WIOD (World Input-Output Database):
 - o Harmonized input-output tables
 - o Industry level data on output, capital, labour
 - o 35 industries (NACE, rev.1)
 - o 40 countries:
 - 27 EU members
 - 13 major countries
 - o Annual data for 1995-2009

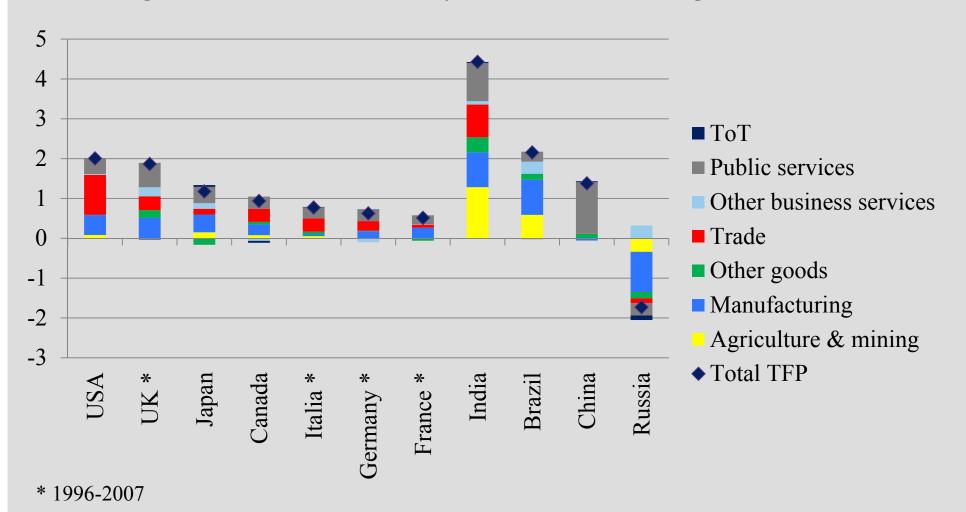
LATVIIAS BANKA | Estimation of TFP at industry level Estimation strategy

• Regression to estimate:

$$dy_{it} = b_0 + \gamma^* d\chi_{it} + b_1 dh_{it} + b_2 \left(dp_{it}^N + dn_{it} - dp_{it}^I - dk_{it} \right) + b_3 \left(di_{it} - dk_{it} \right) + \xi_{it}$$

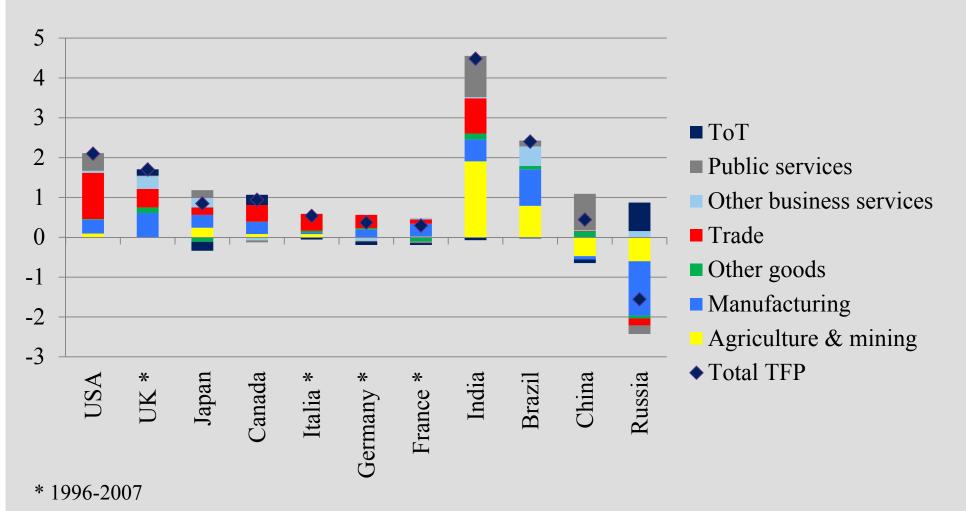
$$dz_{it} = b_0 + \xi_{it}$$

- o Data organized in industry-specific panel datasets
- o Country-specific fixed effects
- o Estimated by TSLS

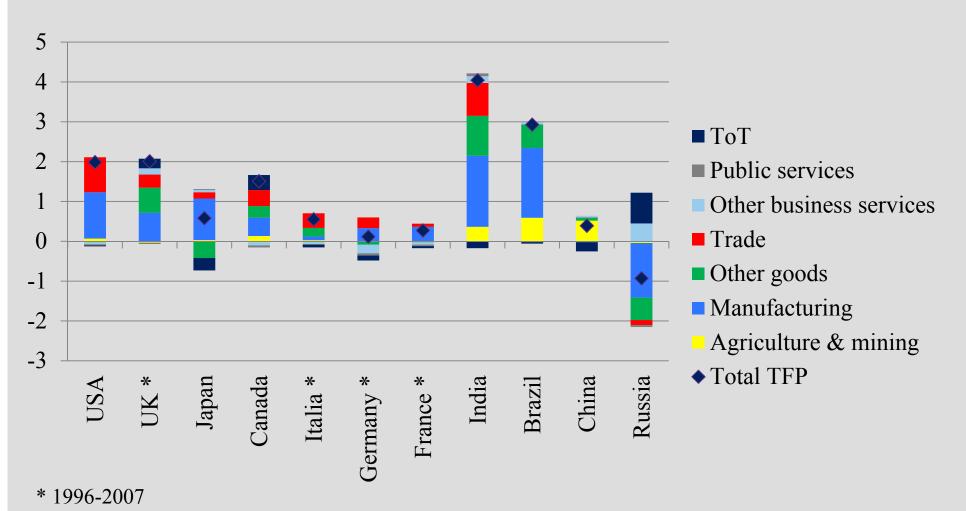

Estimation of TFP at industry level Estimation results

	Coefficients				No. of	No. of	Sargan-test
Industry	dχ	dh	dn+dp ^N – –dk–dp ^I	di-dk	countries	obs.	(p-value)
Agriculture, Forestry and Fishing	0.032	-0.029	0.928***	0.018	40	360	0.620
Mining and Quarrying	0.548***	0.171	0.121	-0.019	40	393	0.684
Food, Beverages and Tobacco	1.076***	0.155	-0.049	0.012	40	407	0.017
Textiles and Textile Products	0.909***	0.052	0.122	-0.004	40	398	0.254
Leather and Footwear	0.940***	0.040	0.180*	0.021	39	350	0.463
Wood and Products of Wood and Cork	0.975***	0.296	0.199	-0.034	40	394	0.669
Pulp, Paper, Printing and Publishing	1.001***	0.103	0.031	0.003	40	407	0.080
Refined Petroleum, Chemical Products	0.998***	0.007	-0.082	0.012	40	404	0.019
Rubber and Plastics	0.936***	0.112***	0.120*	-0.007	40	407	0.705
Other Non-Metallic Mineral	0.997***	0.398	0.087	-0.018	40	404	0.226
Basic Metals and Fabricated Metal	0.841***	0.275	0.132	-0.009	40	407	0.327
Machinery, n.e.c.	0.852***	0.447**	0.230	-0.051**	40	407	0.112
Electrical and Optical Equipment	1.159***	0.099	-0.113	-0.009	40	401	0.685
Transport Equipment	0.497***	-0.073	0.734***	-0.069	40	399	0.599
Manufacturing, n.e.c; Recycling	0.924***	0.281	0.147	-0.034	40	396	0.479
Electricity, Gas and Water Supply	0.572***	-0.036	0.305**	0.011	40	403	0.134
Construction	0.942***	0.132	0.163*	-0.030	40	404	0.983
Trade	0.745***	0.110	0.360**	0.005	40	407	0.169
Hotels and Restaurants	0.919***	0.038	0.419	-0.026	40	394	0.508
Transport	0.909***	0.189	0.155*	0.004	40	402	0.494
Post and Telecommunications	1.168***	0.075	-0.028	-0.015	40	404	0.392
Financial Intermediation	1.131***	0.174	-0.154	-0.015	40	401	0.504
Real Estate Activities	1.103***	0.015	-0.083	-0.012	40	407	0.925
Other Business Activities	1.177***	0.527**	-0.180	0.006	40	405	0.562
Public Administration and Defence	0.773***	0.137	0.088	0.006	39	392	0.463
Education	-0.684	-0.065	0.502	0.055	40	401	0.908
Health and Social Work	0.021	0.439	0.160	-0.084*	40	394	0.649
Other Social Services; Employed Persons	1.377*	-0.827	0.073	-0.088	40	401	0.346

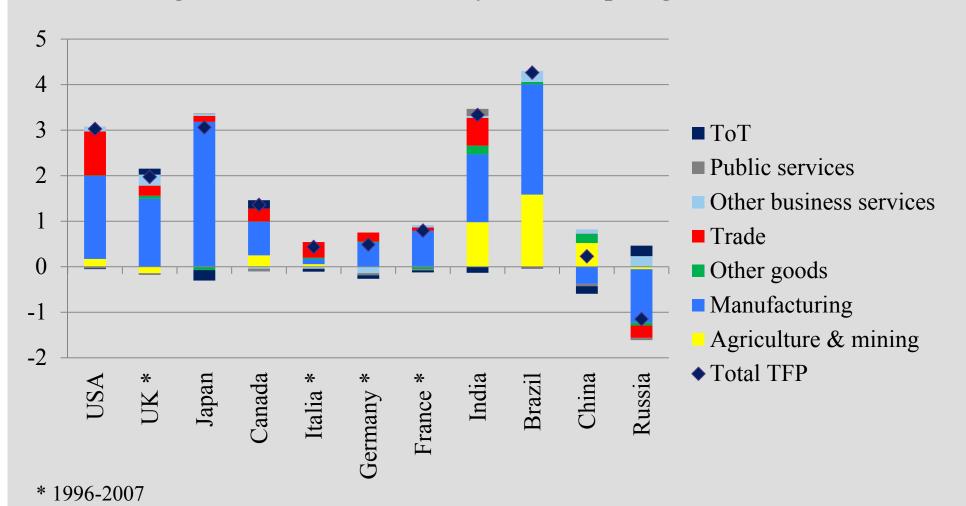
Aggregated TFP contributions to value added


Average contributions of industry TFP to value added growth, 1996-2009

LATVIJAS BANKA Aggregated TFP contributions to private consumption


Average contributions of industry TFP to private consumption growth, 1996-2009

Aggregated TFP contributions to investments


Average contributions of industry TFP to gross fixed capital formation growth, 1996-2009

LATVIIAS BANKA Aggregated TFP contributions to exports

Average contributions of industry TFP to export growth, 1996-2009

Some very preliminary conclusions

- Contribution of technological shocks is very heterogenous within G7 and BRIC countries:
 - o EU countries are lagging behind other G7 countries
 - o India and Brazil shows very dynamic TFP growth
 - o Surprisingly, TFP contribution for China is very moderate much of growth is explained by increasing utilization of factors
 - o Negative contribution from technology shocks for Russia
- Some differences in sectoral composition as well:
 - o Important role of manufacturing for India and Brazil
 - o Significant contribution of trade for G7 countries
- A lot of additional in-depth analysis is needed