Quality/price competition across sectors and destinations Just a few ideas...

A. Berthou

Banque de France

Heterogeneity in terms of price competitiveness...

Export price indexes relative to the eurozone 17 (Eurostat Comext)

... does not reflect relative export performance

France relative to Eurozone

Spain relative to Eurozone

Italy relative to Eurozone

Germany relative to Eurozone

Source: Eurostat Comext

Non-price factors

- They seem to play an important role in the aggregate
 - The residual in aggregate trade equations is large
 - « quality », technology or any other non-price factor (infrastructures, integration into Global Value Chains etc.)
- Huge literature in the past few years has investigated « quality » in international trade data
 - Trade models emphasize the importance of accounting for quality differences to explain heterogeneity of export performance (Baldwin and Harrigan, 2011)
 - Within-sector vertical specialization emphasized in empirical studies using product-level data and unit values (Schott, 2004, 2008; Fontagné et al. 2008)
 - Using estimated quality confirms that advanced economies tend to export higher levels of quality (Khandelwal, 2010, Amiti and Khandelwal, 2012)

Figure 2: GDP per capita and country-level specialization in expensive varieties

Source: Crozet et al. 2011

What can we say about firm performance and quality?

- Exporters charge higher prices than non-exporters, larger plants charge higher output prices and pay more for their inputs, more productive firms pay higher wages (Verhoogen, 2008; Kugler and Verhoogen, 2011; Hallack and Sivadasan, 2008; lacovone and Javorcik, 2008).
- Firms set higher prices in richer and more difficult markets (Manova and Zhang, 2011; Martin, 2012; Görg et al. 2010; Bastos and Silva, 2010)
- « Champagne » quality increases with firm-level prices, the probability of market entry and export values (Crozet et al. 2012)

Implications in terms of specialization

- Martin and Mejean (2012) use firm-destination-product exports data to construct various measures of the quality of French exports
 - Two indexes following Boorstein and Feenstra (1987) or Khandelwal, Schott and Wei (2012)[Appendix]
 - The quality of French exports increased by 11% between 1995-2005 (results do not differ much across methodologies)
 - Aggregate quality increases with competition from low wage countries in export markets

Empirics

Figure 1: Evolution of the Aggregate Quality of French Exports

Figure 4: Quality & Competition from Low-Wage Countries, Across Industries

Quality vs cost competition

- What is the relation between price and sales depends on the type of competition:
 - Cost competition → Revenues decrease with price
 - Quality competition → Revenues increase with price
 - The type of competition can differ accross sectors or sectors *destinations
- Di Comite, Thisse and Vandenbussche (2012)
 - Firm-level prices of products are strongly correlated across destinations, whereas product sales are not
 - Rationalized in a model where preferences can shift the demand for a certain variety (with a given level of quality) across destinations.

Quality vs cost competitiveness

- Nguyen (2011) using Danish firm-level data:
 - •The type of competition by market (product-destintion) can be inferred from firm-level relation between export revenues and prices (unit values)
 - •He estimates $\ln sales_{nctf} = A_{nct} + \beta_{nct} \ln p_{nctf} + \varepsilon_{nctf}$
 - Plots the distribution of the betas

- 60% of Danish exports are to markets with negative price-sales elasticity
- Huge heterogeneity is observed across markets
- Price-sales elasticity is related to GDP per capita of destination, following an inverted U-shape

Figure 1: Price-Sales Elasticities β_{nct} for 5899 CN8-country-year markets. The gray (white) distribution comprises only markets with greater than 25 (50) firms.

Source: Nguyen, 2011

Median = -0.0184671; Mean = -0.04949

Possible research directions

- Aggregate indicators of quality in exports
 - uses the detailed trade data (firms, products, destinations per year)
 - Distinction of within-firm evolution, reallocation of market shares, entry/exit
 - Exploit characteristics of destinations...

Possible research directions

- Identification of price/quality competition across sectors (and destinations)
 - For which sectors and/or do we observe price / quality competition?
 - Can we identify differences in terms of export performance across sectors differenciated by the type of competition?
 - Distribution of firm-level exports growth for each type of sector

Appendix

Indicators of quality

Boorstein and Feenstra (1987) index:

 Changes from the aggregate quality index can be inferred from the comparison of the unit value and ideal price indices:

$$\Delta \ln Q_{kct} = \Delta \ln UV_{kct} - \Delta \ln \pi_{kc}(\{p_{fpct}\})$$

- Any increase in the unit value index that is not matched by an equivalent price increase is the result of consumption being reallocated towards more expensive varieties
- Reallocation is optimal if these varieties are of better quality

Indicators of quality

Khandelwal, Schott and Wei (2012):

Utility incorporates a preferences parameter \(\lambda\)

$$U = \left(\int_{\zeta \in \Omega} \left(\lambda_c(\zeta) q_c(\zeta) \right)^{(\sigma - 1)/\sigma} d\zeta \right)^{\sigma/(\sigma - 1)}$$

Quality shifts the demand addressed to each variety:

$$q_c(\varphi) = \lambda_c^{\sigma-1}(\varphi) p_c^{-\sigma}(\varphi) P_c^{\sigma-1} Y_c$$

 The quality of a variety is obtained taking the residual of the demand equation, controlling for prices, product fixed effects, and destinationtime fixed effects:

$$\ln q_{fhct} + \sigma \ln p_{fhct} = \alpha_h + \alpha_{ct} + \epsilon_{fcht}$$

– Quality is computed as: $\ln \hat{\lambda} = \hat{\epsilon}_{fhct}/(\sigma-1)$