Firms, Destinations, and Aggregate Fluctuations

Julian di Giovanni¹ Andrei A. Levchenko² Isabelle Méjean³

¹International Monetary Fund

²University of Michigan and NBER

³Ecole Polytechnique, CREST and CEPR

September 2012

The views expressed in this paper are those of the authors and should not be attributed to the International Monetary Fund, its Executive Board, or its management.

Introduction	Theoretical Framework	Data	Results	Conclusion
●00		000	00000000000	O
Motivation				

- What are the microeconomic underpinnings of aggregate fluctuations?
 - Long-standing question in business cycle research, going back at least to Long and Plosser (1983)
- How large a role do firms play in generating or amplifying aggregate volatility?
 - 1. Gabaix (2011) emphasizes large firms,
 - 2. Acemoglu et al (2012) emphasize interconnections between firms/sectors
- To date, the empirical evidence of the impact of firms on aggregate fluctuations is scarce

Introduction	Theoretical Framework	Data	Results	Conclusion
○●○		000	0000000000	O
This Paper				

Measures the role of individual firms in generating aggregate fluctuations of French sales growth over 1990–2007:

- Presents a simple model of heterogeneous firms selling to multiple markets to motivate a further decomposition of a *firm's* annual sales growth into several components ("shocks"): i) Firm and firm-destination, ii) Common across firms within a sector / destination (Sectoral and Macro shocks)
- 2. Uses estimates to measure the contribution of the firm component to *aggregate* fluctuations (measured by variance of aggregate sales growth)
- 3. Relates the contribution of the firm component to the firm size concentration and the interconnection between firms

Introduction	Theoretical Framework	Data 000	Results 0000000000	Conclusion 0
Preview of R	esults			

- 1. More than 90% of the variance in individual growth rates explain by the firm-destination component
- 2. The contribution of the firm-specific component to aggregate fluctuations is substantial (around 40%), both for the manufacturing sector and for the whole economy
- 3. The breakdown for *domestic* and *export* sales is similar, though idiosyncratic is a larger component of fluctuations for exports
- 4. The volatility of the firm-specific component is correlated with the distribution of firm size and the magnitude of IO linkages

Introduction	Theoretical Framework	Data	Results	Conclusion
000	●000000	000	0000000000	O
Aggregate S	ales			

• Total aggregate sales by all French firms:

$$X_t = \sum_{f,n\in I_t} x_{fnt},$$

where x_{fnt} is firm f's sales to destination n at time t

• The growth rate of aggregate sales:

$$\gamma_{At} = \ln X_t - \ln X_{t-1}$$

• Focus on the intensive margin $(I_t = I_{t-1})$

Introduction	Theoretical Framework	Data	Results	Conclusion
000	0●00000	000	00000000000	O
Aggregate	Growth			

• Aggregate growth then explains by firm-level growth rates:

$$\gamma_{At} = \sum_{f,n} w_{fnt-1} \gamma_{fnt}$$

where w_{fnt-1} is the share of firm f's sales in market n in aggregate sales in period t-1 and γ_{fnt} its growth rate between t-1 and t

Introduction	Theoretical Framework	Data	Results	Conclusion
000		000	0000000000	O
A Motivating	Model of Firm	Sales Growth		

• We show that, in the context of a multi-sector heterogeneous firms model in the spirit of Melitz (2003) and Eaton et al. (2011), individual growth rates write:

$$\gamma_{fnt} = \delta_{nt} + \delta_{jnt} + \varepsilon_{fnt},$$

where γ_{fnt} is the growth rate of sales of firm f to some market n and δ_{nt} , δ_{jnt} and ε_{fnt} respectively denote a "macro", a "sectoral" and a "firm" shocks

• Macro and sectoral shocks cannot be identified separately:

$$\gamma_{\textit{fnt}} = \tilde{\delta}_{\textit{jnt}} + \varepsilon_{\textit{fnt}}$$

• This can be estimated, year-by-year and destination-bydestination, using OLS with fixed effects to identify sector-destination shocks

J. di Giovanni, A. Levchenko, I. Méjean

Introduction	Theoretical Framework	Data	Results	Conclusion
000		000	0000000000	O
Sales Deco	mposition/Estim	nating Equat	ions	

- What does the firm-component capture?
- In our illustrative model:

$$\begin{split} \varepsilon_{fnt} &= \varepsilon_{ft}^{1} + \varepsilon_{fnt}^{2} \\ \varepsilon_{ft}^{1} &= (1 - \sigma) \Delta \log a_{fdt} \\ \varepsilon_{fnt}^{2} &= \Delta \log \omega_{fnt} \end{split} \tag{cost shock}$$

- In a more sophisticated model, the firm-component would also capture:
 - The heterogeneous response of firms to common shocks: δ_{nt} and δ_{jnt} would then capture the "mean" response of firms while the heterogeneity would be passed into the "residual"
 - Potential comovements between firms through interconnections (impact of *a_{fdt}* on the cost of downstream firms)

• Using the previous decomposition, the annual growth rate of intensive sales writes:

$$\gamma_{At} = \sum_{f,n} w_{fnt-1}\gamma_{fnt}$$
$$= \underbrace{\sum_{j,n} w_{jnt-1}\tilde{\delta}_{jnt}}_{Macro, Sector} + \underbrace{\sum_{f,n} w_{fnt-1}\delta_{fnt}}_{Firm},$$

where w's are weights of sales in sector-market jn; and firm-market fn to total sales

 Our purpose is to study to what extent the "Firm" component explains aggregate fluctuations

Introduction	Theoretical Framework	Data	Results	Conclusion
000	00000●0	000	0000000000	O
Aggregate Vo	olatility			

• Define aggregate volatility as

$$\sigma_A = \sqrt{\frac{1}{T-1} \sum_{t=1991}^{2007} (\gamma_{At} - \bar{\gamma}_A)^2},$$

where γ_{At} is the growth rate of total sales between t-1 and t and $\bar{\gamma}_A \equiv \frac{1}{T} \sum_{t=1991}^{2007} \gamma_{At}$ is the mean growth rate over the sample period

IntroductionTheoretical FrameworkDataResultsConclusionOccorrectionOccorrectionOccorrectionOccorrectionOccorrectionAggregate volatility and Macroeconomic, Sectoral, andFirm-Specific Shocks

• Then, the variance of the aggregate growth is

$$\sigma_{At}^{2} = \sum_{g,m} \sum_{f,n} w_{gmt-1} w_{fnt-1} \text{Cov} (\gamma_{gmt}, \gamma_{fnt})$$

$$= \underbrace{\sum_{j,m} \sum_{k,n} w_{jmt-1} w_{knt-1} \text{Cov} (\tilde{\delta}_{jmt}, \tilde{\delta}_{knt})}_{Macro/Sectoral Volatility}$$

$$+ \underbrace{\sum_{g,m} \sum_{f,n} w_{gmt-1} w_{fnt-1} \text{Cov} (\delta_{gmt}, \delta_{fnt})}_{Firm Volatility} + COV_{t}$$

• Note: there is time variation because weights vary over time

Introduction	Theoretical Framework	Data	Results	Conclusion
000		●00	0000000000	O
Data Descrip	otion			

- Firm-level domestic and export sales data for the universe of French firms over 1990-2007
- Merge two large datasets:
 - Fiscal administration: firm tax forms from BRN and RSI (small firms). BRN covers 1.6 million firms and 52 NAF sectors. Manufacturing has 209 thousand firms and 22 NAF industries, representing 30% of total sales
 - Customs: firm-destination exports
- Trimming procedure to clean outlier growth rates and possible mergers/synthetic exits
 - Extreme growth rates: half or double previous years sales
 - Trimming by upper and lower percentiles

Introduction 000	Theoret 00000	ical Framework 00		Data 5 000	esults	Conclusion O
Actual	Individual	Growth	and	Components:	Whole	
Econon	ny					

		I. To	tal Sales	
	(1)	(2)	(3)	(4)
	Obs.	Mean	St. Dev.	Correlation
Actual	9,856,893	0.0467	0.2601	1.0000
Firm-Specific	9,856,893	0.0000	0.2583	0.9934
Sector-Destination	16,238	0.0763	0.1260	0.1146
	II. Domestic Sales			
	(1)	(2)	(3)	(4)
	Obs.	Mean	St. Dev.	Correlation
Actual	8,031,452	0.0410	0.2266	1.0000
Firm-Specific	8,031,452	0.0000	0.2255	0.9954
Sector-Destination	595	0.0453	0.0.04	0.0957
		III. Ex	port Sales	
	(1)	(2)	(3)	(4)
	Obs.	Mean	St. Dev.	Correlation
Actual	1,825,441	0.0718	0.3723	1.0000
Firm-Specific	1,825,441	0.0000	0.3697	0.9930
Sector-Destination	15,643	0.0775	0.1281	0.1185

Note: 98.7% of the observed variance is explained by the firm-level component.

Introduction 000	Theoretical Framework	Data R 000 0	esults Conclusion
Actual	Individual Growth	and Components:	Manufacturing
Sector			

	I. Total Sales				
	(1)	(2)	(3)	(4)	
	Obs.	Mean	St. Dev.	Correlation	
Actual	2,436,017	0.0542	0.3038	1.0000	
Firm-Specific	2,436,017	0.0000	0.3010	0.9908	
Sector-Destination	10,269	0.0741	0.0968	0.1357	
	II. Domestic Sales				
	(1)	(2)	(3)	(4)	
	Obs.	Mean	St. Dev.	Correlation	
Actual	1,233,903	0.0378	0.2233	1.0000	
Firm-Specific	1,233,903	0.0000	0.2214	0.9917	
Sector-Destination	306	0.0414	0.0322	0.1285	
		III. Ex	port Sales		
	(1)	(2)	(3)	(4)	
	Obs.	Mean	St. Dev.	Correlation	
Actual	1,202,114	0.0709	0.3679	1.0000	
Firm-Specific	1,202,114	0.0000	0.3651	0.9924	
Sector-Destination	9,963	0.0752	0.0980	0.1228	

Note: 98.2% of the observed variance explained by the firm-level component.

- The firm component explains the overwhelming majority of the sales variability. But this is not surprising...
- In the firm component, market-specific shocks are more important than shocks that are common across markets within firm

J. di Giovanni, A. Levchenko, I. Méjean

Firms, Destinations, and Aggregate Fluctuations

Introduction 000	Theoretical Framework	Data 000	Results 00●00000000	Conclusion O
The Aggrega	te Impact of Firm	-Specific Sł	nocks on	
Aggregate Vo	olatility			

		I. Tota	al Sales		
	Whole	Economy	Manufac	turing Sector	
	(1)	(2)	(3)	(4)	
	St. Dev.	Relative SD	St. Dev.	Relative SD	
Actual	0.0214	1.0000	0.0261	1.0000	
Firm-Specific	0.0164	0.7584	0.0165	0.6266	
Sector-Destination	0.0137	0.6663	0.0189	0.7394	
	II. Domestic Sales				
	Whole Economy		Manufac	Manufacturing Sector	
	(1)	(2)	(3)	(4)	
	St. Dev.	Relative SD	St. Dev.	Relative SD	
Actual	0.0185	1.0000	0.0195	1.0000	
Firm-Specific	0.0139	0.7441	0.0114	0.5778	
Sector-Destination	0.0127	0.7148	0.0157	0.8186	
	III. Export Sales				
	Whole Economy		Manufac	Manufacturing Sector	
	(1)	(2)	(3)	(4)	
	St. Dev.	Relative SD	St. Dev.	Relative SD	
Actual	0.0037	1.0000	0.0086	1.0000	
Firm-Specific	0.0029	0.7874	0.0062	0.7224	
Sector-Destination	0.0016	0.4475	0.0041	0.4909	

- Contribution of the firm-level component is equivalent to the contribution of all sectoral and macro shocks
- The contribution is larger for export sales

IntroductionTheoretical FrameworkDataResultsConclusionOccOccOccOccOccOccOccThe Aggregate Impact of Firm-Level Shocks on AggregateVolatility

 Contribution of firms is increasing over time, both for the manufacturing sector and for the whole economy

J. di Giovanni, A. Levchenko, I. Méjean

Introduction	Theoretical Framework	Data	Results	Conclusion
000		000	0000000000	O
Robustness (Checks			

- Temporal Aggregation
 - Look at sales growth over 3 year period (measurement errors)
 - Variance contribution of firms similar as baseline
- Potential firm-level heterogeneity in reaction to sector and/or country shocks:

$$\gamma_{\textit{fnt}} = \tilde{\delta}_{\textit{jnt}} + \beta_1 \textit{Size}_{\textit{fnt}} + \beta_2 \textit{Size}_{\textit{fnt}} \times \tilde{\delta}_{\textit{jnt}} + \varepsilon_{\textit{fnt}},$$

where Size is either share w_{fnt} or quintile dummy of distribution of sales

• Results are robust

• Recall the definition of the firm-specific volatility

$$\sigma_{Ft}^{2} = \sum_{g,m} \sum_{f,n} w_{gmt-1} w_{fnt-1} \mathsf{Cov}(\varepsilon_{gmt}, \varepsilon_{fnt})$$
$$= \underbrace{\sum_{f,n} w_{fnt-1}^{2} \mathsf{Var}(\varepsilon_{fnt})}_{GRAN} + \underbrace{\sum_{g \neq f, m \neq n} \sum_{f,n} w_{gmt-1} w_{fnt-1} \mathsf{Cov}(\varepsilon_{gmt}, \varepsilon_{fnt})}_{LINK}$$

- Role of the variance of individual shocks: Assumed negligible in standard macro (diversification argument). Challenged in the recent literature (e.g. Gabaix, 2011). Role of the distribution of weights
- Role of comovements between firms: Discarded in most of the macro literature. Challenged in the recent literature (e.g. Acemoglu et al, 2012). Role of interconnections between firms

- LINK component explains the majority of total firm-level volatility
- Still true at the sectoral level with some heterogeneity (larger role of *GRAN* in the "Petroleum" sector)
- Contribution of GRAN increases over time

Introduction	Theoretical Framework	Data	Results	Conclusion
000		000	000000000000	O
Contribution	of Granularity			

• Gabaix: if
$$Var(\varepsilon_{fnt}) = \sigma^2 \ \forall (f, n)$$

$$GRAN \equiv \sum_{f,n} w_{fnt-1}^2 \operatorname{Var}(\varepsilon_{fnt}) = \sigma^2 \operatorname{Her} f_{t-1}$$

With firms symmetric in size,

$$GRAN = \sigma^2 / N_{t-1}$$

(tends to 0 when N_{t-1} increases)

- For the whole economy, \sqrt{GRAN} 15 times larger than the counterfactual with equal weights
- \Rightarrow Firm size distribution matters

Correlation coefficient .57 for the whole economy and .72 for the manufacturing sector.

• At the sector level:

$$GRAN = \sum_{j} GRAN^{j}$$
 and $GRAN^{j} = \sum_{(f,n) \in j} w_{fnt-1}^{2} Var(\varepsilon_{fnt}) = \sigma^{2} HERF_{t-1}^{j}$

- \Rightarrow Sectors more concentrated should display more volatility
- Correlation less than perfect because, in the data, small firms tend to be more volatile

Introduction	Theoretical Framework	Data	Results	Conclusion
000		000	000000000000	O
The Role of I	Linkages			

- Acemoglu et al (2012): Model predicts a positive covariance between ε_{fnt} and ε_{gmt} if f and g are connected through IO linkages
- With iid productivity shocks, propagation through the price of inputs:

$$\mathsf{Cov}(\varepsilon_{gmt}, \varepsilon_{fnt}) = (1 - \theta)^2 (1 - \alpha_f) \rho_{fg} \mathsf{Var}(a_{gmt}),$$

 $(1 - \theta)$ price elasticity of nominal demand, $(1 - \alpha_f)$ share of intermediates in costs, ρ_{fg} share of inputs sources from g

- \Rightarrow Covariance increasing in the intensity of linkages
 - No firm-level measure of interconnections \Rightarrow Use sectoral IO tables instead
 - Sectors more connected through IO linkages should display stronger covariance terms

IO coefficient calculated from IO tables, as the mean between sectors i and jCorrelation coefficient .39 for the whole economy and .49 for the manufacturing sector.

• At the sector level:

$$\textit{LINK} = \sum_{i=1}^{J} \sum_{j=1}^{J} \textit{LINK}^{ij} \textit{ and } \textit{LINK}^{ij} \equiv \sum_{(f,n) \in i} \sum_{(g,m) \in j} w_{\textit{fnt}-1} w_{\textit{gmt}-1} \textit{Cov}(\varepsilon_{\textit{fnt}}, \varepsilon_{\textit{gmt}})$$

Introduction	Theoretical Framework	Data	Results	Conclusion
000		000	00000000000	•
Conclusion				

- Empirical evidence on role of firms in aggregate fluctuations is still relatively scarce
- We use a rich panel of firm-level data, by destination, to isolate the contribution of firms to aggregate volatility
- Results suggest that firm-level shocks explain a bulk of aggregate sales volatility
- Role of the market structure: Large firm-level volatility in more concentrated markets
- Two thirds of the firm-specific volatility explain by firm linkages