Using micro and macro data for policy research

Eric Bartelsman* September 21, 2012 CompNet, Banque de France *Vrije Universiteit Amsterdam; Tinbergen Institute;.IZA.

Outline

- Policy Questions
 - Data and research to inform decisions
- Data Availability
 - Look for the lamp-posts, then look under them (instead of assuming there is light)
- Methodology
 - Dependent on question
- Examples

Micro to Macro

Policy Questions

- Long-run Aggregate Productivity Growth
 - What are drivers
 - Policy evaluation (Structural, Financial, Targetted)
- Medium-term Potential Output Growth
 - Forecasting Trend Productivity
- Competitiveness (External Balance)
 - Can firms 'compete'
 - Firm growth conditional on productivity
- Resilience
 - Stress-testing the real economy

Firm-level, cross-country comparisons

- Policy environment affects all firms in country (and industry) in the same manner
- Cross-country firm-level comparisons may provide means to observe/identify the impacts of policy changes through the three paths:
 - Allocation of resources across firms
 - Selection (entry/exit)
 - Choice of firm strategy (investment, innovation, export)

From firm data to macro indicators

Distributed Micro Data Analysis

EuroStat Project

- Data sources:
 - Data underlying National Accounts
 - 15 EU countries, 2000-2009
 - Coverage in 15t37, 50t74, 91t3
 - Linked firm-level files
 - Business Register
 - Production Stats (SBS)
 - E-commerce Survey
 - Community Innovation Survey (CIS)
 - Long Panel (1990-2009)

Cross-Country Output Datasets

- Tabulations (c,i,t), with industry splits
 - eg: output for exporting/non-exporting firms; gazelles, mnc, foreign-owned, innovative, ICT-intensive
- Firm Demographics (entry/exit, JC, JD, size distr)
- Industry Dynamics
 - OP Cross term, Prod Decompositions, Prod Variances, Churn, Boone indicator
- Means, variances, co-variances by quartile of distributions
- Regression output
 - Prod function w. human capital, ICT, innovation
 - Export selection and intensity

Methodology

- Cross-country panel data with micro-aggregated indicators
 - Structural estimation on c,i,t,+A(j), instead of microestimates, but allows cross-country policy variables.
 - eg: innovation profiles and productivity (van Leeuwen)
 - Forecasting productivity (Bartelsman and Wolf)
- Heterogeneous firm model + calibration or ind. inf.
 - Bartelsman, Haltiwanger, Scarpetta;
 - Bartelsman, Gautier, de Wind
- Other Methodological choices: depend on question.
 - Does method of firm-level TFP estimate matter?
 - TFPQ vs TFPR may matter, but allowing estimated markup to vary, e.g. between entrants/incumbents may be sufficient

Technology Choice and EPL

11

ICT and variability of outcomes

Percentage of workers with broadband access

Technology Choice and EPL

- Search model with choice of opening job in safe of risky sector
 - In risky sector, technology shocks arrive, but exit option improves ex-post average return
 - EPL makes exit more costly
- Model is calibrated with moments from US micro and micro-aggregated datasets
- Country/Industry panel data, augmented with microaggregate indicators (sectoral riskiness) is used to estimate effect of EPL
- EPL is seen to reduce employment share in risky sectors (and reduce aggregate TFP growth)

Empirical specification

• Main regression: TFP effect of exit costs

$$V_{c,i,t} = \alpha + \sum_{x \in lkk^{IT}} \beta_x X_{c,i,t} + I_{c,t} (\gamma_0 + \gamma_1 F)_i + \sum \delta_j D_j + \varepsilon_{c,i,t}$$

where $I_{c,t} = EPL_{c,t}$ or CDB_c

- Frontier indicators (by industry for US or UK):
 - Top quartile productivity relative to mean
 - Standard deviation of productivity
 - Adoption of Broadband

Exit costs and productivity

Dependent var:	Log(VA)	Log(VA)	Log(VA)
Regressor:			
Log: Kit,Knit,Hours	***	***	***
EPL	.47	.34	.46
	(0.02)	(0.14)	(0.19)
EPL x Rank		-1.18	-1.13
		(3.07)	(3.08)
Rank variable		Top quartile prod. relative to mean	Broadband-use
Num. obs.	7032	6790	7031
R-sq	.97	.97	.97

Exit costs and employment

	Dependent var:	Labor share in sector	Labor share in sector
Regressor:			
EPL		.02	.02
		(0.74)	(0.74)
EPL x Ranl	ζ	-0.82	-0.84
		(10.30)	(10.55)
Rank varial	ole	Top quartile prod/mean	Broadband-use
Num. obs.		5518	5518
R-sq		.84	.84

BHS: Cov(LPR,Size)

Source: Eurostat ICT-Impacts Project, preliminary, do not cite.

Resilience

- Assess how different types of firms respond to different shocks
 - ICT intensity, high human capital, export intensive, (external) capital intensive, small, young
 - Difficulty in find historical data for different shocks....
- Preliminary work: ICT intensive firms have higher output variance, but employment relatively less variable
 - Possibly hoarding of high human capital workers

Conclusions

- Investment in meta-data and national microdata infrastructure is relatively heavy
- Marginal cost of 'new' data requests are very low
- Micro-aggregated data allow for identification of interesting policy effects, especially when used together with other sources (e.g. EUKLEMS)
- Single country micro-studies still needed