THE EXCHANGE RATE, ASYMMETRIC SHOCKS AND ASYMMETRIC DISTRIBUTIONS

Calin-Vlad Demian (CEU) and

Filippo di Mauro (ECB)

12th CompNet Workshop Madrid, 27th March 2015

Introduction

- Large literature on exchange rate and exports
 - Consistent discrepancy between micro and macro estimates
- In this paper, we empirically re-examine the exchange rate elasticity of exports
- We incorporate firm-derived productivity statistics in a gravity-type equation
- We further look at exchange rate elasticity for:
 - Appreciation and depreciation
 - Relative to the size of the shock

Preview of results

 Inclusion of productivity statistics drastically affects the average observed elasticity

 There is a strong negative correlation between productivity dispersion and elasticity

There are drastic differences between appreciation and depreciation episodes

Exchange rate movements matter when they are relatively sizable

Related literature

- Heterogeneous response and aggregation
- Berman et al. (2013), Dekle et al. (2007), Dekle et al. (2013), Cheung and Sengupta (2013),
- Asymmetric shocks
 - Raham and Serletis (2009), Grier and Smallwood (2013), Fang et al. (2009)
- Exchange rate pass-through
 - Pollard and Coughlin (2004), Bussiere (2006), Delatte and Lopez-Villavicencio (2012),

Data

- Productivity data : CompNet
 - BE, EE, ES, FI, HR, IT, LT, PT, RO, SI
 - 22 manufacturing sectors, 12 years
 - Sector level estimated TFP → higher order statistics
- Trade data: UN ComTrade
 - Data for all possible partners, aggregated to NACE 2 level
- Bilateral RER data
 - Catini et al. (2010)

Empirical specification

$$\ln(X_{ni,t}^{j}) = \alpha + \beta \ln(RER_{ni,t}) + \gamma \ln(RER_{ni,t}) \times \ln Prod \ Dispersion_{n,t}^{j} + \sigma \ln(RER_{ni,t})$$
$$\times \ln Prod \ Skew_{n,t}^{j} + \delta_{1}D_{ni,t}^{j} + \delta_{2}GDP_{n,t} + \delta_{3}GDP_{i,t} + controls_{ni}^{j} + \varepsilon_{ni,t}^{j}$$

First difference:

(1)
$$\Delta \ln(X_{ni,t}^j) = \alpha + \beta \Delta \ln(RER_{ni,t}) +$$

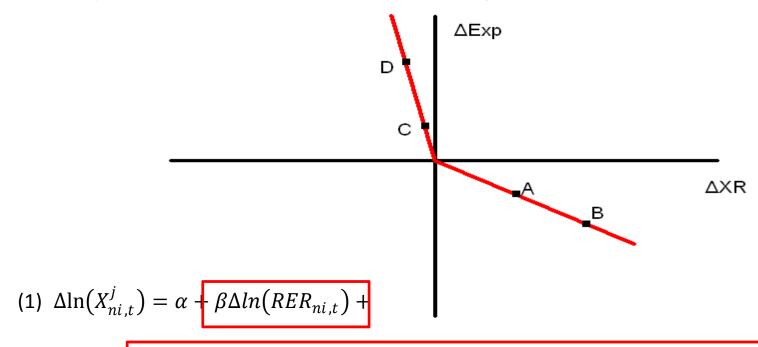
$$\gamma_1 \Delta ln(RER_{ni,t}) \times ln Prod Dispersion_{n,t}^j + \sigma_1 \Delta ln(RER_{ni,t}) \times ln Prod Skew_{n,t}^j +$$

$$\gamma_{2} ln(RER_{ni,t}) \times \Delta lnProd\ Dispersion_{n,t}^{j} + \gamma_{3} \Delta ln(RER_{ni,t}) \times \\ \Delta lnProd\ Dispersion_{n,t}^{j} + \sigma_{2} ln(RER_{ni,t}) \times \Delta lnProd\ Skew_{n,t}^{j} + \sigma_{3} \Delta ln(RER_{ni,t}) \times \\ \Delta lnProd\ Skew_{n,t}^{j} + \delta_{1} \Delta D_{ni,t}^{j} + \delta_{2} \Delta GDP_{n,t} + \delta_{3} \Delta GDP_{i,t} + \Delta \varepsilon_{ni,t}^{j}$$

Baseline results

	No productivity statistics	Productivity statistics
Δln(XR)	-0.337***	-0.773***
	(0.0338)	(0.129)
$\Delta ln(XR) \times ln(TFP)$ dispersion		0.157***
		(0.0435)
$\Delta ln(XR) \times ln(TFP)$ skewness		-0.0173
		(0.0461)

Baseline results


Similar results if we use other distribution statistics

Similar results if we use apparent labor productivity instead of TFP

Much better results than just including fixed effects

Sector/country specific estimates

Asymmetric exchange rate

$$\gamma_1 \Delta ln(RER_{ni,t}) \times ln Prod \ Dispersion_{n,t}^j + \sigma_1 \Delta ln(RER_{ni,t}) \times ln \ Prod \ Skew_{n,t}^j + \sigma_1 \Delta ln(RER_{ni,t}) \times ln Prod \ Skew_{n,t}^j + \sigma_1 \Delta ln(RER_{ni,t})$$

$$\gamma_{2} ln(RER_{ni,t}) \times \Delta lnProd\ Dispersion_{n,t}^{j} + \gamma_{3} \Delta ln(RER_{ni,t}) \times \\ \Delta lnProd\ Dispersion_{n,t}^{j} + \sigma_{2} ln(RER_{ni,t}) \times \Delta lnProd\ Skew_{n,t}^{j} + \sigma_{3} \Delta ln(RER_{ni,t}) \times \\ \Delta lnProd\ Skew_{n,t}^{j} + \delta_{1} \Delta D_{ni,t}^{j} + \delta_{2} \Delta GDP_{n,t} + \delta_{3} \Delta GDP_{i,t} + \Delta \varepsilon_{ni,t}^{j}$$

Asymmetric exchange rate

	No productivity statistics	Productivity statistics
Appreciation		
Δln(XR)	-0.754***	-1.006***
	(0.0490)	(0.150)
$\Delta ln(XR) \times ln(TFP)$ dispersion		0.0995**
		(0.0504)
$\Delta ln(XR) \times ln(TFP)$ skewness		-0.0263
		(0.0563)
Depreciation		
Δln(XR)	0.261***	-0.212
	(0.0712)	(0.263)
$\Delta ln(XR) \times ln(TFP)$ dispersion		0.148
		(0.0851)
$\Delta ln(XR) \times ln(TFP)$ skewness		0.0244
		(0.0806)

Large shocks

- We split the sample in two: inner 50% and outer 50%
- ±3%: small changes

(1)
$$\Delta \ln(X_{ni,t}^j) = \alpha + \beta \Delta \ln(RER_{ni,t}) +$$

$$\gamma_1 \Delta ln(RER_{ni,t}) \times ln Prod \ Dispersion_{n,t}^j + \sigma_1 \Delta ln(RER_{ni,t}) \times ln Prod \ Skew_{n,t}^j + \sigma_2 \Delta ln(RER_{ni,t}) \times$$

$$\begin{split} &\gamma_2 ln(RER_{ni,t}) \times \Delta lnProd\ Dispersion_{n,t}^j + \gamma_3 \Delta ln(RER_{ni,t}) \times \\ &\Delta lnProd\ Dispersion_{n,t}^j + \sigma_2 ln(RER_{ni,t}) \times \Delta lnProd\ Skew_{n,t}^j + \sigma_3 \Delta ln(RER_{ni,t}) \times \\ &\Delta lnProd\ Skew_{n,t}^j + \delta_1 \Delta D_{ni,t}^j + \delta_2 \Delta GDP_{n,t} + \delta_3 \Delta GDP_{i,t} + \Delta \varepsilon_{ni,t}^j \end{split}$$

Large shocks

	No productivity statistics	Productivity statistics
Small shocks		
$\Delta ln(XR)$	-0.460***	-0.872
	(0.154)	(0.595)
$\Delta ln(XR) \times ln(TFP)$ dispersion		0.153
		(0.200)
$\Delta ln(XR) \times ln(TFP)$ skewness		-0.0350
		(0.219)
Large shock		
$\Delta ln(XR)$	-0.333***	-0.772***
	(0.0343)	(0.132)
$\Delta ln(XR) \times ln(TFP)$ dispersion		0.158***
		(0.0445)
$\Delta ln(XR) \times ln(TFP)$ skewness		-0.0169
		(0.0472)

Concluding remarks

- New empirical estimation of the exchange rate elasticity
- When taking into account productivity statistics, the elasticity doubles
- The higher the concentration of productive firms, the lower the elasticity
- Considerable difference in elasticities depending on the sign and size of the exchange rate movement

Thank you