

Productivity trends from 1890 to 2012 in advanced countries

12th Compnet Workshop Madrid – 27th March 2015

Antonin Bergeaud – Banque de France and Polytechnique Gilbert Cette – Banque de France and AMSE Rémy Lecat - Banque de France

Forthcoming in The Review of Income and Wealth

Productivity and the long run

- Major current concerns regarding productivity...
 - Information and communication technology
 - US-Europe and Japan divergence
 - Impact of the Great Crisis
 - Risk of 'secular stagnation'?
- can be enlightened by examining the long run
 - Comparison with previous technology shocks
 - Previous convergence paths
 - Experience of past major disruptions

Current issues

Information and communication technology

- R. Gordon (2012, 2013, 2014): productivity structural slowdown, end of ICT productivity wave?
- vs Byrne, Oliner and Sichel (2013, 2014), among others: measurement problems?

o US-Europe and Japan divergence since mid 1990s

- End of a long convergence process
- Tentative explanations

A new deal with the Great Crisis

- What is the future of productivity?
- Could we suffer from a 'secular stagnation'? (Summers, 2013, ...)

Literature

o Technological progress, innovations

- Aghion and Howitt (1998, 2009, 2012) ...
- Crafts and O'Rourke (2013) ...
- Ferguson and Washer (2004)n...

o Convergence

- Barro and Sala-i-Martin (1997) ...
- La Porta, Lopez-De-Silanes and Shleifer (2008) ...
- Algan and Cahuc (2010) ...

Productivity in the long run

- Islam (2003) ...
- Madsen (2010) ...
- Crafts and O'Rourke (2013) ...

What we do

o Productivity level and evolutions over the period 1890-2012

Using annual and quarterly data

o 13 advanced countries

- G7: US, UK, Japan, France, Germany, Italy, Canada
- Spain, The Netherlands, Finland
- Australia, Sweden, Norway
- +reconstituted Euro area

Labor Productivity and TFP

- Filtering: productivity waves (HP filter, λ = 500)
- Breaks (Bai and Perron tests)

What we find

- 1. Two productivity growth waves
- 2. In the US, a smaller and shorter-lived ICT productivity wave
- 3. In other countries, delayed productivity waves, if any
- 4. Two main productivity leadership changes
- 5. No global and permanent convergence process
- 6. Global productivity breaks due to global shocks
- 7. Country-specific breaks due to idosyncratic shocks

DATA AND METHODOLOGY

- • Computing productivity

 Labor productivity per hour $LP_{i,t} = \frac{Y_{i,t}}{H_{i,t}}$
- with *H* total number of hours worked

Total factor productivity

$$TFP_{i,t} = \frac{Y_{i,t}}{H_{i,t}^{1-\alpha}K_{i,t-1}^{\alpha}} \qquad \alpha = \mathbf{0}, \mathbf{3}$$

- The capital stock:
 - δ =10% (equipment) / 2.5% (building) Permanent inventory method
 - Distinguishing building and equipment
 - Taking into account war/earthquake damages
- Productivity level: 2005 PPP USD from Penn world tables

Data sources

For annual data

- Starting from Cette, Kocoglu and Mairesse (2009) for US, UK, JP, FR
- The basis: Maddison (2001, 2003)...
- ...updated by Bolt et al. (2013) and others...
- and complemented for specific countries by Baffigi / Broadberry et al. for Italy, Prados for Spain, Villa for France, Smits et al./Groote et al. for the Netherlands...
- Particular weakness for Hours worked per employee

For quarterly data

- From 1960 to 2012 Q4
- National accounts, Eurostat, OECD and specific national sources

Filtering and breaks

Filtering

- Hodrick-Prescott filtering
- 30-years cycles (λ = 500)

Breaks

- Bai and Perron (1998): optimal number and datation of breaks+trends
- Minimum gap between 2 breaks: 7 years for annual data; 5 years for quarterly data
- After 1960: breaks on quarterly data reported on annual data
- Dealing with wars:
 - major disruptions and unreliable data
 - Testing breaks in trend and intercept through dummies

TECHNOLOGY

1. Two productivity growth waves

Two productivity growth waves

United States: HP filtering of Productivity growth (with λ=500)

Data & Methodology

Technology

Convergence

Robustness

Two productivity growth waves

- 1st productivity growth wave
 - 2nd industrial revolution: electricity, internal combustion engine, chemistry, communication (Gordon, 2000: 'The big wave')
 - But also production organization, financial markets, education...
 (Ferguson and Washer, 2004)
 - Long lag in diffusion: cf. electricity (David, 1990)
- 2nd productivity growth wave
 - ICTs

2. In the US, a smaller and shorter-lived ICT productivity wave

Labour productivity growth (in %)

United States

Areas in grey: war periods

Mid-1990s upward break in US productivity

- Stressed by Jorgenson (2001) and others
- TFP in ICT-producing sectors
- Capital deepening in ICT-using sectors

Downward break in 2002 / 2004

- Before the financial crisis
- Deceleration in Moore's law (Gordon, 2012, 2013, 2014, ...)?

Annual growth rate of investment price relative to GDP price – In %

- Simple model from Cette, Mairesse and Kokoglu (2005)
 - **Cobb-Douglas production function** in growth rate:

$$\overset{\circ}{Q} = TFP + \alpha. \overset{\circ}{K} + (1 - \alpha). \overset{\circ}{N}$$

- **Long term constraint**: $P_{Q} + Q^* = P_{K} + K^*$ or: $K^* = Q^* + (P_{Q} P_{K})$
- Then potential growth: $Q^* = \frac{TFP}{1-\alpha} + \frac{\alpha}{1-\alpha} \cdot (P_Q P_K) + N^*$
- If $P_Q = P_K$ as in usual one product models, we get the usual expression of potential growth: $Q^* = \frac{TFP}{1 - r} + N^*$
- \triangleright From this model and previous numbers, assuming alpha = $\frac{1}{4}$ Average annual contribution of relative investment price decrease, in the USA, over 1959-2012: 34 pp which is large, but 0 pp last years...

Introduction

Data & Methodology

Technology > Convergence > Robustness

- > The fall of ICT price decrease from the 2000s, 3 explanations:
 - Back to a three-year cycle (Pillai, 2011)?
 And even a longer cycle recently?
 - Increase of price-cost markups in chip industry
 (Aizcorbe, Oliner, Sichel, 2008; Byrne, Oliner, Sichel, 2013, 2014)

 From unsustainable R&D research costs (Pillai, 2011)?
 - BLS matched-model methodology over-evaluates chip price evolution from 2001?

No change in chip price evolution Discount not taken into account (Byrne, Oliner, Sichel, 2013, 2014) Discount from over-capacities?

- If ICT relative price remains at the low decrease rate of recent years
 - End of the ICT TS?
 - Long term low productivity growth 'Secular stagnation'? (Summers, 2013,)
 - Gordon (2012, 2013, 2014) is right
- Some other possible steps for the ICT Technological Shock
 - In some years, 3D chips...
 - In the long term, quantum computing, bio chips...
 - International Technology Roadmap for Semiconductors (2012): optimistic on Moore's law continuation until 2020-2025

Introduction Data & Technology Convergence Robustness

3. In other countries, delayed productivity growth waves (if any)

Delayed productivity growth waves in other countries

Introduction

Data & Methodology

Technology

Convergence

Robustness

Introduction

Data & Methodology

Technology

Convergence

Robustness

Delayed productivity growth waves in other countries

1st productivity growth wave

- Hitting the Euro Area, Japan and UK after WWII
- Different amplitudes but from different productivity levels

2nd productivity growth wave

- Absent so far in the Euro Area and Japan
- Low productivity growth in the 1990s: Role of labor market policy
- Low ICT diffusion: Role of market rigidities / education
- A delayed wave?

ICT capital coefficient (x 100), at current prices

Scope: the whole economy - ratio of ICT capital stock to GDP in current prices - Source: Cette and Lopez (2012)

Sources of ICT capital coefficient gap with the US in 2007

In % of the gap - Scope: the whole economy

Source: Cette and Lopez (2012)

Delayed productivity growth waves in other countries

- > In non-US contries, possible catch-up of the US ICT diffusion level
 - ICT diffusion stabilisation since 2000 in numerous developed countries
 - At a lower level than the US one (except The UK)
 - A catch-up could offer a large potential productivity improvement
 - Among others: OECD (2002) Van Ark et al. (2002), Van Ark et al. (2008),
- Why the current lower ICT diffusion level?
 - Average education level of the working age population
 - Labour and product market rigidities
 - Van Ark et al. (2008), Aghion et al. (2008), Cette and Lopez (2012) ...
- Room for policies

Technology > Convergence

Robustness

CONVERGENCE

4. Two main productivity leadership changes

Leadership changes

Leadership changes

Leadership changes

- 1st leadership change: From UK to US leadership
 - Early US leadership in manufacturing
 - But sectoral composition effect long in favor of the UK (Broadberry, 1997)
- 2nd leadership change: From US to FR, NL and NO leadership?
 - End of the convergence process?
 - Specific reasons:
 - Lower employment rate/hours worked in FR and NL (Bourlès-Cette, 2005)
 - Sectoral structure in Norway

5. No global and permanent convergence process

Convergence process

Convergence process

Convergence process

• • • Convergence process

- Convergence does take place...
 - Before WWI, catching-up with the UK
 - In the Interwar period, until the US recovery from the Great Depression
 - After WWII and until the ICT productivity wave
 - Major role of sectoral composition, while productivity gap in manufacturing were persistent until WWII (Broadberry, 1993)
- ...but it is an erratic and conditional process
 - Large drop for laggards due to wars and innovation clusters
 - Role of institutions, market rigidities and education levels (Aghion and Howitt, 2006)

6. Global productivity breaks due to global shocks

Productivity breaks: global shocks

US\$ PPP of 2005 (log scale)
Areas in grey: war periods

Productivity breaks: global shocks Wars

Productivity breaks: global shocks Global financial crisis

Productivity breaks: global shocks Global supply shocks

Global Productivity breaks

- Due to wars, but in a divergent way
 - Upward level break for the United States (no war on their own soil)
 - Downward for France, Germany and Japan (war on their own soil)
 - Limited impact for the UK
- Due to the Great Depression, but very different recovery
 - Most countries affected, but Japan, Italy and the UK
 - Exit through war for most countries
 - But strong rebound in the US and Canada
- Due to global supply shocks
 - Generalized impact of the first oil shock
 - But different timings: US 1966/69
- Due to the financial crisis

Early break in the US?

Introduction \(\sum_{M}^{L} \)

Data & Methodology

Fechnology

Convergence

7. Country-specific productivity breaks due to idiosyncratic shocks

Productivity breaks: country-specific shocks

Sweden

Labor productivity

Total Factor Productivity

Productivity breaks: country-specific shock **Japan**

Labor productivity

2.5

1900

1920

1940

10

1990 1915 1956 2006 2.7 3.4 5.6 7.9

1960

1980

2000

Total Factor Productivity

Productivity breaks: country-specific shocks United Kingdom

Labor productivity

Total Factor Productivity

Country-specific Productivity breaks

Due to localized innovation clusters

- US 1933: 2nd industrial revolution
- US 1995: ICT (Jorgenson, 2001, ...)

Due to policy shocks/structural reforms

- The Netherlands, following the Wassenaard agreement, 1982
 TFP growth: 1977-1983 0.5%, 1983-2002 1.5%
- Canada, reforms from the early 1990s
 TFP growth: 1974-1990 0.3 %, 1990-2000 1.1%
- Australia, reforms fro the early 1990s
 TFP growth: 1971-1990 0.4%, 1990-2002 1.4%
- Sweden, reforms from the early 1990s
 TFP growth: 1976-1992 0.4 %, 1992-2008 1.9%

Data & Methodology

Convergence

ROBUSTNESS

Break dates significance: Student test for the break coefficient (coefficient β_k in equation 1, section 3.1) *: less than 10%; **: less than 5%; ***: less than 1% significance

. ICSS than 1070,	. ICSS than 570, . ICSS than 170 significance		
Country	Total factor productivity (TFP)	Labor productivity (LP)	
United States	1928***, 1933***, 1966***, 1998***,	1928***, 1933***, 1966***, 1998***,	
	2006***	2006***	
Japan	1915***, 1929, 1968**, 1974***, 1983***,	1915, 1956**, 1968, 1973***, 1990***,	
-	1990***	2006**	
United Kingdom	1963***, 1974***, 1992*, 2008***	1959***, 1973***, 1982, 1992, 2008***	
Euro Area	1928***, 1974***, 1995***, 2008***	1928***, 1974***, 1996***, 2008***	
Germany	1928***, 1969***, 1980, 1990*, 2006*	1929***, 1972***, 1980, 1990*, 2008***	
France	1928***, 1974***, 1992, 2000*, 2008	1928***, 1972***, 1985***, 2000***, 2008	
Italy	1975***, 1981*, 1995***, 2008***	1972***, 1982***, 1995***, 2008**	
Spain	1919***, 1928***, 1961***, 1966***,	1919***, 1928***, 1961***, 1966***,	
	1980***, 1995***	1980***, 1995***	
The Netherlands	1928***, 1977***, 1983***, 2002, 2008*	1928***, 1973, 1978***, 1983, 2008***	
Finland	1928***, 1969***, 1975***, 1990, 2008***	1928***, 1955***, 1975***, 1993***,	
		2008***	
Canada	1898, 1928***, 1933***, 1941***, 1966***,	1898**, 1928***, 1933***, 1940***,	
	1974**, 1990**, 2000*	1972***, 1990**, 2000	
Australia	1897***, 1971***, 1990***, 2002***	1896***, 1928, 1970***, 1984***, 1990***,	
		2001***	
Sweden	1971***, 1976, 1992***, 2008***	1962***, 1971***, 1976, 1992***, 2008***	
Norway	1902***, 1980***, 1988***, 1998***,	1902***, 1980***, 1987**, 1998, 2004***	
	2005***		

Introduction

Data & Methodology

Technology

Convergence

Capital share

TFP robustness test with respect to α, the capital share – Break dates

---- (resp ----) stands for appearing (resp disappearing) break date when changing coefficient to a higher or lower value

Country	Benchmark value	High value	Low value
	$\alpha = 0.3$	$\alpha = 0.35$	$\alpha = 0.25$
United States	1928, 1933, 1966, 1998, 2006	-	1905+
Japan	1915, 1929, 1968, 1974, 1983, 1990	-	-
United Kingdom	1963, 1974, 1992, 2008	-	-
Euro Area	1928, 1974, 1995, 2008	-	-
Germany	1928, 1969, 1980, 1990, 2006	-	-
France	1928, 1974, 1992, 2000, 2008	1992	-
Italy	1975, 1981, 1995, 2008	-	-
Spain	1919, 1928, 1961, 1966, 1980, 1995	1972 ⁺ , 1980 ⁻ , 1988 ⁺	-
The Netherlands	1928, 1977, 1983, 2002, 2008	-	1983
Finland	1928, 1969, 1975, 1990, 2008	-	-
Canada	1898, 1928, 1933, 1941, 1966, 1974, 1990, 2000	-	1933
Australia	1897, 1971, 1990, 2002	1928+	1928+
Sweden	1971, 1976, 1992, 2008	-	-
Norway	1902, 1980, 1988, 1998, 2005	-	-

Introduction

Data & Methodology

Technology

Convergence

Depreciation rate

TFP robustness test with respect to δ , the depreciation rate of the capital – Break dates

---- (resp ----) stands for appearing (resp disappearing) break date when changing coefficient to a higher or lower value

Country	Benchmark value	High value	Low value
	$\delta^E = 0.1$ and $\delta^B = 0.025$	$\delta^E = 0.15$ and $\delta^B = 0.05$	$\delta^E = 0.05$ and $\delta^B = 0.015$
United States	1928, 1933, 1966, 1998, 2006	-	1980 ⁺
Japan	1915, 1929, 1968, 1974, 1983, 1990	-	-
United Kingdom	1963, 1974, 1992, 2008	1987+	-
Euro Area	1928, 1974, 1995, 2008	1989 ⁺ , 1995 ⁻ , 2000 ⁺ , 2008 ⁻	-
Germany	1928, 1969, 1980, 1990, 2006	-	-
France	1928, 1974, 1992, 2000, 2008	-	-
Italy	1975, 1981, 1995, 2008	1968 ⁺ , 1995 ⁻ , 2000 ⁺ , 2008 ⁻	-
Spain	1919, 1928, 1961, 1966, 1980, 1995	1972 ⁺ , 1980 ⁻ , 1985 ⁺	-
The Netherlands	1928, 1977, 1983, 2002, 2008	1973 ⁺ , 2002 ⁻	1983 ⁻
Finland	1928, 1969, 1975, 1990, 2008	-	-
Canada	1898, 1928, 1933, 1941, 1966, 1974, 1990, 2000	-	1966 ⁻ , 1984 ⁺
Australia	1897, 1971, 1990, 2002	-	1966 ⁺
Sweden	1971, 1976, 1992, 2008	-	1971 ⁻ , 1984 ⁺
Norway	1902, 1980, 1988, 1998, 2005	-	-

Introduction

Data & **Methodology**

Technology

Convergence

Robustness

To breaks significance

- High significance of most shocks
- Some breaks not significant both for TFP and LP but major events
- Some breaks not significant and could be disregarded: SW 1976, UK 1982, Fr 1992, NL 2002

To computation of TFP

- Capital share: no change for JP, UK, EA, DE, IT, FI, SW, NO. Changes for Spain.
- Depreciation rate: breaks after 1970 affected for EA.

CONCLUSION

Productivity and the long run

- Major contribution of long-run analysis
- o Technology
 - Long lag in innovation diffusion
 - « One big wave » staggered across countries
 - Small and short-lived ICT productivity wave so far
 - End of the ICT technological shock?

o Convergence

- Erratic convergence process
- Leadership changes
- Major role of wars and innovation clusters
- Interaction with institutions and education
- Large impact of structural reforms