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What’s Next

• What is a network? Examples of networks

• Why networks are important for economists?

• Networks and graphs

• Measures and metrics on networks

• Distributions of metrics and measures in large networks

• Models of network formation

• Null statistical network models

• Economic applications  

Giorgio Fagiolo, Economic Networks.



Empirical Findings vs. Theoretical Models

• Empirics of complex networks 
✓ Identifying a series of universal properties characterizing the topological 

architecture of networks in biology, computer science, sociology, 
economics, etc.

✓ Why different networks exhibit similar structural properties?

• Universal properties
✓ Small diameters and APLs

✓ Large clustering

✓ Bell-shaped or power-law degree distributions 

• This lecture
✓ Empirical findings

✓ Simple graph-theoretic models able to explain these empirical properties
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Stylized fact #1: It is a small world!
• Degrees of Separation 

✓ How many steps are required to get in touch with an arbitrarily far node?

✓ Is it always possible to do that (i.e. is the graph connected)?

✓ What is the average path length?
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• Milgram’s Experiment: Is it a small world? 
✓ How long is the shortest path connecting unacquainted people?

✓ Letters gave to hundred of people in Wichita, KS and Omaha, NE, to be 
sent to XY, who works (but does not live) in Boston

✓ Rule: Letter can be actually sent to a person whom you know personally. 
If you know XY then you can send the letter directly to him

• How many letters needed to get to XY? 
✓ On average, only 6 !!

✓ Anyone in the planet is reachable in no more than 6 steps!



Stylized fact #1: It is a small world!
• Is it really so for all networks? 

✓ Pages in the WWW: 19 steps (over a few billions of nodes?)

✓ Species in food webs and world trade network: 2 steps

✓ Co-authorships: 4-6 steps

✓ All other networks: between 2 and 14. They are really small worlds!!
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• Does SW mean “easy to find”? 
✓ Not actually!

✓ Small degrees of separation come from high node degree

✓ You have to take the right path each time you travel trough a node! 
Search must be intelligent and not random.

• Is there a model explaining SF #1? 
✓ Yes, the good-old Erdos-Renyi random graph model



The Erdos-Renyi Random Graph Model (1) 
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• A simple and beautiful model 
✓ Paul Erdos: an extremely prolific  

mathematical “pilgrim”

✓ He wrote around 1,525 mathematical 
articles in his lifetime

✓ The Erdos network and Erdos number

• Erdos was the founder of the field of 
random graphs 
✓ Hoffman, Paul (1998), The man who 

loved only numbers: the story of Paul 
Erdos and the search for mathematical 
truth, Hyperion

✓ Bollobas (2001), Random Graphs, 
Cambridge University Press

The Erdos network with EN≤2
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The Erdos-Renyi Random Graph Model (2)
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Paul Erdos and A. Renyi, On the evolution of random graphsMagyar Tud. Akad. Mat. Kut. Int. Kozl. 5 (1960) 17-61.

• The G(N,p) model
✓ Take N nodes initially not 

connected

✓ Go through each of the   

               possible links

✓ Form a link with a 
probability 0<p≤1 (iid)   

✓
N

2

◆

• The G(N,m) model
✓ Draw at random m links 

from all      possible links
✓
N

2

◆

• Large-scale system 
properties
✓ Take N→∞ as N·p(N)→c



The Erdos-Renyi Random Graph Model (2)
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• Density
✓ G(N,p): Density is on average p, as on average we have p*(N-1)*N/2 links

✓ G(N,m): Density is equal to 2*m/[(N-1)*N] in all instances

• Degree distribution
✓ Probability that each node has degree k is a Binomial distribution (i.e. 

probability of getting k successes out of i.d.d. N-1 Bernoulli trials)

✓ For large N, this is also the fraction of nodes with degree k (due to the LLN)

✓ If N→∞ and N·p(N)→c, we know that the Binomial distribution tends to a 
Poisson(c). Thus

✓ That’s why ER random graphs are also called Poisson networks

p(k) =

✓
N � 1

k

◆
pk(1� p)N�k�1

p(k) =
e�cck

k!



The Erdos-Renyi Random Graph Model (2)
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Degree Distribution for N=20, p=0.1 Degree Distribution for N=100, p=0.1



The Erdos-Renyi Random Graph Model (3)

Giorgio Fagiolo, Economic Networks.

• Threshold functions
✓ Let p=p(N) and let us focus on a given “property” of the ER graph G(N,p(N))

✓ Examples of “properties”: the network has no isolated nodes, the network 
displays cycles of order 3, the network is connected, etc. 

✓ Given a property P, a threshold function is a function q*(N) such that as 
N→∞

p(N)
q⇤(N) ! 1 ) P holds with prob 1

p(N)
q⇤(N) ! 0 ) P holds with prob 0

• Meaning of thresholds
✓ As the number of nodes grows, and the probability p=p(N) of forming a link 

decreases with N, then if p(N) decreases slower than q*(N), we are going to 
observe the property P almost surely 



The Erdos-Renyi Random Graph Model (4)
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• q*(N)=1/N2

✓ The network has at least one 
link

• q*(N)=1/N3/2

✓ The network has at least a 
component with at least 3 
nodes

• q*(N)=1/N
✓ The network has at least one cycle and contains a giant component (i.e. a 

unique largest component whose size grows as N and contains a non-trivial 
fraction of all nodes)

• q*(N)=log(N)/N
✓ The network is connected
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The Erdos-Renyi Random Graph Model (4)
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N=50, p=0.01,  N-3/2<p<N-1: Components with more than 2 nodes emerge



The Erdos-Renyi Random Graph Model (4)
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N=50, p=0.03,  N-1<p<log(N)/N: Cycles emerge



The Erdos-Renyi Random Graph Model (4)
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N=50, p=0.05,  N-1<p<log(N)/N: The giant component emerges



The Erdos-Renyi Random Graph Model (4)
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N=50, p=0.1,  p>log(N)/N: The network becomes connected



The Erdos-Renyi Random Graph Model (6)
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• Diameter Estimation: Are ER graphs small worlds?
✓ Suppose p(N) as N→∞ is such that:

Np(N)

log(N)

! 1

✓ This means the the graph is connected a.s.; define by z=p(N-1) the average 
degree of the network

• What is the maximum path length between any two nodes?
✓ Start at any given node i and estimate the average cardinality of the set of its 

direct neighbors V1: it is easy to see that | V1 |=z

✓ Iterate the argument and compute the magnitude of the neighbors of 
neighbors of node i, etc.: we approximately have | Vk |=zk 

✓ But | Vk |≤N, thus zk≤N and k≤log(N)/log(z). Therefore, k=length of path 
from i to any other neighbor cannot exceed a function that grows as log(N)

✓ Note that: log(1000)≅7, log(106)≅14: very small numbers!



The Erdos-Renyi Random Graph Model (7)
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• ER Graphs are Small Worlds
✓ Diameter growth as log(N) as in many real-world graphs

• The ER Random Graph Model: Discussion 
✓ Number of nodes is constant

✓ Link formation is an i.i.d. process

✓ All nodes have a “characteristic” scale: average number of partners, 
deviations from it are exponentially rare

✓ If I take any two partners of a given node, the probability that they are 
friends is equal to p for all agents, clustering is very small (=density)

• The ER Random Graph Model and Empirical Evidence 
✓ Link formation is not an i.i.d. process

✓ Networks grow over time (adding nodes and links)

✓ Degree distribution may not be Poisson

✓ Clustering may be very high



Stylized fact #2: It is a clustered world!
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• Empirical evidence on clustering rejects random-graph model 
✓ Ex: in co-authorship network, CC 10000 times larger than predicted 

(density=10E-5)

✓ How can one explain TOGETHER low average path length (SF #1) and 
high clustering (SF #2) observed in real-world networks?

• Granovetter (1971): The strength 
of weak ties 
✓ How do you find a job?

✓ Agents are strongly connected to 
a small circle of “friends”

✓ They occasionally hold “weak 
ties” to other people belonging to 
different social groups

✓ Statistically, info on job openings 
are gathered more through weak 
than strong ties



The Watts-Strogatz Model (1)
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• The basic ideas behind the model

✓ Goal: Building a random-graph model 
delivering small-world with high clustering 
coefficient

✓ Two extremes as far as clustering is 
concerned

1. ER Random Graphs: Clustering is equal to 
link probability (p), if p is small (to match 
real-world network densities, which are 
often sparse) so is clustering 

2. Regular Lattices: Clustering is very high, as 
lattices mimic geographical networks, 
where any two neighbors of mine are 
themselves neighbors with a high 
probability because they are close in 
geographical space

✓ Two extremes as far as APL is concerned

1. ER Random Graphs: APL is small (similar 
argument used for diameter)

2. Regular Lattices: APL is high, as it takes a 
lot to move from one node to another 
distant one in the lattice (there are no 
shortcuts in geographical space)

Example: Ring network
N=Number of nodes
z=2*r=node degree

r=1, z=2 r=2, z=4

D =
N � 1

2r

APL =
1

2
+

N � 1

4r

CC =
3(r � 1)

4(r � 1
2 )

r>1



The Watts-Strogatz Model (2)
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• Perturbing the ring structure

✓ What if we add random links between 
distant locations and delete existing local 
links?

✓ This may have four consequences

1. N and L remain constant

2. Node degree is perturbed in such a way 
not to introduce any bias: we should 
expect unimodal distributions

3. Local link removal should destroy 
clustering, but if perturbations are not too 
strong clustering coefficients should stay 
relatively large

4. Randomly adding links between distant 
nodes should dramatically lower APL by 
short-cuts (weak ties) between otherwise 
very clustered but disconnected islands

✓ Is all that true?

1. A more formal description of the model

2. Analysis of model behavior

Perturbing a Ring network
N=Number of nodes
z=2*r=node degree



The Watts-Strogatz Model (3)
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• The Model

✓ Start from N nodes located on a ring

✓ Each node is linked to r neighbors on the left and r neighbors on the right

✓ Thus the network is regular and all nodes have degree k=2r

✓ Define 0≤p≤1 as the rewiring probability 

• Dynamics

1. Start from node 1 and proceed clockwise 
through all subsequent nodes

2. For each node i, consider its links with 
nodes at distance 1

3. For any link of node i in this set, with 
probability p delete the link and rewire 
node i with another one from the list of 
nodes that are not currently linked to i

4. When we arrive at node N, start again with 
node 1 and consider all its links at distance 
2 and repeat from 3

5. After r laps (after having considered links 
with nodes at distance r), stop the process



The Watts-Strogatz Model (4)
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• The Model: Some observations

✓ If p=0 then the resulting graph is the initial lattice (no rewiring takes place). Thus the degree 
distribution is degenerate (peaked on k=2r) 

✓ If p=1 then the model is equivalent to a ER random lattice, as all links are rewired a.s.: therefore 
the resulting graph is fully random and the degree distribution is Poissonian (for large N) 

✓ But what happens to CC and APL when we tune p from 0 to 1?

p=0 p=1(p↑)



The Watts-Strogatz Model (5)
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• If p=0 then we observe a high clustering 
and high APL; if p=1 a small clustering 
and APL

• As p increases, there is a sudden 
decrease in APL: this means that even a 
few rewirings introduce shortcuts that 
dramatically decrease the distance 
between any two nodes: the graph 
becomes a small world very soon

• Clustering keeps instead very high, as 
link removals do not alter too much the 
local structure. This means that the 
small-world property is not perceived as 
a local phenomenon   

• There emerges a large intermediate 
region of rewiring probabilities where the 
resulting graph exhibits both small APL 
and large clustering, in line with what is 
observed in reality 
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removed from a clustered neighbourhood to make a short cut has, at
most, a linear effect on C; hence C(p) remains practically unchanged
for small p even though L(p) drops rapidly. The important implica-
tion here is that at the local level (as reflected by C(p)), the transition
to a small world is almost undetectable. To check the robustness of
these results, we have tested many different types of initial regular
graphs, as well as different algorithms for random rewiring, and all
give qualitatively similar results. The only requirement is that the
rewired edges must typically connect vertices that would otherwise
be much farther apart than Lrandom.

The idealized construction above reveals the key role of short
cuts. It suggests that the small-world phenomenon might be
common in sparse networks with many vertices, as even a tiny
fraction of short cuts would suffice. To test this idea, we have
computed L and C for the collaboration graph of actors in feature
films (generated from data available at http://us.imdb.com), the
electrical power grid of the western United States, and the neural
network of the nematode worm C. elegans17. All three graphs are of
scientific interest. The graph of film actors is a surrogate for a social
network18, with the advantage of being much more easily specified.
It is also akin to the graph of mathematical collaborations centred,
traditionally, on P. Erdös (partial data available at http://
www.acs.oakland.edu/�grossman/erdoshp.html). The graph of
the power grid is relevant to the efficiency and robustness of
power networks19. And C. elegans is the sole example of a completely
mapped neural network.

Table 1 shows that all three graphs are small-world networks.
These examples were not hand-picked; they were chosen because of
their inherent interest and because complete wiring diagrams were
available. Thus the small-world phenomenon is not merely a
curiosity of social networks13,14 nor an artefact of an idealized

model—it is probably generic for many large, sparse networks
found in nature.

We now investigate the functional significance of small-world
connectivity for dynamical systems. Our test case is a deliberately
simplified model for the spread of an infectious disease. The
population structure is modelled by the family of graphs described
in Fig. 1. At time t ¼ 0, a single infective individual is introduced
into an otherwise healthy population. Infective individuals are
removed permanently (by immunity or death) after a period of
sickness that lasts one unit of dimensionless time. During this time,
each infective individual can infect each of its healthy neighbours
with probability r. On subsequent time steps, the disease spreads
along the edges of the graph until it either infects the entire
population, or it dies out, having infected some fraction of the
population in the process.

p = 0 p = 1 
Increasing randomness

Regular Small-world Random

Figure 1 Random rewiring procedure for interpolating between a regular ring

lattice and a random network, without altering the number of vertices or edges in

the graph. We start with a ring of n vertices, each connected to its k nearest

neighbours by undirected edges. (For clarity, n ¼ 20 and k ¼ 4 in the schematic

examples shown here, but much larger n and k are used in the rest of this Letter.)

We choose a vertex and the edge that connects it to its nearest neighbour in a

clockwise sense. With probability p, we reconnect this edge to a vertex chosen

uniformly at random over the entire ring, with duplicate edges forbidden; other-

wise we leave the edge in place. We repeat this process by moving clockwise

around the ring, considering each vertex in turn until one lap is completed. Next,

we consider the edges that connect vertices to their second-nearest neighbours

clockwise. As before, we randomly rewire each of these edges with probability p,

and continue this process, circulating around the ring and proceeding outward to

more distant neighbours after each lap, until each edge in the original lattice has

been considered once. (As there are nk/2 edges in the entire graph, the rewiring

process stops after k/2 laps.) Three realizations of this process are shown, for

different values of p. For p ¼ 0, the original ring is unchanged; as p increases, the

graph becomes increasingly disordered until for p ¼ 1, all edges are rewired

randomly. One of our main results is that for intermediate values of p, the graph is

a small-world network: highly clustered like a regular graph, yet with small

characteristic path length, like a random graph. (See Fig. 2.)

Table 1 Empirical examples of small-world networks

Lactual Lrandom Cactual Crandom
.............................................................................................................................................................................
Film actors 3.65 2.99 0.79 0.00027
Power grid 18.7 12.4 0.080 0.005
C. elegans 2.65 2.25 0.28 0.05
.............................................................................................................................................................................
Characteristic path length L and clustering coefficient C for three real networks, compared
to random graphs with the same number of vertices (n) and average number of edges per
vertex (k). (Actors: n ¼ 225;226, k ¼ 61. Power grid: n ¼ 4;941, k ¼ 2:67. C. elegans: n ¼ 282,
k ¼ 14.) The graphs are defined as follows. Two actors are joined by an edge if they have
acted in a film together. We restrict attention to the giant connected component16 of this
graph, which includes �90% of all actors listed in the Internet Movie Database (available at
http://us.imdb.com), as of April 1997. For the power grid, vertices represent generators,
transformers and substations, and edges represent high-voltage transmission lines
between them. For C. elegans, an edge joins two neurons if they are connected by either
a synapse or a gap junction. We treat all edges as undirected and unweighted, and all
vertices as identical, recognizing that these are crude approximations. All three networks
show the small-world phenomenon: L ⇥ Lrandom but C q Crandom.

0

0.2

0.4

0.6

0.8

1

0.0001 0.001 0.01 0.1 1
p

L(p) / L(0)

C(p) / C(0)

Figure 2 Characteristic path length L(p) and clustering coefficient C(p) for the

family of randomly rewired graphs described in Fig. 1. Here L is defined as the

number of edges in the shortest path between two vertices, averaged over all

pairs of vertices. The clustering coefficient C(p) is defined as follows. Suppose

that a vertex v has kv neighbours; then at most kvðkv � 1Þ=2 edges can exist

between them (this occurs when every neighbour of v is connected to everyother

neighbour of v). Let Cv denote the fraction of these allowable edges that actually

exist. Define C as the average of Cv over all v. For friendship networks, these

statistics have intuitive meanings: L is the average number of friendships in the

shortest chain connecting two people; Cv reflects the extent to which friends of v

are also friends of each other; and thus C measures the cliquishness of a typical

friendship circle. The data shown in the figure are averages over 20 random

realizations of the rewiring process described in Fig.1, and have been normalized

by the values L(0), C(0) for a regular lattice. All the graphs have n ¼ 1;000 vertices

and an average degree of k ¼ 10 edges per vertex. We note that a logarithmic

horizontal scale has been used to resolve the rapid drop in L(p), corresponding to

the onset of the small-world phenomenon. During this drop, C(p) remains almost

constant at its value for the regular lattice, indicating that the transition to a small

world is almost undetectable at the local level.

• N=1000, r=5 (N,r chosen in such a way not to have 
for any p a disconnected graph)
• C is the node-average of clustering coefficients, L is 

average node path-length
• Values of C and L for p=0, i.e. in the ring, that is 

C(0) and L(0), are use no normalize all other values
• Points in the graphs obtained averaging out over a 

large number of replications. 
• Source:  D.J. Watts and S.H. Strogatz.  Collective 

dynamics of 'small-world' networks. Nature 393, 
440-442 (1998).  



The Watts-Strogatz Model (6)
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• The model introduces about p·r·N non lattice links, but in order not to have disconnected 
graphs we need N>>2r>>log(N)>>1

• The degree distribution can be worked out analytically but simulations can help in 
understanding how it looks like as p increases

• Mean(k) is always close to initial one (p=0), i.e. 2*r

• Distribution tends to a Poissonian one as p grows



The Watts-Strogatz Model (7)
• Is this the end of our journey? The WS model explains 

✓ Low average path length (Milgram)

✓ High clustering (Granovetter)

✓ But: Degree distribution still has exponentially-decaying tails:

✓ Characteristic scale: almost all nodes have same number of partners, 
because links are rewired at random!

✓ Deviations are very rare events: almost impossible to find a 50 or 100mt 
tall guy wandering around in our streets…
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• Are all real-world degree distributions like that? 
✓ Not at all… see previous lectures! Barabasi et al. (1999)

✓ WWW network: many low-degree networks coexisting with not-so-rare 
hubs holding many links

✓ Comparison: national highway network (most nodes have the same 
number of links) vs. air-traffic network (a few hubs coexist with many 
small airports)



Stylized fact #3: It is a scale-free world!
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• Scale or degree exponent (γ) 
✓ Measures the heaviness of the tails (likelihood of hubs)

✓ It is a Pareto distribution (80-20 rule): a downward sloping line in a 
log-log paper

• Barabasi et al. (1999): Scale-free networks 
✓ Many real-world networks display a power-law degree distribution

✓ Scale-free: there is no characteristic scale (mean is meaningless)

✓ Hierarchical structure and importance of hubs in taking the network 
together: hubs guarantee that average path length is small

p(k) = c1k���1 ) log[p(k)] = c2 � (� + 1) log(k)



Stylized fact #3: It is a scale-free world!
• Examples: Widespread evidence 

✓ In-coming or out-coming links in 
web pages; actor network in 
Hollywood; airline traffic; co-
authorship and Erdos number; 
citations

✓ Molecules interacting within a cell, 
and many others
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• Power laws are ubiquitous in natural 
and social systems 

✓ Bell-shaped curves emerge in 
disordered random systems 

✓ Power laws are the signature of 
complex behavior and self-
organization

✓ Most economic variables typically 
follow (quasi) power laws: firms 
size, wealth and income, size of 
economic fluctuations, etc.



The Barabasi-Albert Model (1)
• Goal: A simple model of network evolution that 

✓ Reproduces Watts-Strogatz features 

✓ Allows for equilibrium power-law degree distributions

✓ See Barabasi and Albert (1999), Science, 286.
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• Two essential features 
✓ Growth: The network grows over time through the successive arrival of 

new nodes that upon entry link to some preexisting nodes

✓ Preferential attachment: New nodes stochastically choose upon entry 
existing ones to form links with a bias in favor of highly-connected ones

• Consequences 
✓ Growth: Size of nodes is not fixed as in ER or WS models. Node degree 

may attain different magnitudes as the network continues to grow

✓ Preferential attachment: Rich-get-richer process where nodes become 
more connected and this in turn induces higher probability to get even 
more connections



The Barabasi-Albert Model (2)
• The Model 

✓ Start at t=0 with N0 nodes connected in a complete undirected graph  

✓ At any t=1,2,... add a new node

✓ The new node chooses m distinct nodes among the pre-existing ones, each with 
probability proportional to its current degree and creates a link with each of 
them (m new links)
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• More formally 

✓ At t=0 there are N0 nodes and L0= N0(N0-1)/2 links

✓ At time t>0, before entry, there will be Nt= N0+t nodes and Lt= L0+mt links; let 
ki,t be the degree of node i at time t

✓ The entrant node will form m new links; the probability that a new link is formed 
with a pre-existing node i is   

pi,t =
ki,tPNt

j=1 kj,t
=

ki,t
2 ⇤ Lt

✓ Implementation: We consider m steps; at the beginning of each step s, probabilities 
are computed on the remaining sample of N-s+1 nodes; after each step the node 
just chosen is removed from the list of available nodes. NB: Probabilities depend on 
the order of sampling (it is not a weighted random sampling w/o replacement!)



The Barabasi-Albert Model (2)
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Simulating the BA model. N=100, m=1: Even when N is small, hubs start to emerge. 
The resulting graph is a tree as m=1



The Barabasi-Albert Model (2)
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Simulating the BA model. N=100, m=2. 
Note the richer structure and the presence of loops (clustering is not zero)



The Barabasi-Albert Model (3)
• Simulating the evolution of the BA model  

✓ An example for m=1

✓ http://oldweb.ct.infn.it/cactus/applets/Preferential%20Attachment.html
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• The model reproduces power-law degree distributions. Why?
✓ Growth (G) and preferential attachment (PA) are both necessary

✓ Assume G without preferential attachment (new links are put at random). It 
may be proven (Vega-Redondo, 2007, p. 67) that the limit degree 
distribution is geometric, i.e. p(k)=2k, i.e. a skewed but narrow distribution 
with a characteristic scale exhibiting a sharp decay for high degrees (hubs 
are low-probability events as in Poisson networks)   

✓ Assume PA but no G (at each t one node is picked at random to establish m 
new links with the other N-1 nodes according to preferential attachment. 
Clearly, in the long run a complete network arises (no multi links)

✓ When both G and PA are assumed, then power-law degree distributions do 
emerge thanks to a rich-get-richer process 

http://oldweb.ct.infn.it/cactus/applets/Preferential%20Attachment.html
http://oldweb.ct.infn.it/cactus/applets/Preferential%20Attachment.html
http://oldweb.ct.infn.it/cactus/applets/Preferential%20Attachment.html
http://oldweb.ct.infn.it/cactus/applets/Preferential%20Attachment.html


The Barabasi-Albert Model (3)
• Is the growth assumption justifiable?  

✓ Many real-world networks grow in size (order) over time (but others do 
not!)

Giorgio Fagiolo, Economic Networks.

Actor network!

Network Science: Evolving Network Models February 14, 2011!

BA MODEL: Growth (Actors/Internet) !

Internet!

http://www.trainsignaltraining.com/ccna-ipv6 

Growth of the Internet routing table 
Number of movies in IMDB 

Herr II, Bruce W., Ke, Weimao, Hardy, Elisha, and Börner, Katy. (2007) 

Movies and Actors: Mapping the Internet Movie Database. In Conference 

Proceedings of 11th Annual Information Visualization International Conference 

(IV 2007), Zurich, Switzerland, July 4-6, pp. 465-469. 



The Barabasi-Albert Model (3)
• Is the growth assumption justifiable?  

✓ Many real-world networks grow in size (order) over time (but others do 
not!)

Giorgio Fagiolo, Economic Networks.

WWW!

Barabási & Albert, Science 286, 509 (1999)! Network Science: Evolving Network Models February 14, 2011!

BA MODEL: Growth (www/Pubs) !

Scientific Publications!

http://website101.com/define-ecommerce-web-terms-definitions/ http://www.kk.org/thetechnium/archives/2008/10/the_expansion_o.php 



Properties of BA Networks (1)

Giorgio Fagiolo, Economic Networks.

• The degree distribution converges, as t→∞ to a power-law with 
exponent 3, i.e. P(K<k)=A*k−3

• Informal proof: Consider k as a continuous variable and note that 
new vertices enter at a constant rate; thus the variation of k with 
respect to t for any given new node is equal to the constant change 
in connectivity in one time step (m) times the probability of forming a 
link (degree/sum of all degrees); suppose for simplicity m0=0

�k

�t
= m

k

2mt

• This is a differential equation. We need to solve it for k(t). The 
general form is dk/dt=f(t)h(k). The solution is:

Z
h�1(k) dk =

Z
f(t) dt



Properties of BA Networks (1)

Giorgio Fagiolo, Economic Networks.

• Replacing h(k)=k and f(t)=1/2t and solving one gets

log(k) =
1

2

log(t) + C0 ) k(t) = C1t
1
2

• To compute C1, suppose that the node has entered at time t*; its 
initial degree was therefore m; thus replacing k(t*)=m one gets

C1 = m(t⇤)�
1
2 ) k(t) = m(

t

t⇤
)

1
2

• Let us then compute p(K<k). We get:

P (K < k) = P (m(
t

t⇤
)

1
2 < k) = P (t⇤ >

m2t

k2
) = 1� P (t⇤ <

m2t

k2
)



Properties of BA Networks (1)

Giorgio Fagiolo, Economic Networks.

• Note that t* (entry time) is a random variable that is uniform in time 
as nodes enter at a constant rate. At time t there are N0+t nodes. 
Therefore t* is U(0, N0+t) and its CDF reads F(a)=P(t*<a)=a/(N0+t)

P (K < k) = 1� P (t⇤ <
m2t

k2
) = 1� F (

m2t

k2
) = 1� m2t

k2
1

N0 + t

fK(k) =
@P (k)

@k
=

2m2t

N0 + t

1

k3

• Therefore the density is:

That is: The BA model yields a power-law degree distribution with 
density exponent equal to 3, independently of m

This means that the limit degree distribution is a Pareto with 
parameter 2 (and therefore it does not admit a finite variance)



Pareto Degree Distribution in the BA Model

Giorgio Fagiolo, Economic Networks.

Simulating the BA model. N=10000, m=2. 
Linear fit of the degree distribution using a rank-size plot. Not that the estimated 

slope is approximately equal to -2, i.e. the prediction of the BA model as N tends to 
infinity. Notice that the slope of the line log(1-F)=a+b*log(k) 

is not the MLE for alpha for the Pareto distribution. 



Properties of BA Networks (2)

Giorgio Fagiolo, Economic Networks.

• Does the BA model generate limit networks 
with small diameters? In other words, are BA 
networks small worlds?

• Yes, the diameter can be shown to scale as 
log(N)/log(log(N)), see Bollobas and Riordan 
(2003), even slower than in a random graph

• Does the BA model generate limit networks with large clustering? In 
other words, are BA networks similar to WS graphs?

• Almost, the CC is 5 times larger than that of random graphs and in general 
scales lower than in random graphs as N increases (order (logN)2/N vs. 1/N)

• Therefore the BA model generates limit graphs that are structurally 
similar to many observed networks... but

• Is network growth an acceptable assumption in reality? What about 
preferential attachment?  



Network Models: Conclusions
• Robustness of networks to attacks

• What if a randomly-targeted node is removed due to an attack (viruses, 
terrorists)?

• What are the consequences in terms of connectivity?

• Comparing Poisson random networks, WS and BA networks

Giorgio Fagiolo, Economic Networks.
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P(k)  ~ k-!!

Small World:!

distances scale!

logarithmically with the 

network size!

Clustered: !

clustering coefficient does 

not depend on network 

size.!

Scale-free: !

The degrees follow a 

power-laws distribution.!

Network Science: Evolving Network Models February 14, 2011!

• Summary of empirical findings about networks



Network Models: Conclusions

Giorgio Fagiolo, Economic Networks.

Features Average path length Clustering Degree distribution

Empirical Evidence Stylized Facts Low High
Sometimes: Bell-shaped
Most often: Power-law

Theoretical Models

Regular networks Very high Very High All nodes have the same 
degree

Theoretical Models

Random networks Low Low Bell-shaped with 
exponentially-decaying tails

Theoretical Models

Watts-Strogatz Low High Bell-shaped with 
exponentially-decaying tails

Theoretical Models

Barabasi et al. Low Medium-High Power-law



What’s Next

• What is a network? Examples of networks

• Why networks are important for economists?

• Networks and graphs

• Measures and metrics on networks

• Distributions of metrics and measures in large networks

• Models of network formation

• Null statistical network models

• Economic applications  

Giorgio Fagiolo, Economic Networks.



Null Statistical Network Models
• Inference on empirical network properties

✓ Suppose we have observed a network G and we have computed a set of 
interesting network statistics on G, say s1(G),...,sk(G)

✓ These may be: the clustering coefficient or the correlation between ND 
and ANND, or between NS and ANNS

Giorgio Fagiolo, Economic Networks.

• Problem: how can we say something about whether these observed 
values are large or small?
✓ We need statistical benchmarks (null models) to assess the distribution of 

any given statistics given the null model at hand 

✓ Many ways to do it: one must choose the most appropriate null model, 
i.e. decide which properties of the observed graph we want to preserve

✓ The null model generates maximally random graphs satisfying the 
selected constraints (preserved properties)

• Example: Maximally random graphs given
✓ Binary graphs: Density only, degree distribution, degree sequence, etc.

✓ Weighted graphs: Weight distribution, binary topology, etc.



Design of the Experiment 

Giorgio Fagiolo, Economic Networks.

Build an empirical 
network G

Compute a statistic 
S on G (a single 
observation s*)

Choose the null 
model N(G)

1

Compute the 
distribution of S given 

N(G), i.e. 
F(s)=F(S<s|N(G))

Analytically: Provide a 
closed form for F

Simulated: Generate 
M>>0 instances of N(G) 

and estimate F

2

Evaluate F(s*) to 
decide if s* is an 
“extreme” or a 
“normal” value

3



Binary Networks: Example 1
• Preserving density only

✓ Compute density d on observed graph G with N nodes and L links

✓ Generate a Poisson random graph with density d

• Two alternatives
✓ Average or exact density: using G(N,p) or G(N,m) models, where p=d and 

m=L (number of links in G)

• What is not preserved
✓ Actual links, degree sequence and distribution all change

• Extension to digraphs
✓ Generating Poisson random digraphs in such a way to preserve either the 

total number of links (in- and out- density change) or the exact number of 
in and out links in the observed graph 

Giorgio Fagiolo, Economic Networks.



Binary Networks: Example 2

Giorgio Fagiolo, Economic Networks.

• Degree-preserving random rewiring (Maslov & Sneppen, 2002)
✓ Preserve exactly the degree sequence of the observed binary network 

A pair of directed edges A->B and C->D is randomly selected. These edges are then rewired in such a way that A 
becomes connected to D, while C to B, provided that none of these edges already exist in the network, in which 
case the rewiring step is aborted and a new pair of edges is selected. Note that the above rewiring algorithm 
conserves both the in- and out-degree of each individual node (and degrees if the graph is undirected)

• Problems
✓ To get a single instance we need many such rewirings (at least 4L): this 

takes time



Weighted Networks
• Random reshuffling preserving density only

✓ Generate Poisson random graphs with exact observed density d

✓ Randomly reshuffle existing (positive) link weights across the randomly 
generated instance of binary topology using G(N,m)

Giorgio Fagiolo, Economic Networks.

• Maslov-Sneppen for WUNs and WDNs
✓ Maslov-Sneppen rewiring algorithm works perfectly also for WUNs and 

WDNs 

✓ Just move the link-weight together with the link that is rewired

✓ This does not preserves strength (in/out/tot) sequence (check it)

• Preserving weight distribution and binary topology
✓ Reshuffle weights among existing binary links 

✓ This preserves link-weight distributions and binary structure (A)

✓ Therefore also the degree sequence is preserved exactly 



Alternative Null Models (1)
• Configuration model

✓ An alternative algorithm to generate random (binary undirected) networks 
with a given degree sequence {k1,...,kN} 

✓ Suppose that {k1,...,kN} is graphic, i.e. it is a feasible degree sequence of 
a graph (e.g. sum of all degrees is even). This is automatically satisfied if 
the sequence comes from an empirically-observed graph

Giorgio Fagiolo, Economic Networks.

• Algorithm
✓ Construct a sequence where node i is listed ki times for all i 

✓ Randomly pick any two elements from the list and form a link between 
the nodes corresponding to those entries.

✓ Delete those entries from the list and repeat until we get to the end 
(note: if the sum of degrees were odd we will remain with a single node)   

1, 1, . . . , 1| {z }
k1 times

2, 2, . . . , 2| {z }
k2 times

· · · N,N, . . . , N| {z }
kN times



Alternative Null Models (2)

• Output of the configuration model
✓ A random graph where the degree sequence is preserved 

✓ Problems: multiple self-loops and multi-edges are not ruled out

✓ Therefore the configuration model generates multi graphs

Giorgio Fagiolo, Economic Networks.

• Ways out
✓ Delete multi-edges and all self loops: this destroys degree sequence but if 

multi edges are not that frequent the resulting degree distribution is close 
to the observed one 

✓ Employ null models preserving degree sequence only on average    

• Expected-degree models (and beyond)
✓ Chung-Lu (2002)

✓ Squartini, Garlaschelli (2011) , Squartini, Fagiolo, Garlaschelli (2011a,b)    



Alternative Null Models (3)

Giorgio Fagiolo, Economic Networks.

• Notice
✓ Self-loops are still allowed with probability ki2/2L but no multiple edges 

between different nodes

✓ To have well-defined probabilities it must be that max{ki}<Sqrt(2L). It can 
be checked that if the degree sequence is very broad this condition is not 
satisfied and the ratios above are larger than one. This means that the 
observed degree sequence cannot be replicated on average. 

✓ What is the probability of connecting i and j in the configuration model? 
Prove that is equal to kikj/(2L-1), i.e. equal to the one in Chung-Lu model 
for large L    

• Chung-Lu model
✓ Start with the observed degree sequence {k1,...,kN} and an empty graph

✓ Go through each pair of nodes and form a link with probability

kikjP
h kh

= kikj

2L



Economic Interpretation of Null Models
• Null models provide a statistical benchmark to compare observed 

network statistics
✓ Almost no economics in them

✓ Why are they useful in economics?

Giorgio Fagiolo, Economic Networks.

• Null statistical models in economics
✓ Suppose a given observation is in line with what predicted by a given null 

statistical model. Then that value of the statistics does not require 
additional economic explanations. It can be simply the outcome of 
randomness. If we provide an economic model that reproduces that 
observation then that model could not be selected against the null 
random model.  

✓ Suppose instead a given observation is found to be an extreme value for 
the null model at hand. Then the null model must be rejected because it 
cannot explain that observation. We need to find an explanation 
elsewhere, probably in the economic realm.



Null Models: The Case of ITN

Giorgio Fagiolo, Economic Networks.

Why Networks of International Trade?

How Can We “Explain” ITN Statistical Properties?

Two levels
Null models of the ITN
Economic models of the ITN

Null models of the ITN
Can observed properties be replicated by a null random network model that
only preserves some local (1st-order) statistics?
What is (if any) the minimal amount of information about the ITN needed to
reproduce all its properties using an otherwise random model?
Can one discriminate between statistically relevant and irrelevant properties?

Economic models of the ITN
Standard Int’l Trade Models: Gravity Model (GM)
Economics-Inspired Stochastic Models of Network Formation

Giorgio Fagiolo (LEM) The ITN: Empirics and Models 13 / 31



Null Models: The Case of ITN

Giorgio Fagiolo, Economic Networks.

Null Models of the ITN

Null Models

Main Idea
Given observed network, define a set of local properties of the network
(constraints) that must be preserved (density, degree or strength sequence,
etc.)
Characterize the ensemble of all networks that preserve on average these
constraints but are otherwise purely random
Obtain expected value and standard deviation of higher-order network
statistics (assortativity, clustering, centrality, etc.) over the ensemble
Compare observed vs. expected values

Application to the ITN
We study null models where we keep fixed either (in/out) degree or strength
sequences and we check higher order statistical network properties
(disassortativity, clustering)
By product: Are standard (local) international-trade statistics sufficient for
explaining higher-order network properties?

Giorgio Fagiolo (LEM) The ITN: Empirics and Models 14 / 31



Null Models: The Case of ITN

Giorgio Fagiolo, Economic Networks.

Null Models of the ITN

A New Randomization Method

Features (Squartini & Garlaschelli, 2010)
Fit to observed network the probability P(G) of a random graph satisfying a
list of local constraints (inferred from observed network)
Fully analytical method: no random variant must be generated
Works for directed/undirected, binary/weighted, sparse/dense networks
Expected properties computed in same time as empirical ones

A 3-Step Method
Find the graph probability distribution P(G;

�!
✓ ) that maximizes graph entropy

subject to constraints
Use observed data to estimate via ML free parameters

�!
✓ in the graph

probability distribution obtained above
Use ML estimates of free parameters

�!
✓⇤ to compute expected values and

standard deviations of higher-order network statistics X (G)

E(X |
�!
✓⇤) =

X

G

P(G|
�!
✓⇤)X (G)

Giorgio Fagiolo (LEM) The ITN: Empirics and Models 15 / 31



Null Models: The Case of ITN

Giorgio Fagiolo, Economic Networks.

Null Models of the ITN

The Binary ITN: Disassortativity

Orange: Observed. Green: Expected.

��
���
�
���
��
�

��
���
�
��
���
�
��
��
��
���
��
�
����
������
��
��
���
�
��
���
���
���
�
��
���
�
��
���
�
��
���
�
��
���
�
��
���
�
��
���
�
��
���
�

��
���
�
��
���
�
��
���
�
��
���
�
��
���
�
��
���
�
��
�
��
�
��
���
�
��
���
�
��
���
�
��
�
�
�
�
��
��
�
�
��
��
�
�

��
��
�
�

��
��
�
�

��
��
�
�

��
��
�
�

��
��
�
�

��
��
�
�

��
��
�
�
��
�
�
�
�
��
�
�
�
�

��
�
�
�
�
��
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�

��
�
�
�
�
��
�
�
�
�

��
�
�
�
�

��
�
�
�
�

1950 1960 1970 1980 1990 2000
50

100

150

200

250

year

m
kt
ot
⇤tot ,

m
�ktot⇤to

t ⇥

a

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�
�
�
��
�

�

�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
��
�
�

�
�
�
�
�
�

�
�
��
�
�

�
�
��
�

�

�
�
�
�
�

�

�
�
�
�
�

�

�
�
�
�
�

�

�
�
��
�

�

�
�
��
�

�

�
�

��
�

�

�
�

��

�

�

�
�

��

�

�

�
�
��

�

�

�
�

��

�

�

�
�
��

�

�

�
�

��

�

�

�
�
��

�

�

�
�

��

�

�

�
�

��

�

�

�
�

��

�

�

�
�

��

�

�

�
�

�
�

�

�

�
�

�
�

�

�

�
�

��

�

�

�
�

��

�

�

�
�

��

�

�

�
�

�
�

�

�

�

�

��

�

�

�
�

��

�

�

�

�

��

�

�

�
�

��

�

�

�

�

��

�

�

�

�

�
�

�

�

�

�

�
�

�

�

�

�

�
�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�
�

�

�

�

�

�
�

�

�

�

�

�
�

�

�

1950 1960 1970 1980 1990 2000
0

10

20

30

40

50

year

s k
to
t⇤tot ,

s �ktot⇤
to
t ⇥

b

�

�

�

�

�

�

�

�

�

�

�

��

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�
�
�

�
�
�
�
�
�

�
�
�

��
�

��
���
�
��
�
��
�
��
�
��
�
��
�
��
�
��������
�
�����
���
��
�
�

��
�
��
�
��
�
��
�
��
�
��
���
�
��
�
��
�
��������
�
�����������������������������������������������������������������������

�������������������������������������������������������������������������������������������������������������

1950 1960 1970 1980 1990 2000
�1.0

�0.5

0.0

0.5

1.0

year

r k
to
t⇤tot ,

kt
ot
,r
�ktot⇤to

t ⇥,ktot

c

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�
�
�

�

�
�

�

�
��
�
�
�
��

�
�
�
�
��

�
�
�
�
����
�
��
���
���
�
��
�
��
������
�
��
�

�
�
�
�
��
�
��
�
��
�
���
����
�

�
����
�
��
������
�
��
���������������

�������������

1950 1960 1970 1980 1990 2000
�1.0

�0.5

0.0

0.5

1.0

year

r k
to
t⇤tot ,
�ktot⇤to

t ⇥

d

Contraint: Degree sequence
Null model always predicts strong disassortativity
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Null Models: The Case of ITN

Giorgio Fagiolo, Economic Networks.

Null Models of the ITN

The Weighted ITN: Disassortativity

Orange: Observed. Green: Expected.
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Contraint: Strength sequence
Null model always predicts extreme weighted disassortativity
Weighted (weak) disassortativity patterns (arising consistently from 1950 to 2000)
cannot be replicated
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Null Models: The Case of ITN

Giorgio Fagiolo, Economic Networks.

Null Models of the ITN

Null Models: Implications

General Results
Binary ITN: Degrees are sufficient to reproduce all higher-order statistics
Weighted ITN: Strengths are not sufficient to reproduce higher-order
statistics

Implications for network analysis
Binary ITN: disassortativity and clustering patterns do not convey any
interesting information
Weighted ITN: higher-order statistics convey fresh information, which is not
already contained in strength sequences

Implications for international-trade empirics
A weighted-network analysis brings value added wrt standard (local)
int’l-trade statistics
Degree sequences are maximally informative: trade models should focus on
explaining new-link formation and degrees (in addition to trade flows)
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What’s Next

• What is a network? Examples of networks

• Why networks are important for economists?

• Networks and graphs

• Measures and metrics on networks

• Distributions of metrics and measures in large networks

• Models of network formation

• Null statistical network models

• Economic applications  

Giorgio Fagiolo, Economic Networks.


