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What’s Next

® What is a network? Examples of networks

® Why networks are important for economists!?

® Networks and graphs

® Measures and metrics on networks

® Distributions of metrics and measures in large networks
® Models of network formation

® Null statistical network models

® Economic applications
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Empirical Findings vs. Theoretical Models

e Empirics of complex networks

v Identifying a series of universal properties characterizing the topological
architecture of networks in biology, computer science, sociology,
economics, etc.

v'  Why different networks exhibit similar structural properties?

e Universal properties
v Small diameters and APLs

v Large clustering
v Bell-shaped or power-law degree distributions

e This lecture
v Empirical findings
v Simple graph-theoretic models able to explain these empirical properties
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Stylized fact #1: It is a small world!

e Degrees of Separation
v"  How many steps are required to get in touch with an arbitrarily far node?

v Is it always possible to do that (i.e. is the graph connected)?

v What is the average path length?

e Milgram’s Experiment: Is it a small world?
v How long is the shortest path connecting unacquainted people?

v’ Letters gave to hundred of people in Wichita, KS and Omaha, NE, to be
sent to XY, who works (but does not live) in Boston

v Rule: Letter can be actually sent to a person whom you know personally.
If you know XY then you can send the letter directly to him

e How many letters needed to get to XY?

v On average, only 6 !!
v Anyone in the planet is reachable in no more than 6 steps!
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Stylized fact #1: It is a small world!

e Is it really so for all networks?

Pages in the WWW: 19 steps (over a few billions of nodes?)

Species in food webs and world trade network: 2 steps
Co-authorships: 4-6 steps

All other networks: between 2 and 14. They are really small worlds!!

S N

e Does SW mean “easy to find"?

v Not actually!
v Small degrees of separation come from high node degree

v You have to take the right path each time you travel trough a node!
Search must be intelligent and not random.

e Is there a model explaining SF #17?
v Yes, the good-old Erdos-Renyi random graph model
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The Erdos-Renyi Random Graph Model (1)

e A simple and beautiful model

v Paul Erdos: an extremely prolific
mathematical “pilgrim”

v He wrote around 1,525 mathematical
articles in his lifetime

v The Erdos network and Erdos number

e Erdos was the founder of the field of
random graphs

v Hoffman, Paul (1998), The man who
loved only numbers: the story of Paul
Erdos and the search for mathematical
truth, Hyperion

v Bollobas (2001), Random Graphs,
Cambridge University Press

The Erdos network with EN<?2
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The Erdos-Renyi Random Graph Model (2)

° The G(N p) mOdeI ON THE EVOLUTION OF RANDOM GRAPHS
14

v Take N nodes initially not by

connected P. ERDOS and A. RENYI

Institute of Mathematics
J GO through eaCh Of the Hungarian Academy of Sciences, Hungary
N i i

<2> possible links

J Form a I|nk W|th 3 1. Definition of a random graph
.- . Let E., » denote the set of all graphs having n given labelled vertices Vi, Vs,--,
pI’ObabIhty O<p£ 1 (”d) Va and N edges. The graphs considered are supposed to be not oriented, without

parallel edges and without slings (such graphs are sometimes called linear graphs).
Thus a graph belonging to the set E.,» is obtained by choosing N out of the

possible (’2‘) edges between the points Vi, Vy, -+, Vi, and therefore the number of
® The G(Nlm) mOdeI elements of E,, y is equal to <(§I)) A random graph I'n,~» can be defined as an

element of E,, v~ chosen at random, so that each of the elements of E,, » have the

v' Draw at random m links - ) | |
N . . same probability to be chosen, namely 1/( gr). There is however an other slightly
from a” (2) pOSSIble |Inks different point of view, which has some advantages. We may consider the forma-

tion of a random graph as a stochastic process defined as follows: At time t=1

we choose one out of the (%) possible edges connecting the points Vi, Va,--:, Vi,

each of these edges having the same probability to be chosen ; let this edge be denoted

® La rge_scale System by er. At time t=2 we choose one of the possible (7) —1 edges, different from e,

all these being equiprobable. Continuing this process at time t=k+1 we choose

prOpertles one of the (3) —k possible edges different from the edges ei, ez, -+, ex already

chosen, each of the remaining edges being equiprobable, i.e. having the probability

J Take N—}oo as N.p(N)-}C 1/{(3)—%}. We denote by I's, » the graph consisting of the vertices Vi, Va, -,

Vn and t}le edges e1, €2, ***, EN.

Paul Erdos and A. Renyi, On the evolution of random graphsMagyar Tud. Akad. Mat. Kut. Int. Kozl. 5 (1960) 17-61.
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The Erdos-Renyi Random Graph Model (2)

e Density
v G(N,p): Density is on average p, as on average we have p*(N-1)*N/2 links
v G(N,m): Density is equal to 2*m/[(N-1)*N] in all instances

e Degree distribution

V' Probability that each node has degree k is a Binomial distribution (i.e.
probability of getting k successes out of i.d.d. N-1 Bernoulli trials)

p(k) = (Nk_ 1)pk(l —p)V

v'  For large N, this is also the fraction of nodes with degree k (due to the LLN)

v If N=oo and N-p(N)—c, we know that the Binomial distribution tends to a

Poisson(c). Thus
—cck

k!

v That's why ER random graphs are also called Poisson networks

€

p(k) =
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The Erdos-Renyi Random Graph Model (2)
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The Erdos-Renyi Random Graph Model (3)

e Threshold functions
v Let p=p(N) and let us focus on a given “property” of the ER graph G(N,p(N))

v'  Examples of “properties”: the network has no isolated nodes, the network
displays cycles of order 3, the network is connected, etc.

v Given a property P, a threshold function is a function g*(N) such that as
N—oo

;1((‘]\7]\,)) > 00 = P holds with prob 1

ggg) » 0 = P holds with prob 0

e Meaning of thresholds

v As the number of nodes grows, and the probability p=p(N) of forming a link
decreases with N, then if p(N) decreases slower than g*(N), we are going to

observe the property P almost surely
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The Erdos-Renyi Random Graph Model (4)

. q*(N)=1/N2 1.E+00

1.E-01

v' The network has at least one -
||nk 1.E-03

1.E-04

=—1/NA2

w==1/NA(3/2)
1/N

===log(N)/N

1.E-05

1.E-06

o q*(N)=1/N3/2
v The network has at least a

q*(N)

1.E-07

1.E-08

1.E-09

component with at least 3 LE10
nodes
e g*(N)=1/N

v'  The network has at least one cycle and contains a giant component (i.e. a
unique largest component whose size grows as N and contains a non-trivial
fraction of all nodes)

e g*(N)=log(N)/N

v' The network is connected
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The Erdos-Renyi Random Graph Model (4)
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N=50, p=0.01, N-32<p<N-: Components with more than 2 nodes emerge
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The Erdos-Renyi Random Graph Model (4)

N=50, p=0.03, N-'<p<log(N)/N: Cycles emerge



The Erdos-Renyi Random Graph Model (4)
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N=50, p=0.05, N-'<p<log(N)/N:The giant component emerges
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The Erdos-Renyi Random Graph Model (4)

N=50, p=0.1, p>log(N)/N:The network becomes connecte



The Erdos-Renyi Random Graph Model (6)

e Diameter Estimation: Are ER graphs small worlds?
v Suppose p(N) as N— o is such that:

Np(N)
log(V)

> OO

v This means the the graph is connected a.s.; define by z=p(N-1) the average
degree of the network

e \What is the maximum path length between any two nodes?

v’ Start at any given node i and estimate the average cardinality of the set of its
direct neighbors Vi: it is easy to see that | Vi |=z

Iterate the argument and compute the magnitude of the neighbors of
neighbors of node i, etc.: we approximately have | Vk |=zX

v

v But | Vk|<N, thus <N and k<log(N)/log(z). Therefore, k=length of path
from i to any other neighbor cannot exceed a function that grows as log(N)

v

Note that: log(1000)=7, log(10°)=14: very small numbers!
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The Erdos-Renyi Random Graph Model (7)

e ER Graphs are Small Worlds
v Diameter growth as log(N) as in many real-world graphs

e The ER Random Graph Model: Discussion
v" Number of nodes is constant
Link formation is an i.i.d. process

v

v All nodes have a “characteristic” scale: average number of partners,
deviations from it are exponentially rare

v

If I take any two partners of a given node, the probability that they are
friends is equal to p for all agents, clustering is very small (=density)

e The ER Random Graph Model and Empirical Evidence
v Link formation is not an i.i.d. process
v Networks grow over time (adding nodes and links)
v Degree distribution may not be Poisson
v Clustering may be very high
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Stylized fact #2: It is a clustered world!

e Granovetter (1971): The strength

\

of weak ties \ ~
v How do you find a job? e\ _—: S
'\ @
v Agents are strongly connected to )
a small circle of “friends”

v They occasionally hold “weak /7~
ties” to other people belonging to e A
different social groups E/

v Statistically, info on job openings \
are gathered more through weak ﬁ
than strong ties N

e Empirical evidence on clustering rejects random-graph model

v Ex: in co-authorship network, CC 10000 times larger than predicted
(density=10E-5)

v"  How can one explain TOGETHER low average path length (SF #1) and
high clustering (SF #2) observed in real-world networks?
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The Watts-Strogatz Model (1)

e The basic ideas behind the model Example: Ring network
o N=Number of nodes
v Goal: Building a random-graph model 7=2%*r=node degree
delivering small-world with high clustering
coefficient
. ® ®
v Two extremes as far as clustering is . .
concerned
1. ER Random Graphs: Clustering is equal to ® ®
link probability (p), if p is small (to match
real-world network densities, which are ® ®
often sparse) so is clustering ' - )
2. Regular Lattices: Clustering is very high, as - )
lattices mimic geographical networks, r=1, z=2 r=2, z=4
where any two neighbors of mine are
themselves neighbors with a high N 1
probability because they are close in D = B
geographical space Iy
v'  Two extremes as far as APL is concerned | N1
1.  ER Random Graphs: APL is small (similar APIL = — +
argument used for diameter) 4r
2.  Regular Lattices: APL is high, as it takes a e r>1
lot to move from one node to another OC — 3("“ —1
distant one in the lattice (there are no — 4( 1 )
shortcuts in geographical space) r 2
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The Watts-Strogatz Model (2)

e Perturbing the ring structure

v"  What if we add random links between
distant locations and delete existing local
links?

v This may have four consequences

1. N and L remain constant

2. Node degree is perturbed in such a way
not to introduce any bias: we should
expect unimodal distributions

3. Local link removal should destroy
clustering, but if perturbations are not too
strong clustering coefficients should stay
relatively large

4. Randomly adding links between distant
nodes should dramatically lower APL by
short-cuts (weak ties) between otherwise
very clustered but disconnected islands

v Is all that true?
1. A more formal description of the model

2.  Analysis of model behavior

Giorgio Fagiolo, Economic Networks.
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N=Number of nodes
z=2*r=node degree
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The Watts-Strogatz Model (3)

e The Model

v Start from N nodes located on a ring

v Each node is linked to r neighbors on the left and r neighbors on the right
v'  Thus the network is regular and all nodes have degree k=2r
v Define 0<p<1 as the rewiring probability

e Dynamics

1. Start from node 1 and proceed clockwise
through all subsequent nodes

2.  For each node i, consider its links with
nodes at distance 1

3. For any link of node i in this set, with
probability p delete the link and rewire
node i with another one from the list of
nodes that are not currently linked to i

4.  When we arrive at node N, start again with
node 1 and consider all its links at distance
2 and repeat from 3

5. After r laps (after having considered links
with nodes at distance r), stop the process
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The Watts-Strogatz Model (4)

e The Model: Some observations

v If p=0 then the resulting graph is the initial lattice (no rewiring takes place). Thus the degree
distribution is degenerate (peaked on k=2r)

v If p=1 then the model is equivalent to a ER random lattice, as all links are rewired a.s.: therefore
the resulting graph is fully random and the degree distribution is Poissonian (for large N)

v'  But what happens to CC and APL when we tune p from 0 to 1?

Regular Small-world

Increasing randomness

p=0 () p=1
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The Watts-Strogatz Model (5)

e If p=0 then we observe a high clustering L I B B T L AL
and high APL; if p=1 a small clustering c i} '
and APL 08 I . Clp)/ C(0)  ° .

e As p increases, there is a sudden 06 -
decrease in APL: this means that even a ; ) i ;
few rewirings introduce shortcuts that 04r o ;
dramatically decrease the distance . - Lp /Lo e . ;
between any two nodes: the graph B . . 0 -
becomes a small world very soon N R -

0.0001 0.001 0.01 0.1 1

e (lustering keeps instead very high, as D
link removals do not alter too much the
local structure. This means that the e N=1000, r=5 (N,r chosen in such a way not to have
small-world property is not perceived as for any p a disconnected graph)

e C is the node-average of clustering coefficients, L is
average node path-length

: - e Values of C and L for p=0, i.e. in the ring, that is
e There emerges a large intermediate C(0) and L(0), are use no normalize all other values

region of rewiring probabilities where the e Points in the graphs obtained averaging out over a
resulting graph exhibits both small APL large number of replications.

: T - -  Source: D.J. Watts and S.H. Strogatz. Collective
and large clustering, in line with what is dynamics of 'small-world' networks. Nature 393,

observed in reality 440-442 (1998).

a local phenomenon
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The Watts-Strogatz Model (6)

e The model introduces about p:r-N non lattice links, but in order not to have disconnected
graphs we need N>>2r>>log(N)>>1

e The degree distribution can be worked out analytically but simulations can help in
understanding how it looks like as p increases

p=0 p=02 pe10
x5 + - + T + + 2 T + r

160

140

pé)

- Y Q
o~ o o o o o o o -
Pl
plk)
&S &8 &8 =

o
W

e Mean(k) is always close to initial one (p=0), i.e. 2*r
e Distribution tends to a Poissonian one as p grows
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The Watts-Strogatz Model (7)

e Is this the end of our journey? The WS model explains

T SR Y

Low average path length (Milgram)
High clustering (Granovetter)
But: Degree distribution still has exponentially-decaying tails:

Characteristic scale: almost all nodes have same number of partners,
because links are rewired at random!

Deviations are very rare events: almost impossible to find a 50 or 100mt
tall guy wandering around in our streets...

e Are all real-world degree distributions like that?

4
4

4

Not at all... see previous lectures! Barabasi et al. (1999)

WWW network: many low-degree networks coexisting with not-so-rare
hubs holding many links

Comparison: national highway network (most nodes have the same
number of links) vs. air-traffic network (a few hubs coexist with many
small airports)
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Stylized fact #3: It is a scale-free world!

e Barabasi et al. (1999): Scale-free networks
v"  Many real-world networks display a power-law degree distribution

p(k) = c1k™7 7" = log[p(k)] = c2 — (v + 1) log(k)

v Scale-free: there is no characteristic scale (mean is meaningless)

v' Hierarchical structure and importance of hubs in taking the network
together: hubs guarantee that average path length is small

e Scale or degree exponent (y)
v' Measures the heaviness of the tails (likelihood of hubs)

v Itis a Pareto distribution (80-20 rule): a downward sloping line in a
log-log paper
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Stylized fact #3: It is a scale-free world!

e Examples: Widespread evidence

4

In-coming or out-coming links in
web pages; actor network in
Hollywood; airline traffic; co-
authorship and Erdos number;
citations

Molecules interacting within a cell,
and many others

e Power laws are ubiquitous in natural
and social systems

4

v

Bell-shaped curves emerge in
disordered random systems

Power laws are the signature of
complex behavior and self-
organization

Most economic variables typically
follow (quasi) power laws: firms
size, wealth and income, size of
economic fluctuations, etc.

Giorgio Fagiolo, Economic Networks.
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The Barabasi-Albert Model (1)

e Goal: A simple model of network evolution that
v Reproduces Watts-Strogatz features

v'  Allows for equilibrium power-law degree distributions
v’ See Barabasi and Albert (1999), Science, 286.

e Two essential features

v Growth: The network grows over time through the successive arrival of
new nodes that upon entry link to some preexisting nodes

V' Preferential attachment: New nodes stochastically choose upon entry
existing ones to form links with a bias in favor of highly-connected ones

e Consequences

v Growth: Size of nodes is not fixed as in ER or WS models. Node degree
may attain different magnitudes as the network continues to grow

v Preferential attachment: Rich-get-richer process where nodes become

more connected and this in turn induces higher probability to get even
more connections
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The Barabasi-Albert Model (2)

e The Model
v’ Start at t=0 with No nodes connected in a complete undirected graph
v Atanyt=1,2,... add a new node

v'  The new node chooses m distinct nodes among the pre-existing ones, each with
probability proportional to its current degree and creates a link with each of
them (m new links)

e More formally
v At t=0 there are No nodes and Lo= No(No-1)/2 links

v At time t>0, before entry, there will be Nt= No+t nodes and Lt= Lo+mt links; let
kit be the degree of node i at time t

v The entrant node will form m new links; the probability that a new link is formed
with a pre-existing node i is
kit kit

p',t — p—
Z Z;\L kjo 2Lt

v' Implementation: We consider m steps; at the beginning of each step s, probabilities
are computed on the remaining sample of N-s+1 nodes; after each step the node
just chosen is removed from the list of available nodes. NB: Probabilities depend on
the order of sampling (it is not a weighted random sampling w/o replacement!)
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The Barabasi-Albert Model (2)

Simulating the BA model. N=100, m=1: Even when N is small, hubs start to emerge.
The resulting graph is a tree as m=|
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The Barabasi-Albert Model (2)

Simulating the BA model. N=100, m=2.
Note the richer structure and the presence of loops (clustering is not zero)
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The Barabasi-Albert Model (3)

e Simulating the evolution of the BA model
v An example for m=1

v http://oldweb.ct.infn.it/cactus/applets/Preferential%20Attachment.html

e The model reproduces power-law degree distributions. Why?
v Growth (G) and preferential attachment (PA) are both necessary

v Assume G without preferential attachment (new links are put at random). It
may be proven (Vega-Redondo, 2007, p. 67) that the limit degree
distribution is geometric, i.e. p(k)=2¥, i.e. a skewed but narrow distribution
with a characteristic scale exhibiting a sharp decay for high degrees (hubs
are low-probability events as in Poisson networks)

v"  Assume PA but no G (at each t one node is picked at random to establish m
new links with the other N-1 nodes according to preferential attachment.
Clearly, in the long run a complete network arises (no multi links)

v" When both G and PA are assumed, then power-law degree distributions do
emerge thanks to a rich-get-richer process
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The Barabasi-Albert Model (3)

e Is the growth assumption justifiable?

v Many real-world networks grow in size (order) over time (but others do

not!)

Actor network

2000

Number of movies in IMDB

Herr II, Bruce W., Ke, Weimao, Hardy, Elisha, and Boérner, Katy. (2007)
Movies and Actors: Mapping the Internet Movie Database. In Conference
Proceedings of 11th Annual Information Visualization International Conference
(IV 2007), Zurich, Switzerland, July 4-6, pp. 465-469.

Giorgio Fagiolo, Economic Networks.

(FIB)

Active BGP entries

350000

300000 -

250000

200000

150000

100000 -

50000

o L

Internet

89 90 91 92 93 94 95 95 97 95 99 00 01 02 03 04 05 06 07 08 09 10
Date

Growth of the Internet routing table

http://www.trainsignaltraining.com/ccna-ipv6



The Barabasi-Albert Model (3)

e Is the growth assumption justifiable?
v Many real-world networks grow in size (order) over time (but others do

not!)
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Properties of BA Networks (1)

e The degree distribution converges, as t—oco to a power-law with
exponent 3, i.e. P(K<k)=A*k~3

e Informal proof: Consider k as a continuous variable and note that
new vertices enter at a constant rate; thus the variation of k with
respect to t for any given new node is equal to the constant change
in connectivity in one time step (m) times the probability of forming a
link (degree/sum of all degrees); suppose for simplicity mo=0

ok _ Kk
ot  2mt

e This is a differential equation. We need to solve it for k(t). The
general form is dk/dt=f(t)h(k). The solution is:

/h_l(k) dk = /f(t) dt
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Properties of BA Networks (1)

e Replacing h(k)=k and f(t)=1/2t and solving one gets

1 1
log(k) = 5 log(t) + Cy = k(t) = Cyt2

e To compute C;, suppose that the node has entered at time t*; its
initial degree was therefore m; thus replacing k(t*)=m one gets

Cr=m(t") "} = k() = m()}

e |et us then compute p(K<k). We get:

P(K < k)= Pm(;)} <k) = P(t" > ") =1 - P(1" < 7F
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Properties of BA Networks (1)

e Note that t* (entry time) is a random variable that is uniform in time
as nodes enter at a constant rate. At time t there are No+t nodes.
Therefore t* is U(0, No+t) and its CDF reads F(a)=P(t*<a)=a/(No+t)

m2t m2t m2t 1
PIK<k)=1-Ptr< —)=1—F(—) =1
(K < k) < ) () =1 T

e Therefore the density is:

- 0P(k) 2m*t 1
fre (k) = Ok  No+tk3

That is: The BA model yields a power-law degree distribution with
density exponent equal to 3, independently of m

This means that the limit degree distribution is a Pareto with
parameter 2 (and therefore it does not admit a finite variance)
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Pareto Degree Distribution in the BA Model

" Y T L4 T T 1 T

- Simulated
2 ‘e Linear Fit | -

log(1-F)

log(1-F) = - 2.01*log(k) + 1.4

_IO 1 1 1 1
1.5 2 2.5 3 3.9 1 4.5 5 5.5

log(k)

Simulating the BA model. N=10000, m=2.

Linear fit of the degree distribution using a rank-size plot. Not that the estimated
slope is approximately equal to -2, i.e. the prediction of the BA model as N tends to
infinity. Notice that the slope of the line log(|-F)=a+b*log(k)
is not the MLE for alpha for the Pareto distribution.
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Properties of BA Networks (2)

e Does the BA model generate limit networks
with small diameters? In other words, are BA

networks small worlds?

e Yes, the diameter can be shown to scale as
log(N)/log(log(N)), see Bollobas and Riordan
(2003), even slower than in a random graph

10}

Diameter

10
N

e Does the BA model generate limit networks with large clustering? In
other words, are BA networks similar to WS graphs?

Almost, the CC is 5 times larger than that of random graphs and in general

o
scales lower than in random graphs as N increases (order (logN)?/N vs. 1/N)

e Therefore the BA model generates limit graphs that are structurally
similar to many observed networks... but

Is network growth an acceptable assumption in reality? What about
preferential attachment?

Giorgio Fagiolo, Economic Networks.



Network Models: Conclusions

e Robustness of networks to attacks

e What if a randomly-targeted node is removed due to an attack (viruses,

terrorists)?

e \What are the consequences in terms of connectivity?

e Comparing Poisson random networks, WS and BA networks

e Summary of empirical findings about networks

15
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Network

Models:

Conclusions

Features Average path length Clustering Degree distribution
iy : : _ Sometimes: Bell-shaped
Empirical Evidence Stylized Facts Low High
Most often: Power-law
: : All nodes have the same
Regular networks Very high Very High degree
Random networks Low Low Bell-shaped with -
exponentially-decaying tails
Theoretical Models
Watts-Strogatz Low High Bell-shaped with -
exponentially-decaying tails
Barabasi et al. Low Medium-High Power-law
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What’s Next

® What is a network? Examples of networks

® Why networks are important for economists!?

® Networks and graphs

® Measures and metrics on networks

® Distributions of metrics and measures in large networks
® Models of network formation

® Null statistical network models

® Economic applications
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Null Statistical Network Models

e Inference on empirical network properties

v Suppose we have observed a network G and we have computed a set of
interesting network statistics on G, say si(G),...,sk(G)

v'  These may be: the clustering coefficient or the correlation between ND
and ANND, or between NS and ANNS

e Problem: how can we say something about whether these observed
values are large or small?

v"  We need statistical benchmarks (null models) to assess the distribution of
any given statistics given the null model at hand

v"  Many ways to do it: one must choose the most appropriate null model,
i.e. decide which properties of the observed graph we want to preserve

v The null model generates maximally random graphs satisfying the
selected constraints (preserved properties)

e Example: Maximally random graphs given
v' Binary graphs: Density only, degree distribution, degree sequence, etc.
v' Weighted graphs: Weight distribution, binary topology, etc.
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De5|gn of the Experlment

{ | Build an empirical
network G

| | Compute a statistic | |
Son G (asingle |
observation s*) |

| | Choose the null
H model N(G)
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Compute the

N(G),i.e.

: Analytically: Provide a !
closed form for F | |

" Evaluate F(s%) to

distribution of S given decide if s* is an |

F(9)=F(s<sIN(G)_|

“extreme” ora |
“normal” value |

A




Binary Networks: Example 1

e Preserving density only
v Compute density d on observed graph G with N nodes and L links
v Generate a Poisson random graph with density d

e Two alternatives

v Average or exact density: using G(N,p) or G(N,m) models, where p=d and
m=L (number of links in G)

e \What is not preserved
v' Actual links, degree sequence and distribution all change

e Extension to digraphs

v Generating Poisson random digraphs in such a way to preserve either the
total number of links (in- and out- density change) or the exact number of
in and out links in the observed graph
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Binary Networks: Example 2

e Degree-preserving random rewiring (Maslov & Sneppen, 2002)

v Preserve exactly the degree sequence of the observed binary network

» 44 > 4
/Bl . / ‘ 5(.
O ‘Q® O ‘@
\ / switch \ /
partners

A pair of directed edges A->B and C->D is randomly selected. These edges are then rewired in such a way that A
becomes connected to D, while C to B, provided that none of these edges already exist in the network, in which
case the rewiring step is aborted and a new pair of edges is selected. Note that the above rewiring algorithm
conserves both the in- and out-degree of each individual node (and degrees if the graph is undirected)

e Problems

v To get a single instance we need many such rewirings (at least 4L): this
takes time
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Weighted Networks

e Random reshuffling preserving density only
v Generate Poisson random graphs with exact observed density d

v Randomly reshuffle existing (positive) link weights across the randomly
generated instance of binary topology using G(N,m)

e Maslov-Sneppen for WUNs and WDNs

v Maslov-Sneppen rewiring algorithm works perfectly also for WUNs and
WDNSs

v Just move the link-weight together with the link that is rewired
v This does not preserves strength (in/out/tot) sequence (check it)

e Preserving weight distribution and binary topology

v Reshuffle weights among existing binary links
v This preserves link-weight distributions and binary structure (A)

v Therefore also the degree sequence is preserved exactly
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Alternative Null Models (1)

e Configuration model

v An alternative algorithm to generate random (binary undirected) networks
with a given degree sequence {ki,...,kn}

v Suppose that {ks,...,kn} is graphic, i.e. it is a feasible degree sequence of
a graph (e.g. sum of all degrees is even). This is automatically satisfied if
the sequence comes from an empirically-observed graph

e Algorithm
v Construct a sequence where node i is listed kitimes for all |
1,1,...,1 2,2.....2 -« N,N,....N
k1 ;irmes ko ;irmes kN ?:irmes

v Randomly pick any two elements from the list and form a link between
the nodes corresponding to those entries.

v Delete those entries from the list and repeat until we get to the end
(note: if the sum of degrees were odd we will remain with a single node)
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Alternative Null Models (2)

e QOutput of the configuration model

v A random graph where the degree sequence is preserved
v Problems: multiple self-loops and multi-edges are not ruled out
v Therefore the configuration model generates multi graphs

e \Ways out

v Delete multi-edges and all self loops: this destroys degree sequence but if

multi edges are not that frequent the resulting degree distribution is close
to the observed one

v Employ null models preserving degree sequence only on average

e Expected-degree models (and beyond)
v Chung-Lu (2002)
v'  Squartini, Garlaschelli (2011) , Squartini, Fagiolo, Garlaschelli (2011a,b)
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Alternative Null Models (3)

e Chung-Lu model
v Start with the observed degree sequence {ki,....kn} and an empty graph
v Go through each pair of nodes and form a link with probability

kik kik;

1 vy
S~ kn 2L

e Notice

v Self-loops are still allowed with probability ki?/2L but no multiple edges
between different nodes

v To have well-defined probabilities it must be that max{ki}<Sqrt(2L). It can
be checked that if the degree sequence is very broad this condition is not
satisfied and the ratios above are larger than one. This means that the
observed degree sequence cannot be replicated on average.

v"  What is the probability of connecting i and j in the configuration model?
Prove that is equal to kikj/(2L-1), i.e. equal to the one in Chung-Lu model
for large L
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Economic Interpretation of Null Models

e Null models provide a statistical benchmark to compare observed
network statistics

v Almost no economics in them
v Why are they useful in economics?

e Null statistical models in economics

v Suppose a given observation is in line with what predicted by a given null
statistical model. Then that value of the statistics does not require
additional economic explanations. It can be simply the outcome of
randomness. If we provide an economic model that reproduces that
observation then that model could not be selected against the null
random model.

v Suppose instead a given observation is found to be an extreme value for
the null model at hand. Then the null model must be rejected because it
cannot explain that observation. We need to find an explanation
elsewhere, probably in the economic realm.
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Null Models: The Case of ITN

@ Two levels

@ Null models of the ITN
@ Economic models of the ITN

@ Null models of the ITN

@ Can observed properties be replicated by a null random network model that
only preserves some local (15'-order) statistics?

e What is (if any) the minimal amount of information about the ITN needed to
reproduce all its properties using an otherwise random model?

@ Can one discriminate between statistically relevant and irrelevant properties?

@ Economic models of the ITN

e Standard Int’l Trade Models: Gravity Model (GM)
@ Economics-Inspired Stochastic Models of Network Formation
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Null Models: The Case of ITN

@ Main Idea

e QGiven observed network, define a set of local properties of the network
(constraints) that must be preserved (density, degree or strength sequence,
etc.)

e Characterize the ensemble of all networks that preserve on average these
constraints but are otherwise purely random

e Obtain expected value and standard deviation of higher-order network
statistics (assortativity, clustering, centrality, etc.) over the ensemble

@ Compare observed vs. expected values

@ Application to the ITN

e We study null models where we keep fixed either (in/out) degree or strength
sequences and we check higher order statistical network properties
(disassortativity, clustering)

e By product: Are standard (local) international-trade statistics sufficient for
explaining higher-order network properties?
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Null Models: The Case of ITN

@ Features (Squartini & Garlaschelli, 2010)

e Fit to observed network the probability P(G) of a random graph satisfying a
list of local constraints (inferred from observed network)

e Fully analytical method: no random variant must be generated

e Works for directed/undirected, binary/weighted, sparse/dense networks

e EXxpected properties computed in same time as empirical ones

@ A 3-Step Method

e Find the graph probability distribution P(G; 7) that maximizes graph entropy
subject to constraints

. . —
@ Use observed data to estimate via ML free parameters 6 in the graph

probability distribution obtained above

@ Use ML estimates of free parameters «9_*? to compute expected values and

standard deviations of higher-order network statistics X(G)

E(x|6%) =S~ P(GI6°)X(G)
G
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Null Models: The Case of ITN
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@ Contraint: Degree sequence

@ Null model always predicts strong disassortativity
@ [TN is strongly disassortative only after 1965

@ Null model well predicts disassortativity (when it is a robust network feature)
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Null Models: The Case of ITN

Orange: Observed. Green: Expected.
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@ Contraint: Strength sequence
@ Null model always predicts extreme weighted disassortativity

@ Weighted (weak) disassortativity patterns (arising consistently from 1950 to 2000)
cannot be replicated
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Null Models: The Case of ITN

@ General Results

e Binary ITN: Degrees are sufficient to reproduce all higher-order statistics
e Weighted ITN: Strengths are not sufficient to reproduce higher-order
statistics

@ Implications for network analysis

e Binary ITN: disassortativity and clustering patterns do not convey any
interesting information

@ Weighted ITN: higher-order statistics convey fresh information, which is not
already contained in strength sequences

@ Implications for international-trade empirics
@ A weighted-network analysis brings value added wrt standard (local)
int’l-trade statistics
@ Degree sequences are maximally informative: trade models should focus on
explaining new-link formation and degrees (in addition to trade flows)
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What’s Next

® What is a network? Examples of networks

® Why networks are important for economists!?

® Networks and graphs

® Measures and metrics on networks

® Distributions of metrics and measures in large networks
® Models of network formation

® Null statistical network models

® Economic applications

Giorgio Fagiolo, Economic Networks.



