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What’s Next

• What is a network? Examples of networks

• Why networks are important for economists?

• Networks and graphs

• Measures and metrics on networks

• Distributions of metrics and measures in large networks

• Modeling Networks

• Economic applications 
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Why Network Statistics?
• Visualization may be useful but often is not enough

✓ Large (many nodes) and dense networks (many links)

✓ Are two networks similar or different?
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• Goal: Characterize networks by means of a set of statistics that 
capture graph-theoretic properties (topology)

✓ Network-wide indicators: one value attached to the network 

✓ Node-specific indicators: one value attached to any single node

✓ Link-specific indicators: one value attached to any single link

• Main problems:

✓ How can one tell whether a value of a statistic computed on a given 
network is large or small? 

✓ Comparing statistics across different networks or time snapshots



Density

• Bilateral density in a BDN: fraction of reciprocated links (L)

r =
tr(A2)

N(N � 1)
=

P
i,j aijaji

N(N � 1)

• Densities range from 0 (empty graph) to 1 (complete graph)
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• Network density: fraction of existing links (L) over all possible links

Undirected

d =
L

N(N � 1)
=

P
i,j aij

N(N � 1)
Directed

d =
2L

N(N � 1)
=

2
P

i>j aij

N(N � 1)



Components: Number and Size Distribution 
• Number of connected components in the graph

• Size distribution of connected components

10 components

s(1)=3
s(2)=3
s(3)=1
s(4)=2
s(5)=1

• Extensions to digraphs: weakly and strongly connected components
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Diameter, Distances, and Length 

• Diameter of a graph (D): length of the longest geodesic path 
between any pair of nodes, i.e. max among all l(i,j)

• Path length matrix: A symmetric NxN matrix L whose generic element 
l(i,j) is the path length (length of geodesic path) between i and j

2

5

1 3

4 6

       1     2     3     4     5     6
1     0     0     1     1     0     1
2     0     0     0     0     1     1
3     1     0     0     1     0     0
4     1     0     1     0     0     1
5     0     1     0     0     0     0
6     1     1     0     1     0     0

A=

       1     2     3     4     5     6
1     0     0     1     1     0     1
2     0     0     0     0     1     1
3     1     0     0     1     0     0
4     1     0     1     0     0     1
5     0     1     0     0     0     0
6     1     1     0     1     0     0

L=
0     2     1     1     3     1
2     0     3     2     1     1
1     3     0     1     4     2
1     2     1     0     3     1
3     1     4     3     0     2
1     1     2     1     2     0

D=4

• Extensions of path length to WUN/WDN do exist
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Average Path Length 
• Given a path length matrix L, we can compute the average node path 

length simply as:

ANPLi =

P
j2Ji

lij

|Ji|
Ji = {j = 1, . . . , N, j 6= i : lij < 1}

• The average path length of the graph is the average of all ANPLi 
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4 6

       1     2     3     4     5     6
1     0     0     1     1     0     1
2     0     0     0     0     1     1
3     1     0     0     1     0     0
4     1     0     1     0     0     1
5     0     1     0     0     0     0
6     1     1     0     1     0     0

A=

       1     2     3     4     5     6
1     0     0     1     1     0     1
2     0     0     0     0     1     1
3     1     0     0     1     0     0
4     1     0     1     0     0     1
5     0     1     0     0     0     0
6     1     1     0     1     0     0

L=
0     2     1     1     3     1
2     0     3     2     1     1
1     3     0     1     4     2
1     2     1     0     3     1
3     1     4     3     0     2
1     1     2     1     2     0

ANPL(1)=8/5
ANPL(2)=9/5
ANPL(3)=11/5
ANPL(4)=8/5
ANPL(5)=13/5
ANPL(6)=7/5

APL=56/(6*5)=28/15≅1.8667
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Shortest Paths and Breadth-First Search (1)

• How can we find shortest paths and components?

✓ Naive implementation of a simple algorithm (breadth-first search, BFS)

✓ More sophisticated implementations and algorithms are possible

• BFS: finds shortest distance from a given starting node s to every other 
node in the same component as s

✓ We know s has d=0 from itself

✓ Find all neighbors of s: they have distance 1                                          
from s

✓ Find all neighbors of neighbors of s excluding                                       
those we have already visited: they are                                   at 
distance=2 from s

✓ ... Go on with the cycle by growing on each                                    iteration 
the set of visited node by one step 
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Node Degrees (BUN, BDN)

• Binary directed: 

✓Node in-degree=number of incoming links of a node

✓Node out-degree=number of outcoming links of a node

✓Node total degree=Node in-degree+Node out-degree

ktot
i

=
NX

j=1

(a
ij

+ a
ji

) = (A(i) +AT

(i))1N

kini =
NX

j=1

aji = AT
(i)1N kout

i

=
NX

j=1

a
ij

= A(i)1N

• Binary undirected: Node degree=number of links of a node

ki =
NX

j=1

aij = A(i)1N = AT
(i)1N
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Node Strength (WUN, WDN)

• Weighted directed: 

✓Node in-strength=sum of incoming link weights of a node

✓Node out-strength=sum of outcoming link weights of a node

✓Node total strength=Node in-strength+Node out-strength

stot
i

=
NX

j=1

(w
ij

+ w
ji

) = (W(i) +WT

(i))1N

sini =
NX

j=1

wji = WT
(i)1N sout

i

=
NX

j=1

w
ij

= W(i)1N

• Weighted undirected: Node strength=sum of link weights of a node

si =
NX

j=1

wij = W(i)1N = WT
(i)1N
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Homophily and Assortative Mixing (1)
• Nodes have tendency to link to other nodes with similar characteristics

✓ Node-specific characteristics other than network-related (e.g. people form 
links in a social network if they are similar according to age, nationality, 
language, income, education level, etc.)

✓ Node-specific network characteristics, e.g. degree or strength: Do high-
degree (or strength) nodes tend to be linked to nodes that in turn have a 
high degree or strength (assortativity) or they end up linked to low-degree 
or low-strength ones (disassortativity)?

✓ How can we measure assortativity or disassortativity in a network?

Assortative
network

Disassortative
network
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Average Nearest-Neighbor Degree (ANND)

• Node ANND in BUNs: Average degree of a node’s neighbors  

2

5

1 3

4 6

       1     2     3     4     5     6
1     0     0     1     1     0     1
2     0     0     0     0     1     1
3     1     0     0     1     0     0
4     1     0     1     0     0     1
5     0     1     0     0     0     0
6     1     1     0     1     0     0

A=

• Node 4 has k(i)=3 and its 3 neighbors are (1,3,6)

• k(1)=3, k(3)=2, k(6)=3

• Thus ANND(4)=(3+2+3)/3=8/3
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Average Nearest-Neighbor Degree/Strength

• Node ANND in BUNs: Average degree of a node’s neighbors  

ANNDi =

P
j aijkj

ki
=

P
j

P
h aijajh

ki
=

A(i)A1N

A(i)1N

• Node ANNS in WUNs: Average strength of a node’s neighbors  

ANNSi =

P
j aijsj

ki
=

P
j

P
h aijwjh

ki
=

A(i)W1N

A(i)1N
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ANND/ANNS in Directed Networks

• Two additional dimensions to account for:

✓ Nearest neighbors may be either in-neighbors or out-neighbors

✓ Neighbors of nearest neighbors may be either in-neighbors or out-neighbors   

Out-Out Out-In In-Out In-In

• Total ANND or ANNS (d stands for degree)

– dtot
i = din

i + dout
i = (AT + A)(i)1

– d⇥i = A2
(ii)

• In-, Out- and Total-Degree vectors

– din = AT1

– dout = A1

– dtot = (AT + A)1

– d⇥i = diag(A2)

Total Average Nearest-Neighbor Degree

• Total Average Nearest-Neighbor Degree of Node i: Average number of partners
of partners of i (no matter edge directions)

anndtot
i = (dtot

i )�1
�

j

(ajid
tot
j + aijd

tot
j ) =

= (dtot
i )�1

�

j

(aji + aij)d
tot
j =

= (dtot
i )�1

�

j

�

h

(aji + aij)(ajh + ahj) =

=
(AT + A)(i)(AT + A)1

(AT + A)(i)1

• Total Average Nearest-Neighbor Degree

anndtot =
{(AT + A)21}
{(AT + A)1} (13)

Decomposition of Total Average Nearest-Neighbor Degree

• Note: anndtot counts every edge as if it were undirected. Since edges from
i to its neighbors can go in two directions and edges from i’s neighbors to
the neighbors of the neighbors can also go in two directions, one can define
additional 4 indices, which gives us information on the flow. See also comments
in the Matlab file. These 4 coe�cients are (recall: the first in/out stands for
edges linking i and its neighbors, the second in/out stands for edges linking
i’s neighbors with the neighbors of the latter):

– anndout�out
i : Average number of out-neighbors of i’s out-neighbors

– anndout�in
i : Average number of in-neighbors of i’s out-neighbors

– anndin�out
i : Average number of out-neighbors of i’s in-neighbors

– anndin�in
i : Average number of in-neighbors of i’s in-neighbors

4
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Homophily and Assortative Mixing (2)

• How can we measure assortativity or disassortativity in a network?
✓ Computing node-level correlation coefficient between ND and ANND 

or NS and ANNS: are well connected nodes linked with nodes whose 
neighbors are themselves well connected? 

✓ Computing link-level degree-degree or strength-strength correlation 
coefficient. Let xi be a node-level statistics, i.e. degree or strength:

r =
cov{x

i

, x

j

}
�

2(x)
=

P
i

P
j

a

ij

(x
i

� µ

x

)(x
j

� µ

x

)
P

i

P
j

a

ij

(x
i

� µ

x

)2
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Node Clustering (1)
• What is the likelihood that any two neighbors of a node are themselves 

neighbors? Computing this likelihood is about counting triangles...    

• Node 4 has k(i)=3: how many pairs of distinct neighbors can one count? It’s 
3*2/2=3. In general, k(i)(k(i)-1)/2 pairs can be formed out of k(i) neighbors.

• How many pairs of neighbors are themselves neighbors, i.e. how many 
triangles are present in the neighborhood of node 4? 2 out of 3, because 
(1,3) and (1,6) are neighbors, but (3,6) are not.

• Therefore the clustering coefficient of node 4 is 2/3

2

5

1 3

4 6

?
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Node Clustering (2)
• How can one compute starting from A if a certain triangle is closed? 

j h

i

aij ahi

ajh If:  aij ·ajh·ahi=1 then triangle 
(i,j,h) is closed

But triangles are cycles of order 3... 
thus the number of triangles in i’s 

neighborhood is equal to the number 
of 3-cycles starting and ending in i!  

Giorgio Fagiolo, Course on Economic Networks.

• The number of 3-cycles starting and ending in node i can be recovered 
looking at the entry zii of the matrix Z=A3 and dividing that number by 2 (a 
cycle i>j>h is different from i>h>j but is the same triangle). Thus:

Ci =
1
2

P
j

P
h aijaihajh

1
2ki(ki � 1)

=
(A3)ii

ki(ki � 1)



Clustering in WUNs
• How can one compute clustering coefficients in weighted undirected nets?

j h

i

wij whi

wjh If:  aij ·ajh·ahi=1 then triangle 
(i,j,h) is closed

Triangles must be weighted by their 
total intensity of interactions, as 
measured by some function of 

(wij , wjh, whi)  

• There are many ways to weight a triangle, here’s one of the most used:

Ci(W ) =
1
2

P
i

P
j w

1/3
ij w1/3

ih w1/3
jh

1
2ki(ki � 1)

=
(W [1/3])3ii
ki(ki � 1)

• Where               is the (i,i) entry of the matrix obtained first by raising all 
entries of W to 1/3 and then by taking the 3-rd power

(W [1/3])3ii
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Clustering in Directed Networks (1)
• Link directionality implies that there can be 8 different types of triangles and 

4 classes that can be formed with node i as the reference node

For more complicated measures, however, extensions to
WUNs are not straightforward. To generalize the CC of node
i to WUNs, one has indeed to take into account the weight
associated to edges in the neighborhood of i. There are many
ways to do that !22". For example, suppose that a triangle ihj
is in place. One might then consider only weights of the
edges ih and ij !15". Alternatively, one might employ the
weights of all the edges in the triangle. In turn, the total
contribution of a triangle can be defined as the geometric
mean of its weights !23" or simply as the product among
them !24–27". In what follows, we will focus on the exten-
sion of the CC to WUNs originally introduced in !23":

C̃i#W$ =
#1/2$% j!i %h!#i,j$ wij

1/3wih
1/3wjh

1/3

#1/2$di#di − 1$
=

#W!1/3"$ii
3

di#di − 1$
,

#3$

where we define W!1/k"= &wij
1/k', i.e., the matrix obtained from

W by taking the kth root of each entry. As discussed in !22",
the measure C̃i ranges in !0,1" and reduces to Ci when
weights become binary. Furthermore, it takes into account
weights of all edges in a triangle #but does not consider
weights not participating in any triangle$ and is invariant to
weight permutation for one triangle. Notice that C̃i=1 only if
the neighborhood of i actually contains all possible triangles
that can be formed and each edge participating in these tri-
angles has unit #maximum$ weight. Again, one can define the
overall clustering coefficient for WUNs as C̃=N−1%i=1

N C̃i.
In this paper we discuss extensions of the CC for BUNs

and WUNs !Eqs. #1$ and #3$" to the case of directed net-
works. It is well known that many real-world complex net-
works involve nonmutual relationships, which imply non-
symmetric adjacency or weight matrices. For instance, trade
volumes between countries !28–30" are implicitly directional
relations, as the export from country i to country j is typi-
cally different from the export from country j to country i
#i.e., imports of i from j$. If such networks are symmetrized
#e.g., by averaging imports and exports of country i$, one
could possibly underestimate important aspects of their net-
work architecture.

Alternative extensions of the CC to weighted or directed
networks have been recently introduced in the literature on
“network motifs” !31". As mentioned, !23" generalizes the
CC to weighted—and possibly directed—networks. Simi-
larly, !32" computes the recurrence of all types of three-node
connected subgraphs in a variety of real-world binary di-
rected networks from biochemistry, neurobiology, ecology,
and engineering. However, the weighted CC in !23" does not
explicitly discriminate between different directed triangles
#cf. Fig. 1$, while !32" does not allow for a weighted analy-
sis. This work attempts to bridge the two latter approaches
and presents a unifying framework where, in addition to the
measures already discussed in !23,32", one is able to #i$ ex-
plicitly account for directed and weighted links; and #ii$ de-
fine a weighted, directed version of the CC for any type of
triangle pattern #i.e., three-node connected subgraph$. To
compute such coefficients, we shall employ the actual and

potential number of directed-triangle patterns of any given
type.

Preliminaries. In directed networks, edges are oriented
and neighboring relations are not necessarily symmetric. In
the case of binary directed networks #BDNs$, we define the
in-degree of node i as the number of edges pointing towards
i #i.e., inward edges$. The out-degree of node i is accordingly
defined as the number of edges originating from i #i.e., out-
ward edges$. Formally,

di
in = %

j!i
aji = #AT$i1 , #4$

di
out = %

j!i
aij = #A$i1 , #5$

where AT is the transpose of A, #A$i stands for the ith row of
A, and 1 is the N-dimensional column vector #1,1 , . . . ,1$T.
The total degree of a node is simply the sum of its in- and
out-degree:

i j

h

a a a = 1

i j

h

a a a = 1

i j

h

a a a = 1

i j

h

a a a = 1

i j

h

a a a = 1

i j

h

a a a = 1

i j

h

a a a = 1

i j

h

a a a = 1

FIG. 1. Binary directed graphs. All eight different triangles with
node i as one vertex. Within each triangle is reported the product of
the form a!!a!!a!! that works as indicator of that triangle in the
network.

GIORGIO FAGIOLO PHYSICAL REVIEW E 76, 026107 #2007$

026107-2

Cycles

Out

In

Middleman
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Clustering in Directed Networks (2)
• CC in BDN and WDN (see Fagiolo, PRE, 2007)

from and to a large sample of countries !all figures are ex-
pressed in current U.S. dollars". Here, for the sake of expo-
sition, we focus on the year 2000 only #38$. We choose to
build an edge between any two countries in the WTN if there
is a nonzero trade between them and we assume that edge
directions follow the flow of commodities. Let xij be i’s ex-
ports to country j and mji be imports of j from i. In principle,
xij =mji. Unfortunately, due to measurement problems, this is
not the case in the database. In order to minimize this prob-

lem, we will focus here on “adjusted exports” defined as
eij = !xij +mji" /2 and we build a directed edge from country i
to country j if and only if country i’s adjusted exports to
country j are positive. Thus the generic entry of the adja-
cency matrix aij is equal to 1 if and only if eij !0 !and 0
otherwise". Notice that, in general, eij!eji. In order to
weight edges, adjusted exports can be tentatively employed.
However, exporting levels are trivially correlated with the
“size” of exporting and importing countries, as measured,

TABLE I. A taxonomy of the patterns of directed triangles and their associated clustering coefficients. For each pattern, we show the
graph associated to it, the expression that counts how many triangles of that pattern are actually present in the neighborhood of i !ti

!", the
maximum number of such triangles that i can form !Ti

!", for != %cyc ,mid , in ,out ,D&, and the associated clustering coefficients for BDNs and
WDNs. Note that in the last column Ŵ=W#1/3$= %wij

1/3&.

Patterns Graphs t∗i T ∗
i CCs for BDNs CCs for WDNs

Cycle

i j

h

i j

h

(A)3ii din
i dout

i − d↔i Ccyc
i =

(A)3
ii

din
i

dout
i

−d↔
i

C̃cyc
i =

(Ŵ )3
ii

din
i

dout
i

−d↔
i

Middleman

i j

h

i j

h

(AAT A)ii din
i dout

i − d↔i Cmid
i = (AAT A)ii

din
i

dout
i

−d↔
i

C̃mid
i = (Ŵ Ŵ T Ŵ )ii

din
i

dout
i

−d↔
i

In

i j

h

i j

h

(AT A2)ii din
i (din

i − 1) Cin
i = (AT A2)ii

din
i

(din
i
−1)

C̃in
i = (Ŵ T Ŵ 2)ii

din
i

(din
i
−1)

Out

i j

h

i j

h

(A2AT )ii dout
i (dout

i − 1) Cout
i = (A2AT )ii

dout
i

(dout
i

−1)
C̃out

i = (Ŵ 2Ŵ T )ii

dout
i

(dout
i

−1)

All (D) All 8 graphs above
(A+AT )3

ii

2 dtot
i

(dtot
i

− 1) − 2d↔
i

CD
i =

(A+AT )3
ii

2T D
i

C̃D
i =

(Ŵ+Ŵ T )3
ii

2T D
i
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FIG. 2. WTN: In- vs out-degree in the binary case. Axes are in
log10 scale.
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FIG. 3. WTN: Overall directed clustering coefficient vs total-
degree in the binary case. Axes are in log10 scale.
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Node Centrality
• Which are the most central nodes in a network?

✓ Depends on the definition of “centrality”... many difference measures

✓ Local node-centrality measures: take into account only the 
neighborhood of a node to measure its centrality in the network

✓ Global node-centrality measures: account for the position of the node 
in the whole network

• A simple and obvious local node-centrality measure

✓ (Total) node degree (divided by N-1): a node is more (locally) central 
if it is more connected (degree centrality)

✓ Network centralization: How much centralized is the whole 
network?

Value attained by the 
numerator in a star 

network with N nodes
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Network Centralization: Examples
Flexibility of ACE/EV Paradigm (4/5)

• Interactions
� Interaction structure described by a graph

� Lattices

• Regular networks (lattices, full networks)

✓ All nodes have the same degree, thus 

• Star Networks

✓ There is 1 node (the center) with k=N-1 and N-1 
nodes with k=1. Thus the numerator is equal to 
(N-1)(N-2) and             (check it)�D = 1

2

5

1 3

4 6

• For the network below we have N=6 and 
degrees equal to {3,2,2,3,1,3}, thus max 
degree = 3 and:

�D =
(3� 2) + (3� 2) + (3� 1)

5 · 4 =
4

20
=

1

5
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Node Closeness Centrality
• A node is more (globally) central the closer is on average to other nodes

CLi =
1

`i
=

1
1
n

P
j dij

=
nP
j dij

`i

dij

= ANPL

= Distance between i and j

• Problems

✓ Geodesic distances in networks tend to be very small, hence CL tends 
to span very small ranges, making it difficult to compare more and 
less central nodes

✓ What if the network is not connected? Some distances become infinite 
and closeness becomes zero. A solution: defining CL as the inverse of 
the harmonic mean distance between nodes

CL0
i =

1

N � 1

X

j 6=i

1

dij
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Node Betweenness Centrality (1)
• A node is more (globally) central the more it lies on (geodesic) paths 

connecting any other two nodes in the network

✓ Assume that (i) something flows through the network (message);    
(ii) every pair of nodes exchange messages with equal probability per 
unit time; (iii) messages always take the shortest path between any 
two nodes (or choose one at random if there are several) 

✓ How many messages will be passed through a given node after a 
suitably long period of time? A number proportional to the number of 
geodesic paths the node lies on. This number is called betweenness 
centrality (BC) of a node.

• Nodes with higher BC:

✓ have higher influence because control flow (and might get paid for it)

✓ are crucial for the network: if they fail, most communication is 
disrupted

Giorgio Fagiolo, Course on Economic Networks.



Node Betweenness Centrality (2)

• Remarks:

✓ We count also geodesics from h to h, node i included; we count h to k separately from k to h

✓ In undirected networks we count paths twice, but this is irrelevant as we are not interested in BC levels 
but in rankings (who is more central)

✓ Definition still applies in BDN and can be extended in WUN/WDN by appropriately weighting paths

✓ The denominator g is needed to account for cases where there are more than one geodesic between h 
and k

✓ The maximum value of BC is attained by the center of a star network: it lies on all N2 geodesics 
between node pairs, except the N-1 paths between peripheral nodes to themselves. Thus 
BC(center)=N2-(N-1). Prove it. Compute max when one only counts paths from any two nodes different 
from i 

✓ What is the the minimum of BC? If the network is connected, then there must be at minimum: N-1 
geodesics from all j≠i to i; N-1 geodesics from i to all j≠i; and a geodesic from i to i. Therefore 
min(BC)=2(N-1)+1=2N-1. This happens to “leafs” in a network or peripheral nodes of a star (prove it).

• More formally

BCi =
X

h,k

�i
hk

ghk

= # of geodesics from h to k passing through i 

= total # of geodesics from h to k

Giorgio Fagiolo, Course on Economic Networks.



Eigenvector Centrality
• Main Idea

✓ Degree centrality awards to a given node one centrality point for 
every neighbor it has. More generally: giving each node a score 
proportional to the sum of the scores of its neighbors.

✓ Eigenvector node centrality: node centrality x is proportional to the 
sum of centralities of its neighbors

xi = �
X

j

aijxj V x = �Ax

✓ Hence x is an eigenvector of A. Usually we take the eigenvector 
associated to the largest eigenvalue of A to ensure positive xs

✓ This is called Bonacich centrality: a node is more central either 
because it has many neighbors or because it has important neighbors 
(it is connected with nodes that count), or both

Giorgio Fagiolo, Course on Economic Networks.



Eigenvector Centrality in Digraphs
• Problem #1

✓ If A is symmetric, there is only one eigenvector sequence. In digraphs 
A is asymmetric, so there may be two ways to define centrality, 
according to which type (inward or outward) of link contributes to 
centrality

Giorgio Fagiolo, Course on Economic Networks.

x

i

= �

out

X

j

A

ij

x

j

xi = �in
X

j

Ajixj

✓ Example: in the WWW centrality depends on how many pages point 
to you, not from the fact that you build a page that point to many 
others... but in other networks it may not be so...



Eigenvector Centrality in Digraphs
• Problem #2

✓ Any node who is in a chain of directed paths starting from a node who 
has zero centrality score, will end up having zero centrality score as 
well!

Giorgio Fagiolo, Course on Economic Networks.

Red node: no incoming links, so zero centrality

Green node: only one incoming link, but from a 
zero-centrality node, thus zero centrality as well

xi = �

in
X

j

Ajixj

✓ Only nodes that are in a strongly connected component (SCC) of two or 
more vertices, or the out-component of such a component, can have 
positive centrality scores

✓ Acyclic networks? They have SCC of 1 node... only zero centrality nodes



A First Solution

Giorgio Fagiolo, Course on Economic Networks.

• Katz Centrality Index

✓ Idea: assigning to every node a small initial (positive) centrality 
bonus

✓ Setting the “bonus” equal to 1 for all and solving:

xi = ⇥
X

j

Ajixj + �

x = �Ax+ 1

x = (I� �A)�1
1

• Problems

✓ How to set λ?

✓ Centrality scores are passed via incoming links... so a highly influential 
node with many outgoing links will give high centrality to all of them...  
but received centrality should be smaller the more links are pointed... 
if you are one among many you should receive less centrality.... 
Example: importance of a web page received from hubs in the WWW



Google Page-Rank Centrality 

Giorgio Fagiolo, Course on Economic Networks.

• How does Google search engine work? 

✓ Searching using text queries and other methods in pre-assembled lists 
of web pages

✓ Ranking pages according to a number of criteria, including Page-Rank 
centrality: Google is not efficient in searching/finding but in ranking

✓ Setting λ=0.85... Why?

• Diluting centrality scores from hubs

✓ Idea: rescaling induced centrality by out-degree 

✓ Setting the “bonus” equal to 1 for all and solving:

x

i

= �

X

j

A

ji

x

j

k

out

j

+ �

x = �AD

�1
x+ �1 x = (I� �AD

�1)�1
1



Hub and Authority Centrality (I)
• Problem

✓ So far: Centrality scores can be received only through incoming 
edges.

✓ Problem: in many cases (e.g., citation networks) nodes can be central 
also if they point to many “selected” nodes

• Citation networks: review articles can be central because they 
cite many other “influential” papers; influential papers can 
become important because they are pointed by reviews

Giorgio Fagiolo, Course on Economic Networks.

• Hubs and Authorities

✓ Authorities: nodes that contain useful information, they are pointed by 
many nodes, in particular by many hubs

✓ Hubs: nodes that tell us where authorities are located, they point to 
many authorities

✓ A node can then have two measures of centrality and can be central 
because it’s a hub or an authority, or both!



Hub and Authority Centrality (II)

Giorgio Fagiolo, Course on Economic Networks.

• How to Compute Hub and Authority Centrality Scores? 

✓ Assigning to each node an authority score (x) and a hub score (y) 

✓ Authority score (x) depends on how many links a node receives from 
nodes that have a (high) hub score 

✓ Hub score (y) depends on how many nodes with a (high) autorithy 
score a node points to

xi = �
X

j

Ajiyj yi = �

X

j

Aijxj

✓ Letting  λ=αβ  and solving

x = (I� �AT
A)�1

1

y = (I� �AAT)�11

✓ Authority (hub) scores are the eigenvectors of ATA (AAT) associated to 
the same (largest) eigenvalue, which can be shown to exist



The ITN
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Giorgio Fagiolo, The World-Trade Web 

Stability and Persistence of the WTW 

Introduction Preliminaries Results Conclusions 

•  Correlation structure among topological properties is stationary over time 
and identifies a characteristic trade structure 

•  Fagiolo et al (2008, PHYSA; 2009, PRE) 

Correlation Coefficients 

Countries holding more partners tend to 
trade with countries with very few partners 
(strong disassortativity)  and do not typically 
form trade triangles   

Weighted WTW is only weakly disassortative: 
More-intensively connected countries tend to 
trade with relatively less connected countries   

Countries with many trade partners do not 
necessarily trade more intensively 

More-intensively connected countries are 
more central and tend to form highly-
connected trade triangles 

Binary WTW profoundly different  
from weighted WTW !!  

See Fagiolo et al, 2008, Physica A 



Rich-Club Coefficient
• Evaluating link concentration in networks

✓ Is there a (small) rich-club of tightly-connected nodes whose internal 
connectivity accounts for a large percentage of total network 
connections?    

Giorgio Fagiolo, Course on Economic Networks.

• Rich club coefficient (for BUN)

✓ Rank nodes from the most to the least connected (in terms of ND)

✓ Count the number of links in place between the first two, three, ..., 
k, ... etc. most connected nodes 

✓ Plot how this number (divided by its maximum) varies with k

✓ A correction is needed because this share is increasing also in purely 
random networks

✓ RCC: ratio that is larger than one when the network displays rich-
club behavior



Rich-Club Coefficient

Giorgio Fagiolo, Course on Economic Networks.
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Figure 2 Assessment for the presence of the rich-club phenomenon in the networks under study. φ (k ) is compared with the null hypothesis provided by the maximally
random network with φran (k ). The ratio ρran = φ/φran is plotted as a function of the degree k and compared with the baseline value equal to 1. If ρ (k ) > 1 (<1) the
network shows the presence (absence) of the rich-club phenomenon with respect to the random case. The protein interaction network, the Internet map at the autonomous
system level and the scientific collaboration network show clear behaviours as explained in the main text. The worldwide air transportation network shows a mild rich-club
ordering with ρran (k ) > 1. The ER and MR network models show a ratio ρran (k ) = 1 for all k, as expected, whereas the BA model shows a mixing behaviour with values
above 1 for very high degrees.

networks. We find a clearly opposite result in the decreasing
behaviour of the rich-club spectrum for the protein interaction
network and the Internet map at the autonomous system level. In
both cases, this evidence provides interesting information about the
system structure and function.

The lack of rich-club ordering in the protein interaction
network indicates that proteins with large numbers of interactions
are presiding over different functions and thus, in general, are
coordinating specific functional modules (whose detailed analysis
requires specific tools19). Figure 3 shows portions of the protein
interaction network and the scientific collaboration network
including the club of N>k nodes (N>k = 29 and N>k = 35
for the protein interactions, N>k = 30 and N>k = 36 for the
scientific collaboration) and the connections among them. The
network representations clearly show the presence of a rich-club
phenomenon in the scientific collaboration network, where most of
the rich nodes are highly interconnected forming tight subgraphs,
in contrast to the protein interaction network case, where only
a few links seem to connect rich nodes, the rest linking to
lower-degree vertices.

In the case of the Internet, the appropriate analysis of the
rich-club phenomenon shows that, in contrast to previous claims7,

the structure at the autonomous system level lacks rich-club
ordering. This might seem counter-intuitive. It is reasonable to
imagine that the Internet backbone is made of interconnected
transit providers that are also local hubs. This, however, is not the
case and an explanation can be easily found in the fact that we are
just considering topological properties. Indeed, the backbone hubs
are identified more in terms of their bandwidth and traffic capacity
than in terms of the sole number of connections. The present
result suggests that high-degree hubs provide connectivity to the
local region of the Internet and are not tightly interconnected. The
backbone of interconnected transit providers is instead identified
by high-traffic links, which play a crucial role in terms of traffic
capacities but whose number might represent a small fraction of
the total possible number of interconnections.

This discussion points out that, in some cases, the concept of
rich-club ordering should be generalized to evaluate the richness of
vertices not just in terms of their degree but in terms of the actual
traffic or intensity of interactions handled. In this case, we have to
consider a weighted network representation of the system where
a weight wij representing the traffic or intensity of interaction is
associated with each edge between the vertices i and j. Also in this
case, however, the study of the weighted rich-club coefficient alone
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Rich-Club Coefficient in the ITN
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one entry to the left of the main diagonal itself. The statistic
M!,K

" !X"! %0,1& and increases the larger the probability that
a country remains in the same !or nearby" QC between t−"
and t !for any given choice of ", w, and K".

Table IV shows for our main statistics !ND, NS, ANNS,
WCC, RWBC" and K=10, the values of M!,K

" !X" as "
! '1,4 ,7 ,10( and !=0,1 %88&. The figures strongly supports
the result obtained by looking at the estimated stochastic
kernels. Indeed, the entries of P̂" close to the main diagonal
always represent a large mass of probability, thus hinting to a
distribution dynamics that in the period 1981–2000 is char-
acterized by a rather low turbulence. For example, more than
96% of countries are characterized by node statistics that

either stick to the same QC between t−" and t, or just move
to a nearby QC of the distribution. This share is often close
to 99%. To better statistically evaluate the figures in Table
IV, we have also estimated the distribution of M!,K

" !X" under
reshuffling scheme W-RS, i.e., in random graphs where we
keep fixed the observed adjacency matrix At and we redis-
tribute weights at random by reshuffling the observed link-
weight distribution %89&. This allows us to compute confi-
dence intervals !at 95%" for M!,K

" !X". As reported in Table
IV, the empirical values are always larger than the upper
bound of these confidence intervals, thus confirming the rela-
tively strong persistence found in WTW node-statistic
dynamics.

The same analysis can be also applied to the link-weight
distribution wt= 'wij

t , i! j=1, . . . ,N(. In order not to treat the
same way existing links !with strictly positive weight" and
absent links !with a zero weight", we first define the two link
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the dynamics of transition from an absent link to an existing
one !and back". Indeed, the estimated probability of remain-
ing an absent link !zero weight" is 0.9191, while that of
remaining a present link !positive weight" is 0.9496. Thus,
the link birth rate is on average about 8%, while the death-
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Rich-Club Coefficient: ITN vs IFN
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ITN IFN

Hence, high-income countries tend to have more partners
and to maintain stronger links: in short they are better
connected. Of course, causality can (and most probably
does) run both ways. Economic integration is likely to
spur growth, at least in the medium-to-long run, and in
the presence of economies of scale there is a rather strong
incentive to connect to high-income countries since they
represent richer markets. Also, if part of the gains from
(goods) trade comes from technology spillovers as
suggested by endogenous growth theory, then more
advanced countries become naturally the preferred
partners of every economic system. Thus, it is not
surprising that these correlations tend to be statistically
greater than those observed in a random network, as
countries have rather strong incentives to select their own
partners on the basis of economic considerations.

The correlations between node clustering and per
capita income mimic those obtained above: partners of
high-income countries are not very connected (in terms
of number of links) among themselves, meaning that
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Figure 4. Rich club behaviour in the ITN and IFN.
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Table 5. Composition of the core.

2001 2002 2003 2004

Trade Network
USA USA USA USA
UK UK UK UK
Germany Germany Germany Germany
France France France France
Japan Netherlands Netherlands Japan
Italy Japan Japan Italy
Russia Italy Italy

Financial Assets Network
USA USA USA USA
UK UK UK UK
Germany Germany Germany Germany
Luxembourg Luxembourg Luxembourg Luxembourg
France France France France
Japan Japan Netherlands Netherlands
Italy Italy Japan

Table 6. Correlation between network indexes and per
capita GDP.

2001 2002 2003 2004

Degree – pcGDP
Trade 0.173 0.178 0.178 0.182
Assets 0.720! 0.685! 0.757! 0.772!

Strength – pcGDP
Trade 0.477! 0.472! 0.469! 0.411!
Assets 0.577! 0.579! 0.569! 0.576!

Clustering – pcGDP
Trade "0.341! "0.395! "0.366! "0.216
Assets "0.747! "0.735! "0.779! "0.785!

Weighted clustering – pcGDP
Trade 0.518! 0.513! 0.521! 0.464!
Assets 0.695! 0.689! 0.676! 0.691!

Centrality – pcGDP
Trade 0.412! 0.401! 0.398! 0.366!
Assets 0.490 0.486 0.472 0.476

!The correlation is significantly (5%) stronger than in a random
network.
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Community Structure (I)
• Detecting groups of tightly interconnected vertices 

(Fortunato, 2009)

✓ In many networks the distribution of links is 
globally and locally inhomogeneous

✓ High concentration of links among special 
groups of vertices, and low concentration of 
links between these groups

Giorgio Fagiolo, Course on Economic Networks.

• Community structure (CS) detection

✓ Identifying clusters or modules that due to 
high inter-connectivity among them may 
share common properties and/or play similar 
roles  

✓ Definition of CS is not clear: therefore a 
huge set of CS detection methods are 
available

✓ CS: Non-overlapping vs. overlapping

• Here: Non-overlapping CS detection via 
maximization of modularity function

✓ Assigning each partition of the N nodes a 
“quality” indicator Source: Fortunato (2009)

2

1736). Since then a lot has been learned about graphs
and their mathematical properties (Bollobas, 1998). In
the 20th century they have also become extremely useful
as representation of a wide variety of systems in di�erent
areas. Biological, social, technological, and information
networks can be studied as graphs, and graph analysis
has become crucial to understand the features of these
systems. For instance, social network analysis started in
the 1930’s and has become one of the most important
topics in sociology (Scott, 2000; Wasserman and Faust,
1994). In recent times, the computer revolution has pro-
vided scholars with a huge amount of data and computa-
tional resources to process and analyze these data. The
size of real networks one can potentially handle has also
grown considerably, reaching millions or even billions of
vertices. The need to deal with such a large number of
units has produced a deep change in the way graphs are
approached (Albert and Barabási, 2002; Barrat et al.,
2008; Boccaletti et al., 2006; Mendes and Dorogovtsev,
2003; Newman, 2003; Pastor-Satorras and Vespignani,
2004).

Graphs representing real systems are not regular like,
e. g., lattices. They are objects where order coexists with
disorder. The paradigm of disordered graph is the ran-
dom graph, introduced by P. Erdös and A. Rényi (Erdös
and Rényi, 1959). In it, the probability of having an
edge between a pair of vertices is equal for all possible
pairs (see Appendix). In a random graph, the distribu-
tion of edges among the vertices is highly homogeneous.
For instance, the distribution of the number of neigh-
bours of a vertex, or degree, is binomial, so most ver-
tices have equal or similar degree. Real networks are
not random graphs, as they display big inhomogeneities,
revealing a high level of order and organization. The de-
gree distribution is broad, with a tail that often follows
a power law: therefore, many vertices with low degree
coexist with some vertices with large degree. Further-
more, the distribution of edges is not only globally, but
also locally inhomogeneous, with high concentrations of
edges within special groups of vertices, and low concen-
trations between these groups. This feature of real net-
works is called community structure (Girvan and New-
man, 2002), or clustering, and is the topic of this review
(for earlier reviews see Refs. (Danon et al., 2007; For-
tunato and Castellano, 2009; Newman, 2004a; Schae�er,
2007)). Communities, also called clusters or modules, are
groups of vertices which probably share common proper-
ties and/or play similar roles within the graph. In Fig. 1 a
schematic example of a graph with communities is shown.

Society o�ers a wide variety of possible group organi-
zations: families, working and friendship circles, villages,
towns, nations. The di�usion of Internet has also led
to the creation of virtual groups, that live on the Web,
like online communities. Indeed, social communities have
been studied for a long time (Coleman, 1964; Freeman,
2004; Kottak, 2004; Moody and White, 2003). Communi-
ties also occur in many networked systems from biology,

FIG. 1 A simple graph with three communities, enclosed
by the dashed circles. Reprinted figure with permission
from (Fortunato and Castellano, 2009). c�2009 by Springer.

computer science, engineering, economics, politics, etc.
In protein-protein interaction networks, communities are
likely to group proteins having the same specific function
within the cell (Chen and Yuan, 2006; Rives and Galitski,
2003; Spirin and Mirny, 2003), in the graph of the World
Wide Web they may correspond to groups of pages deal-
ing with the same or related topics (Flake et al., 2002),
in metabolic networks they may be related to functional
modules such as cycles and pathways (Guimerà and Ama-
ral, 2005; Palla et al., 2005), in food webs they may iden-
tify compartments (Krause et al., 2003; Pimm, 1979),
and so on.

Community detection is important for other reasons,
too. Identifying modules and their boundaries allows for
a classification of vertices, according to their structural
position in the modules. So, vertices with a central posi-
tion in their clusters, i.e. sharing a large number of edges
with the other group partners, may have an important
function of control and stability within the group; ver-
tices lying at the boundaries between modules play an
important role of mediation and lead the relationships
and exchanges between di�erent communities. Such clas-
sification seems to be meaningful in social (Burt, 1976;
Freeman, 1977; Granovetter, 1973) and metabolic net-
works (Guimerà and Amaral, 2005). Finally, one can
study the graph where vertices are the communities and
edges are set between clusters if there are connections be-
tween some of their vertices in the original graph and/or
if the modules overlap. In this way one attains a coarse-
grained description of the original graph, which unveils
the relationships between modules. Recent studies indi-
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where maxP and minP indicates the maximum and
the minimum over all possible graph partitions P and
Ex(lc) = d2

c/4m indicates the expected number of links
in cluster c in the null model of modularity. By adding
and subtracting the total number of edges m of the graph
one finally gets

Qmax = � 1
m

minP
⇧�

m�
nc⌅

c=1

lc
⇥
�

�
m�

nc⌅

c=1

Ex(lc)
⇥⌃

= � 1
m

minP(|CutP |� ExCutP). (16)

In the last expression |CutP | = m �
⇤nc

c=1 lc is the cut
size of partition P, and ExCutP = m �

⇤nc

c=1 Ex(lc) is
the expected cut size of the partition in modularity’s null
model.

According to Eq. 14, a subgraph is a module if the
corresponding contribution to modularity in the sum is
positive. The more the number of internal edges of the
cluster exceeds the expected number, the better defined
the community. So, large positive values of the modu-
larity indicate good partitions4. The modularity of the
whole graph, taken as a single community, is zero, as the
two terms of the only summand in this case are equal
and opposite. Modularity is always smaller than one,
and can be negative as well. For instance, the partition
in which each vertex is a community is always negative:
in this case the sum runs over n terms, which are all neg-
ative as the first term of each summand is zero. This
is a nice feature of the measure, implying that, if there
are no partitions with positive modularity, the graph has
no community structure. On the contrary, the existence
of partitions with large negative modularity values may
hint to the existence of subgroups with very few inter-
nal edges and many edges lying between them (multipar-
tite structure) (Newman, 2006a). Modularity has been
employed as quality function in many algorithms, like
some of the divisive algorithms of Section V. In addi-
tion, modularity optimization is itself a popular method
for community detection (see Section VI.A). Modularity
also allows to assess the stability of partitions (Massen
and Doye, 2006) (Section XIII), it can be used to design
layouts for graph visualization (Noack, 2009) and to per-
form a sort of renormalization of a graph, by transform-
ing a graph into a smaller one with the same community
structure (Arenas et al., 2007).

IV. TRADITIONAL METHODS

A. Graph partitioning

The problem of graph partitioning consists in dividing
the vertices in g groups of predefined size, such that the

4 This is not necessarily true, as we will see in Section VI.C.

FIG. 9 Graph partitioning. The dashed line shows the so-
lution of the minimum bisection problem for the graph illus-
trated, i. e. the partition in two groups of equal size with min-
imal number of edges running between the groups. Reprinted
figure with permission from (Fortunato and Castellano, 2009).
c�2009 by Springer.

number of edges lying between the groups is minimal.
The number of edges running between clusters is called
cut size. Fig. 9 presents the solution of the problem for
a graph with fourteen vertices, for g = 2 and clusters of
equal size.

Specifying the number of clusters of the partition is
necessary. If one simply imposed a partition with the
minimal cut size, and left the number of clusters free,
the solution would be trivial, corresponding to all ver-
tices ending up in the same cluster, as this would yield a
vanishing cut size.

Graph partitioning is a fundamental issue in parallel
computing, circuit partitioning and layout, and in the
design of many serial algorithms, including techniques
to solve partial di�erential equations and sparse linear
systems of equations. Most variants of the graph parti-
tioning problem are NP-hard. There are however several
algorithms that can do a good job, even if their solutions
are not necessarily optimal (Pothen, 1997). Many algo-
rithms perform a bisection of the graph. Partitions into
more than two clusters are usually attained by iterative
bisectioning. Moreover, in most cases one imposes the
constraint that the clusters have equal size. This prob-
lem is called minimum bisection and is NP-hard.

The Kernighan-Lin algorithm (Kernighan and Lin,
1970) is one of the earliest methods proposed and is still
frequently used, often in combination with other tech-
niques. The authors were motivated by the problem of
partitioning electronic circuits onto boards: the nodes
contained in di�erent boards need to be linked to each
other with the least number of connections. The pro-
cedure is an optimization of a benefit function Q, which
represents the di�erence between the number of edges in-
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FIG. 2 Community structure in social networks. a) Zachary’s karate club, a standard benchmark in community detection. The
colors correspond to the best partition found by optimizing the modularity of Newman and Girvan (Section VI.A). Reprinted
figure with permission from (Donetti and Muñoz, 2004). c�2004 by IOP Publishing and SISSA. b) Collaboration network
between scientists working at the Santa Fe Institute. The colors indicate high level communities obtained by the algorithm
of Girvan and Newman (Section V.A) and correspond quite closely to research divisions of the institute. Further subdivisions
correspond to smaller research groups, revolving around project leaders. Reprinted figure with permission from (Girvan and
Newman, 2002). c�2002 by the National Academy of Science of the USA. c) Lusseau’s network of bottlenose dolphins. The
colors label the communities identified through the optimization of a modified version of the modularity of Newman and
Girvan, proposed by Arenas et al. (Arenas et al., 2008b) (Section XII.A). The partition matches the biological classification of
the dolphins proposed by Lusseau. Reprinted figure with permission from (Arenas et al., 2008b). c�2008 by IOP Publishing.

explained in the Appendix. Readers not acquainted with
these concepts are urged to read the Appendix first.

II. COMMUNITIES IN REAL-WORLD NETWORKS

In this section we shall present some striking examples
of real networks with community structure. In this way
we shall see what communities look like and why they
are important.

Social networks are paradigmatic examples of graphs
with communities. The word community itself refers to
a social context. People naturally tend to form groups,

within their work environment, family, friends.

In Fig. 2 we show some examples of social networks.
The first example (Fig. 2a) is Zachary’s network of karate
club members (Zachary, 1977), a well-known graph reg-
ularly used as a benchmark to test community detection
algorithms (Section XIV.A). It consists of 34 vertices, the
members of a karate club in the United States, who were
observed during a period of three years. Edges connect
individuals who were observed to interact outside the ac-
tivities of the club. At some point, a conflict between
the club president and the instructor led to the fission of
the club in two separate groups, supporting the instruc-
tor and the president, respectively (indicated by squares

Source: Fortunato (2009)
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• Consider one of all possible partitions of the N nodes of the network. Let this 
partition be C={C1,...,CK}. To evaluate how good this partition is we can 
compute the function:  

where: i,j=1,...,N, Aij are the entries of the adjacency matrix; Pij represents 
the expected number of edges between i and j; m is the total number of 
links; and δ yields one if i and j are in the same community, zero otherwise 
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an edge. The definition of performance, for a partition
P, is

P (P) =
|{(i, j) ⇤ E,Ci = Cj | + |{(i, j) /⇤ E,Ci ⌅= Cj |

n(n� 1)/2
.

(11)
By definition, 0 ⇥ P (P) ⇥ 1. Another example is cover-
age, i.e. the ratio of the number of intra-community edges
by the total number of edges: by definition, an ideal clus-
ter structure, where the clusters are disconnected from
each other, yields a coverage of 1, as all edges of the
graph fall within clusters.

The most popular quality function is the modularity
of Newman and Girvan (Newman and Girvan, 2004). It
is based on the idea that a random graph is not expected
to have a cluster structure, so the possible existence of
clusters is revealed by the comparison between the ac-
tual density of edges in a subgraph and the density one
would expect to have in the subgraph if the vertices of
the graph were attached regardless of community struc-
ture. This expected edge density depends on the chosen
null model, i.e. a copy of the original graph keeping some
of its structural properties but without community struc-
ture. Modularity can then be written as follows

Q =
1

2m

⇧

ij

(Aij � Pij) �(Ci, Cj), (12)

where the sum runs over all pairs of vertices, A is the
adjacency matrix, m the total number of edges of the
graph, and Pij represents the expected number of edges
between vertices i and j in the null model. The �-function
yields one if vertices i and j are in the same community
(Ci = Cj), zero otherwise. The choice of the null model
graph is in principle arbitrary, and several possibilities
exist. For instance, one could simply demand that the
graph keeps the same number of edges as the original
graph, and that edges are placed with the same proba-
bility between any pair of vertices. In this case (Bernoulli
random graph), the null model term in Eq. 12 would be
a constant (i.e. Pij = p = 2m/[n(n� 1)], ⇧i, j). However
this null model is not a good descriptor of real networks,
as it has a Poissonian degree distribution which is very
di�erent from the skewed distributions found in real net-
works. Due to the important implications that broad de-
gree distributions have for the structure and function of
real networks (Albert and Barabási, 2002; Barrat et al.,
2008; Boccaletti et al., 2006; Dorogovtsev and Mendes,
2002; Newman, 2003; Pastor-Satorras and Vespignani,
2004), it is preferable to go for a null model with the
same degree distribution of the original graph. The stan-
dard null model of modularity imposes that the expected
degree sequence (after averaging over all possible configu-
rations of the model) matches the actual degree sequence
of the graph. This is a stricter constraint than merely
requiring the match of the degree distributions, and is

essentially equivalent 3 to the configuration model, which
has been subject of intense investigations in the recent
literature on networks (⌅Luczak, 1992; Molloy and Reed,
1995). In this null model, a vertex could be attached to
any other vertex of the graph and the probability that
vertices i and j, with degrees ki and kj , are connected,
can be calculated without problems. In fact, in order to
form an edge between i and j one needs to join two stubs
(i.e. half-edges), incident with i and j. The probability
pi to pick at random a stub incident with i is ki/2m, as
there are ki stubs incident with i out of a total of 2m.
The probability of a connection between i and j is then
given by the product pipj , since edges are placed inde-
pendently of each other. The result is kikj/4m2, which
yields an expected number Pij = 2mpipj = kikj/2m of
edges between i and j. So, the final expression of modu-
larity reads

Q =
1

2m

⇧

ij

�
Aij �

kikj

2m

⇥
�(Ci, Cj). (13)

Since the only contributions to the sum come from vertex
pairs belonging to the same cluster, we can group these
contributions together and rewrite the sum over the ver-
tex pairs as a sum over the clusters

Q =
nc⇧

c=1

⌃ lc
m
�

�
dc

2m

⇥2 ⌥
. (14)

Here, nc is the number of clusters, lc the total number of
edges joining vertices of module c and dc the sum of the
degrees of the vertices of c. In Eq. 14, the first term of
each summand is the fraction of edges of the graph inside
the module, whereas the second term represents the ex-
pected fraction of edges that would be there if the graph
were a random graph with the same expected degree for
each vertex.

A nice feature of modularity is that it can be equiva-
lently expressed both in terms of the intra-cluster edges,
as in Eq. 14, and in terms of the inter-cluster edges (Djid-
jev, 2006). In fact, the maximum of modularity can be
expressed as

Qmax = maxP

⇤
nc⇧

c=1

⌃ lc
m
�

�
dc

2m

⇥2 ⌥⌅

=
1
m

maxP

⇤
nc⇧

c=1

⌃
lc � Ex(lc)

⌥⌅

= � 1
m

minP

⇤
�

nc⇧

c=1

⌃
lc � Ex(lc)

⌥⌅
, (15)

3 The di�erence is that the configuration model maintains the
same degree sequence of the original graph for each realization,
whereas in the null model of modularity the degree sequence of a
realization is in general di�erent, and only the average/expected
degree sequence coincides with that of the graph at hand. The
two models are equivalent in the limit of infinite graph size.

• Suppose that the probability of connection between i and j is proportional to 
the product of ki and kj. Thus the expected number of links between i and j 
is equal to ki*kj/2m (prove it). This is the configuration model that we will 
study in Lecture 6. Then the modularity function becomes:     
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an edge. The definition of performance, for a partition
P, is

P (P) =
|{(i, j) ⇤ E,Ci = Cj | + |{(i, j) /⇤ E,Ci ⌅= Cj |

n(n� 1)/2
.

(11)
By definition, 0 ⇥ P (P) ⇥ 1. Another example is cover-
age, i.e. the ratio of the number of intra-community edges
by the total number of edges: by definition, an ideal clus-
ter structure, where the clusters are disconnected from
each other, yields a coverage of 1, as all edges of the
graph fall within clusters.

The most popular quality function is the modularity
of Newman and Girvan (Newman and Girvan, 2004). It
is based on the idea that a random graph is not expected
to have a cluster structure, so the possible existence of
clusters is revealed by the comparison between the ac-
tual density of edges in a subgraph and the density one
would expect to have in the subgraph if the vertices of
the graph were attached regardless of community struc-
ture. This expected edge density depends on the chosen
null model, i.e. a copy of the original graph keeping some
of its structural properties but without community struc-
ture. Modularity can then be written as follows

Q =
1

2m

⇧

ij

(Aij � Pij) �(Ci, Cj), (12)

where the sum runs over all pairs of vertices, A is the
adjacency matrix, m the total number of edges of the
graph, and Pij represents the expected number of edges
between vertices i and j in the null model. The �-function
yields one if vertices i and j are in the same community
(Ci = Cj), zero otherwise. The choice of the null model
graph is in principle arbitrary, and several possibilities
exist. For instance, one could simply demand that the
graph keeps the same number of edges as the original
graph, and that edges are placed with the same proba-
bility between any pair of vertices. In this case (Bernoulli
random graph), the null model term in Eq. 12 would be
a constant (i.e. Pij = p = 2m/[n(n� 1)], ⇧i, j). However
this null model is not a good descriptor of real networks,
as it has a Poissonian degree distribution which is very
di�erent from the skewed distributions found in real net-
works. Due to the important implications that broad de-
gree distributions have for the structure and function of
real networks (Albert and Barabási, 2002; Barrat et al.,
2008; Boccaletti et al., 2006; Dorogovtsev and Mendes,
2002; Newman, 2003; Pastor-Satorras and Vespignani,
2004), it is preferable to go for a null model with the
same degree distribution of the original graph. The stan-
dard null model of modularity imposes that the expected
degree sequence (after averaging over all possible configu-
rations of the model) matches the actual degree sequence
of the graph. This is a stricter constraint than merely
requiring the match of the degree distributions, and is

essentially equivalent 3 to the configuration model, which
has been subject of intense investigations in the recent
literature on networks (⌅Luczak, 1992; Molloy and Reed,
1995). In this null model, a vertex could be attached to
any other vertex of the graph and the probability that
vertices i and j, with degrees ki and kj , are connected,
can be calculated without problems. In fact, in order to
form an edge between i and j one needs to join two stubs
(i.e. half-edges), incident with i and j. The probability
pi to pick at random a stub incident with i is ki/2m, as
there are ki stubs incident with i out of a total of 2m.
The probability of a connection between i and j is then
given by the product pipj , since edges are placed inde-
pendently of each other. The result is kikj/4m2, which
yields an expected number Pij = 2mpipj = kikj/2m of
edges between i and j. So, the final expression of modu-
larity reads

Q =
1

2m

⇧

ij

�
Aij �

kikj

2m

⇥
�(Ci, Cj). (13)

Since the only contributions to the sum come from vertex
pairs belonging to the same cluster, we can group these
contributions together and rewrite the sum over the ver-
tex pairs as a sum over the clusters

Q =
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c=1

⌃ lc
m
�

�
dc

2m

⇥2 ⌥
. (14)

Here, nc is the number of clusters, lc the total number of
edges joining vertices of module c and dc the sum of the
degrees of the vertices of c. In Eq. 14, the first term of
each summand is the fraction of edges of the graph inside
the module, whereas the second term represents the ex-
pected fraction of edges that would be there if the graph
were a random graph with the same expected degree for
each vertex.

A nice feature of modularity is that it can be equiva-
lently expressed both in terms of the intra-cluster edges,
as in Eq. 14, and in terms of the inter-cluster edges (Djid-
jev, 2006). In fact, the maximum of modularity can be
expressed as
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3 The di�erence is that the configuration model maintains the
same degree sequence of the original graph for each realization,
whereas in the null model of modularity the degree sequence of a
realization is in general di�erent, and only the average/expected
degree sequence coincides with that of the graph at hand. The
two models are equivalent in the limit of infinite graph size.
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• Modularity maximization: since high values of Q indicate good partitions (as 
compared to the null model), then finding the max of Q over the space of all 
partitions would yield the best one

• Unfortunately maximizing Q is impossible: it is an NP-complete problem. No 
fast solution is known and there is no known efficient way to locate a 
solution

• That is, the time required to solve the problem using any currently known 
algorithm increases very quickly as the size of the problem grows.

• Grouping all contributions that come from the same community together, the 
modularity function can be rewritten as   

where now nc=k, c spans all clusters in C, lc is total number of links joining 
nodes of cluster c, and dc is the sum of degrees of nodes in cluster c
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A nice feature of modularity is that it can be equiva-
lently expressed both in terms of the intra-cluster edges,
as in Eq. 14, and in terms of the inter-cluster edges (Djid-
jev, 2006). In fact, the maximum of modularity can be
expressed as

Qmax = maxP

⇤
nc⇧

c=1

⌃ lc
m
�

�
dc

2m

⇥2 ⌥⌅

=
1
m

maxP

⇤
nc⇧

c=1

⌃
lc � Ex(lc)

⌥⌅

= � 1
m

minP

⇤
�

nc⇧

c=1

⌃
lc � Ex(lc)

⌥⌅
, (15)

3 The di�erence is that the configuration model maintains the
same degree sequence of the original graph for each realization,
whereas in the null model of modularity the degree sequence of a
realization is in general di�erent, and only the average/expected
degree sequence coincides with that of the graph at hand. The
two models are equivalent in the limit of infinite graph size.



Community Structure (IV)

Giorgio Fagiolo, Course on Economic Networks.

• Therefore modularity maximization needs clever optimization algorithms to 
deliver solutions (greedy techniques, simulated annealing, genetic algorithms)

• Extensions of modularity to the case of weighted directed networks are 
possible

• What is the number of all partitions of a set of N units? They are known as 
Bell’s numbers and grow very quickly as N increases    
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Community Structures (CS) in the ITN

FIG. 1. Cluster-size distributions in 2003.

FIG. 2. World map showing communities of aggregate ITN in 2003. In gray countries not belonging to
any community or for which no data are available.
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Commodity-Specific CS

(a)Co�ee and tea c = 9. (b)Cereals c = 10.

(c)Mineral fuels c = 27. (d)Organic chemicals c = 29.

(e)Pharmaceutical products c = 30. (f)Plastics c = 39.

(g)Cotton c = 52. (h)Precious stones c = 71.

(i)Iron and steel c = 72. (j)Nuclear reactors c = 83.

FIG. 3. World maps showing trade communities of commodity specific ITNs in 2003. In gray countries
not belonging to any community or for which no data are available.
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Community Structure, Geography, and RTAs

• Can geography and RTAs be employed as good predictors of 
trade-detected communities? 

• Using NMI to compare trade communities with those deteced 
optimizing modulairty of geographical closeness matrix (S) and 
RTA matrices (M)

(a)RTAs. (b)Distances.

FIG. 6. World maps showing RTAs in 2003 and geographic communities.
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FIG. 7. NMI when comparing the community structures induced by the exogenous networks build using
geographical distances (GEO) or regional trade agreements data (RTA) with the the community structures
of aggregate trade.
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Community Structure, Geography, and RTAs
• Results for aggregate ITN

• Increasing NMIs across time until 
2001 and a slight decrease afterwards

• More similarity between aggregate 
trade and geography based 
communities with respect to 
communities determined by RTAs: 
geographically-related factors seem 
to explain the pattern of global trade 
more than political agreements

• Similar results apply for the 
commodity-specific case 

(a)RTAs. (b)Distances.

FIG. 6. World maps showing RTAs in 2003 and geographic communities.
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FIG. 7. NMI when comparing the community structures induced by the exogenous networks build using
geographical distances (GEO) or regional trade agreements data (RTA) with the the community structures
of aggregate trade.
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• These results reinforce the traditional view put forth by standard gravity-equation trade em- 
pirics, which stresses the importance of geographical distance in determining bilateral trade 
flows (much more than trade agreements, whose impact is mixed, see Rose, 2004)

• Here: geographical distance is important to predict not only the expected flow of a bilateral 
trade relationship, but also the formation of trade communities, that is complicated trade 
structures multilaterally involving groups of countries.



Simplifying Dense Weighted Networks

• What if the network is very dense (i.e. L very large as compared to N)? 
Visualization may suffer as too many links must be drawn

✓ Draw links only if their weight is larger than a given threshold (quantile of the distribution, 
e.g. only top x% of links are drawn according to their weight)

✓ Use more sophisticated techniques, as the mimimal spanning tree (MST)

• MST: Transforms a symmetric graph into a tree, thus allowing for a meaningful 
simplification (cycles are removed) 

1. Transform link weights wij into a proper similarity measure sij (1-sij must be a distance)

2. Build a list of all vertices pairs by ranking all sij on a descending order

3. Draw a link (with weight equal to sij) between the first two vertices in the list

4. Proceed with the second pair in the list

5. From the third onward, if by drawing a link we close a cycle we remove that entry in the 
list and we proceed along the list (or, similarly, do not add pairs containing nodes that 
have been both previously added) 

6. Stop when all the vertices have been drawn (if the graph is complete the MST will contain 
N-1 links)

Giorgio Fagiolo, Course on Economic Networks.



Simplifying Dense Weighted Networks

The International Trade Network in 2000. Source: Fagiolo (2010). 
All existing links are drawn with their own weight. 

Giorgio Fagiolo, Course on Economic Networks.



Simplifying Dense Weighted Networks

The MST for the International Trade Network in 2000. Source: Fagiolo (2010). 

Giorgio Fagiolo, Course on Economic Networks.



What’s Next

• What is a network? Examples of networks

• Why networks are important for economists?

• Networks and graphs

• Measures and metrics on networks

• Distributions of metrics and measures in large networks

• Models of network formation

• Null statistical network models

• Economic applications  

Giorgio Fagiolo, Course on Economic Networks.



Social vs. Complex Network Analysis

• Social Network Analysis (SNA: Wasserman and Faust, 1994)
✓ Small networks size, data often obtained through questionnaires or 

experiments (N<100) 

✓ Fields: Sociology, Psychology, Economics (see Borgatti et al., Science, Vol. 
323, February 2009)

• Complex Network Analysis (CNA, Newman, 2010)
✓ Large network size, data often retrieved automatically from large 

databases (Internet, WTW, biological nets, large social networks, etc.) 

✓ Fields: Physics, Biology, Computer Science, Economics (see Schweitzer, 
Fagiolo, et al., Science,  Vol. 325, July 2009)

• Different goals
✓ SNA: node behavior, mostly descriptive analysis (no models)

✓ CNA: network statistical properties, mostly quantitative (comparison with 
models), focus on distributional properties of node- (and link)-specific 
statistics and their dynamics over time

Giorgio Fagiolo, Economic Networks.



Node-Specific Statistic Distributions

Distribution dynamics :    f(Xt), t=1,2,...,T

Xi,t  i=1,...,N

Time t

Time-t node-distribution for X

f(Xt)



Distributions in Complex Networks
• If the network is large enough (many nodes, many links) , one can 

characterize heterogeneity in 
✓ Node-specific statistics: degrees, strengths, etc. 

✓ Link-specific statistics: link weights

Giorgio Fagiolo, Economic Networks.

• Underlying homogeneity assumption 
✓ Node-specific observations xi are i.i.d. draws from the same RV

✓ Often not true, but cf. firm size and growth distributions, etc.: 
homogeneity assumptions are necessary in economics and (time-series) 
econometrics

• Stylized facts
✓ ND distributions: Poisson (friendship networks, cf. Dunbar’s number) vs. 

Power-Law (Internet, the WWW)

✓ Strength distributions: Log-normal, maybe with power law tail (ITN)



ND Distribution in Real Networks

Giorgio Fagiolo, Economic Networks.

Co-Authorship Data, Newman 
and Grossman

Liljeros et al. (Nature 2001): 1996 Swedish survey of 
sexual behaviour. 

Evidence that the distribution of sexual partners follows a 
power law distribution 

 
              

 
 

Co-Authorship Data (Newman, Grossman, 1999) Sexual behavior in Sweden (Liljeros et al, 1999)



ND Distribution in Real Networks

Giorgio Fagiolo, Economic Networks.

Power-law degree distributions were found in  
diverse networks

Actor collaboration

32.)( �� kkP42.)( �� kkP

A.-L. Barabási, R. Albert, Science 286, 509 (1999)

R. Govindan, H. Tangmunarunkit, IEEE Infocom (2000)

Internet, router level
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k
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ND Distribution and Network Topology

Giorgio Fagiolo, Economic Networks.

The power-law degree distribution 
indicates a heterogeneous topology 

The average degree gives
the characteristic scale (value) 
of the degree.
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Large variability,
the average degree not informative, 
no characteristic scale for the degree 
Scale-free

• The average degree gives the characteristic 
scale (value) of the degree

• All nodes are on average linked to the 
same number of other nodes 

• Large variability, the average degree is not 
informative, no characteristic scale for the 
degree (scale-free)

• There are nodes (hubs) that are connected 
with a number of other nodes that is order-
of-magnitudes larger than that of nodes in 
the left tail 



The ITN

than having high NS, ANNS, or WCC !i.e., the latter distri-
butions feature upper tails thinner than that of RWBC distri-
butions; we shall return to complexity issues related to this
point when discussing out-of-sample evolution of the distri-
butions of node and link statistics". The foregoing qualitative
statements can be made quantitative by running comparative
goodness-of-fit !GoF" tests to check whether the distributions
under study come from predefined density families. To do so,
we have run Kolmogorov-Smirnov GoF tests #57,58$ against
three null hypotheses, namely that our data can be well de-
scribed by log-normal, stretched exponential, or power-law
distributions. The stretched-exponential distribution !SED"
has been employed because of its ability to satisfactorily de-
scribe the tail behavior of many real-world variables and
network-related measures #59,60$. Table III reports results

for year 2000 in order to facilitate a comparison with Figs.
4–6, but again the main insights are confirmed in the entire
sample. It is easy to see that the SED does not successfully
describe the distributions of our main indicators. On the con-
trary, it clearly emerges that NS, ANNS, and RWBC seem to
be well described by log-normal densities, whereas the null
of power-law RWBC cannot be rejected. For ND, neither of
the three null appears to be a satisfactory hypothesis for the
KS test.

We now discuss in more detail the evolution over time of
the moments of the distributions of node statistics. As al-
ready noted in Refs. #3,6,7,12$, the binary WTW is charac-
terized by an extremely high network density dt

= 1
N!N−1"%i% jaij

t , ranging from 0.5385 to 0.6441. Figure 8
plots the normalized !by N" population average of ND,
which is equal to network density up to a N−1!N−1" factor,
together with population average of NS. While the average

TABLE II. P values for Jarque-Bera normality test #55,56$. Null hypothesis: Natural logs of !positive-valued" distribution are normally
distributed with unknown parameters. Asterisks: !!" null hypothesis rejected at 10%; !!!" null hypothesis rejected at 5%; !!!!" null
hypothesis rejected at 1%.

1981 1982 1983 1984 1985 1986 1987 1988 1989 1990

ND 0.0000*** 0.0000*** 0.0010*** 0.0000*** 0.0000*** 0.0000*** 0.0010*** 0.0000*** 0.0010*** 0.0000***

ANND 0.0277** 0.0261** 0.0400** 0.0403** 0.0525* 0.0309** 0.0333** 0.0197** 0.1254 0.1020
BCC 0.0060*** 0.0040*** 0.0040*** 0.0040*** 0.0050*** 0.0020*** 0.0050*** 0.0030*** 0.0080*** 0.0040***

NS 0.2925 0.2046 0.4021 0.2870 0.4344 0.6804 0.6238 0.5300 0.3496 0.5343
ANNS 0.1118 0.2500 0.2724 0.2463 0.2816 0.2532 0.3243 0.1633 0.1666 0.1065
WCC 0.5673 0.2525 0.2821 0.2874 0.2867 0.2601 0.3564 0.2035 0.2005 0.1202
RWBC 0.0000*** 0.0000*** 0.0000*** 0.0000*** 0.0000*** 0.0000*** 0.0000*** 0.0000*** 0.0000*** 0.0000***

1991 1992 1993 1994 1995 1996 1997 1998 1999 2000

ND 0.0010*** 0.0020*** 0.0010*** 0.0010*** 0.0020*** 0.0000*** 0.0000*** 0.0000*** 0.0000*** 0.0000***

ANND 0.0810* 0.0630* 0.0900* 0.0700* 0.0580* 0.0400** 0.0480** 0.0460** 0.0400** 0.0260**

BCC 0.0090*** 0.0040*** 0.0040*** 0.0020*** 0.0020*** 0.0060*** 0.0050*** 0.0050*** 0.0050*** 0.0050***

NS 0.5367 0.2398 0.2917 0.2016 0.3685 0.4693 0.6000 0.6312 0.5918 0.5260
ANNS 0.2450 0.0905* 0.1402 0.1133 0.1269 0.0574* 0.0734* 0.0899* 0.0668* 0.1385
WCC 0.2661 0.1166 0.1562 0.1356 0.1358 0.0638* 0.1206 0.1095 0.1072 0.1583
RWBC 0.0000*** 0.0000*** 0.0000*** 0.0000*** 0.0000*** 0.0000*** 0.0000*** 0.0000*** 0.0000*** 0.0000***
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FIG. 4. Size-rank !log-log" plot of node-degree distribution in
year 2000. X axis: Natural log of node degree !ND". Y axis: Natural
log of the rank of node-degree observation !ND". Inset: Kernel
density estimate of ND distribution.
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FIG. 5. Size-rank !log-log" plot of node-strength distribution in
year 2000. X axis: Natural log of node strength !NS". Y axis: Natu-
ral log of the rank of node-strength observation !NS".
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than having high NS, ANNS, or WCC !i.e., the latter distri-
butions feature upper tails thinner than that of RWBC distri-
butions; we shall return to complexity issues related to this
point when discussing out-of-sample evolution of the distri-
butions of node and link statistics". The foregoing qualitative
statements can be made quantitative by running comparative
goodness-of-fit !GoF" tests to check whether the distributions
under study come from predefined density families. To do so,
we have run Kolmogorov-Smirnov GoF tests #57,58$ against
three null hypotheses, namely that our data can be well de-
scribed by log-normal, stretched exponential, or power-law
distributions. The stretched-exponential distribution !SED"
has been employed because of its ability to satisfactorily de-
scribe the tail behavior of many real-world variables and
network-related measures #59,60$. Table III reports results

for year 2000 in order to facilitate a comparison with Figs.
4–6, but again the main insights are confirmed in the entire
sample. It is easy to see that the SED does not successfully
describe the distributions of our main indicators. On the con-
trary, it clearly emerges that NS, ANNS, and RWBC seem to
be well described by log-normal densities, whereas the null
of power-law RWBC cannot be rejected. For ND, neither of
the three null appears to be a satisfactory hypothesis for the
KS test.

We now discuss in more detail the evolution over time of
the moments of the distributions of node statistics. As al-
ready noted in Refs. #3,6,7,12$, the binary WTW is charac-
terized by an extremely high network density dt

= 1
N!N−1"%i% jaij

t , ranging from 0.5385 to 0.6441. Figure 8
plots the normalized !by N" population average of ND,
which is equal to network density up to a N−1!N−1" factor,
together with population average of NS. While the average

TABLE II. P values for Jarque-Bera normality test #55,56$. Null hypothesis: Natural logs of !positive-valued" distribution are normally
distributed with unknown parameters. Asterisks: !!" null hypothesis rejected at 10%; !!!" null hypothesis rejected at 5%; !!!!" null
hypothesis rejected at 1%.

1981 1982 1983 1984 1985 1986 1987 1988 1989 1990

ND 0.0000*** 0.0000*** 0.0010*** 0.0000*** 0.0000*** 0.0000*** 0.0010*** 0.0000*** 0.0010*** 0.0000***

ANND 0.0277** 0.0261** 0.0400** 0.0403** 0.0525* 0.0309** 0.0333** 0.0197** 0.1254 0.1020
BCC 0.0060*** 0.0040*** 0.0040*** 0.0040*** 0.0050*** 0.0020*** 0.0050*** 0.0030*** 0.0080*** 0.0040***

NS 0.2925 0.2046 0.4021 0.2870 0.4344 0.6804 0.6238 0.5300 0.3496 0.5343
ANNS 0.1118 0.2500 0.2724 0.2463 0.2816 0.2532 0.3243 0.1633 0.1666 0.1065
WCC 0.5673 0.2525 0.2821 0.2874 0.2867 0.2601 0.3564 0.2035 0.2005 0.1202
RWBC 0.0000*** 0.0000*** 0.0000*** 0.0000*** 0.0000*** 0.0000*** 0.0000*** 0.0000*** 0.0000*** 0.0000***

1991 1992 1993 1994 1995 1996 1997 1998 1999 2000

ND 0.0010*** 0.0020*** 0.0010*** 0.0010*** 0.0020*** 0.0000*** 0.0000*** 0.0000*** 0.0000*** 0.0000***

ANND 0.0810* 0.0630* 0.0900* 0.0700* 0.0580* 0.0400** 0.0480** 0.0460** 0.0400** 0.0260**

BCC 0.0090*** 0.0040*** 0.0040*** 0.0020*** 0.0020*** 0.0060*** 0.0050*** 0.0050*** 0.0050*** 0.0050***

NS 0.5367 0.2398 0.2917 0.2016 0.3685 0.4693 0.6000 0.6312 0.5918 0.5260
ANNS 0.2450 0.0905* 0.1402 0.1133 0.1269 0.0574* 0.0734* 0.0899* 0.0668* 0.1385
WCC 0.2661 0.1166 0.1562 0.1356 0.1358 0.0638* 0.1206 0.1095 0.1072 0.1583
RWBC 0.0000*** 0.0000*** 0.0000*** 0.0000*** 0.0000*** 0.0000*** 0.0000*** 0.0000*** 0.0000*** 0.0000***
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FIG. 4. Size-rank !log-log" plot of node-degree distribution in
year 2000. X axis: Natural log of node degree !ND". Y axis: Natural
log of the rank of node-degree observation !ND". Inset: Kernel
density estimate of ND distribution.
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FIG. 5. Size-rank !log-log" plot of node-strength distribution in
year 2000. X axis: Natural log of node strength !NS". Y axis: Natu-
ral log of the rank of node-strength observation !NS".
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Globalization?

Giorgio Fagiolo, The World-Trade Web 

Stability and Persistence of the WTW 

•  The distributions of WTW topological properties are relatively stable and 
persistent over the observed 20-year period 

•  Fagiolo et al (2009, PRE) 

Introduction Preliminaries Results Conclusions 

Log of Node-Strength (! = 1) Log of Positive Link-Weight (! = 1) 



What’s Next

• What is a network? Examples of networks

• Why networks are important for economists?

• Networks and graphs

• Measures and metrics on networks

• Distributions of metrics and measures in large networks

• Modeling Networks

• Economic applications  

Giorgio Fagiolo, Course on Economic Networks.


