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What’s Next

® What is a network? Examples of networks

® Why networks are important for economists!?

® Networks and graphs

® Measures and metrics on networks

® Distributions of metrics and measures in large networks
® Modeling Networks

® Economic applications
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Why Network Statistics?

e Visualization may be useful but often is not enough

v Large (many nodes) and dense networks (many links)

v Are two networks similar or different?

e Goal: Characterize networks by means of a set of statistics that
capture graph-theoretic properties (topology)

v Network-wide indicators: one value attached to the network
v Node-specific indicators: one value attached to any single node

v Link-specific indicators: one value attached to any single link

e Main problems:

v How can one tell whether a value of a statistic computed on a given
network is large or small?

v Comparing statistics across different networks or time snapshots
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Density

e Network density: fraction of existing links (L) over all possible links

J— 2L B 2 Zi>j g Undirected
~ N(N—-1) N(N-1)
d = L — Zi’j aij Directed

N(N-1) N(N-1)
e Densities range from 0 (empty graph) to 1 (complete graph)

e Bilateral density in @ BDN: fraction of reciprocated links (L)

- tr(A%) Dl Qi

N(N—-1) NN -1
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Components: Number and Size Distribution

e Number of connected components in the graph

e Size distribution of connected components

10 components

A
./. s(1)=3
s(2)=3
(3)=1
/‘g 2(4)=2
s(5)=1

e Extensions to digraphs: weakly and strongly connected components
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Diameter, Distances, and Length

e Path length matrix: A symmetric NxXN matrix L whose generic element
I(i,j) is the path length (length of geodesic path) between i and j

e Diameter of a graph (D): length of the longest geodesic path
between any pair of nodes, i.e. max among all I(i,j)
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e Extensions of path length to WUN/WDN do exist

Giorgio Fagiolo, Course on Economic Networks.



Average Path Length

e Given a path length matrix L, we can compute the average node path
length simply as:

ZjEJZ' ZZ]

ANPL; =
| J;

JZ:{]:1,,N,]#ZZZJ<OO}

e The average path length of the graph is the average of all ANPL

1 2 3 4 5 6
110 0 1 1 0 1 '
210 0 0 0 1 1
A= 3]1 0 0 1 0 0
411 0 1 0 0 1
500 1. 0 0 0 0
61 1 0 1 0 0
1 2 3 4 5 6
1jo 2 1 1 3 1 ANPL(1)=8/5
212 0 3 2 1 1 ANPL(2)=9/5
L= 3]1 3 0 1 4 2 ANPL(3)=11/5 APL=56/(6%*5)=28/15=1.8667
401 2 1 0 3 1 ANPL(4)=8/5
>3 14 3 0 2 ANPL(5)=13/5
61 1 2 1 20 ANPL(6)=7/5
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Shortest Paths and Breadth-First Search (1)

e How can we find shortest paths and components?
v Naive implementation of a simple algorithm (breadth-first search, BFS)

v More sophisticated implementations and algorithms are possible

e BFS: finds shortest distance from a given starting node s to every other
node in the same component as s

v We know s has d=0 from itself

v Find all neighbors of s: they have distance 1
from s

v Find all neighbors of neighbors of s excluding o«
those we have already visited: they are
distance=2 from s

v ... Go on with the cycle by growing on each
the set of visited node by one step .
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Node Degrees (BUN, BDN)

e Binary undirected: Node degree=number of links of a node
N

kz‘ — Z Qg5 = A(Z)]_N — A(Z)]'N

j=1
e Binary directed:
v Node in-degree=number of incoming links of a node
v Node out-degree=number of outcoming links of a node

v Node total degree=Node in-degree+Node out-degree

N N
k.;;’l’b — Z a’]Z = A(’L)]'N kOUt Z CLZ] — A(z)]_N

7=1 j=1

N
kY= (aij + aji) = (Ag) + Al In

j=1
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Node Strength (WUN, WDN)

e \Weighted undirected: Node strength=sum of link weights of a node

S; — Zw@'j — W(i)]-N = W(j,;)]_N

j=1
e \Weighted directed:
v Node in-strength=sum of incoming link weights of a node

v Node out-strength=sum of outcoming link weights of a node

v Node total strength=Node in-strength+Node out-strength

N N
st =Y wji = WiIn s7 = ) wiy = Wi In
j=1 j=1
N
tOt ww + wﬁ (W(z) + W({))]_N

g=1
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Homophily and Assortative Mixing (1)

e Nodes have tendency to link to other nodes with similar characteristics

v Node-specific characteristics other than network-related (e.g. people form
links in a social network if they are similar according to age, nationality,
language, income, education level, etc.)

v Node-specific network characteristics, e.g. degree or strength: Do high-
degree (or strength) nodes tend to be linked to nodes that in turn have a
high degree or strength (assortativity) or they end up linked to low-degree
or low-strength ones (disassortativity)?

v"  How can we measure assortativity or disassortativity in a network?

(a) (b)

Assortative Disassortative
network network
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Average Nearest-Neighbor Degree (ANND)

e Node ANND in BUNs: Average degree of a node’s neighbors

—_O = = O D =
—_— O O O O N
OO = OO — (W
—_—0 O = O = |k
OO O O = O W
OO = O = =N

N DN BN

e Node 4 has k(i)=3 and its 3 neighbors are (1,3,6)
o k(1)=3, k(3)=2, k(6)=3
e Thus ANND(4)=(3+2+3)/3=8/3
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Average Nearest-Neighbor Degree/Strength

e Node ANND in BUNs: Average degree of a node’s neighbors

Zj aijkj B y:j y:h A5U45h B A(i)AlN

ANND, = _
k; ki AN

e Node ANNS in WUNs: Average strength of a node’s neighbors

ANNG — 223 %955 _ 245 2an %isWin _ AwWIiN
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ANND/ANNS in Directed Networks

e Total ANND or ANNS (d stands for degree)

annd.” = (di)~ Z (aj;d?" 4 a;;d) =
J

= (d;"")” Z (aji + aij)d;" =
= (di°")~ ZZ (aj; + ai;)(ajn + ap;) =

(AT +A) (AT + A

e Two additional dimensions to account for:
v Nearest neighbors may be either in-neighbors or out-neighbors

v Neighbors of nearest neighbors may be either in-neighbors or out-neighbors

NN NN NN NN\

AV G,

Out-Out Out-In In-Out In-In
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Homophily and Assortative Mixing (2)

e How can we measure assortativity or disassortativity in a network?

v Computing node-level correlation coefficient between ND and ANND
or NS and ANNS: are well connected nodes linked with nodes whose
neighbors are themselves well connected?

S covi{k;, ANND,} c =1, +1]
-~ o(k;) - 0c(ANND;) ’

v Computing link-level degree-degree or strength-strength correlation
coefficient. Let xi be a node-level statistics, i.e. degree or strength:

cov{z;, ;} _ D i S:j i (Ti — pa ) (@5 — pa)
02 () S:Z- ;:j ;i (T; — phe)?

T =
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Node Clustering (1)

e What is the likelihood that any two neighbors of a node are themselves
neighbors? Computing this likelihood is about counting triangles...

e Node 4 has k(i)=3: how many pairs of distinct neighbors can one count? It's
3*2/2=3. In general, k(i)(k(i)-1)/2 pairs can be formed out of k(i) neighbors.

e How many pairs of neighbors are themselves neighbors, i.e. how many
triangles are present in the neighborhood of node 4? 2 out of 3, because

(1,3) and (1,6) are neighbors, but (3,6) are not.
e Therefore the clustering coefficient of node 4 is 2/3
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Node Clustering (2)

e How can one compute starting from A if a certain triangle is closed?

If: a-a.a.=1 then triangle
(i,j,h) is closed

But triangles are cycles of order 3...
thus the number of triangles in i's
neighborhood is equal to the number
of 3-cycles starting and ending in i!

e The number of 3-cycles starting and ending in node i can be recovered
looking at the entry zi of the matrix Z=A3 and dividing that number by 2 (a
cycle i>j>h is different from i>h>j but is the same triangle). Thus:

C. % Sjj D i QiR (A%):
! Tki(k; — 1) ki(k; — 1)
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Clustering in WUNs

e How can one compute clustering coefficients in weighted undirected nets?

If: aj-an-an=1 then triangle
(i,j,h) is closed

Triangles must be weighted by their
total intensity of interactions, as
measured by some function of
(W‘J'l Wi, W“‘)

e There are many ways to weight a triangle, here’s one of the most used:

330 20 wif i wyp (W)
%/@-(ki —1) ki(ki — 1)

Cz(W) —

o Where (w/3h3 is the (i,i) entry of the matrix obtained first by raising all
entries of W to 1/3 and then by taking the 3-rd power
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Clustering in Directed Networks (1)

e Link directionality implies that there can be 8 different types of triangles and
4 classes that can be formed with node i as the reference node

O, )
/ \ /\ Cycles
® JORNOR ®
O, 0.
VAN out
® -0 @ 40,

(W) ()
®- © O- ®

O (&)
/\ /\ Middleman
®- ® © 40,
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Clustering in Directed Networks (2)

e CCin BDN and WDN (see Fagiolo, PRE, 2007)

Patterns

CCs for BDNs

CCs for WDNs
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Node Centrality

e Which are the most central nodes in a network?
v Depends on the definition of “centrality”... many difference measures

v Local node-centrality measures: take into account only the
neighborhood of a node to measure its centrality in the network

v Global node-centrality measures: account for the position of the node
in the whole network

e A simple and obvious local node-centrality measure

v' (Total) node degree (divided by N-1): a node is more (locally) central
if it is more connected (degree centrality)

p_ b
‘ N —1
v' Network centralization: How much centralized is the whole
network?

(max{k:} — k,
P = Z,(in(l I'I{A‘],} ) Value attained by the
C(f\" — 1)(1’\" — QD < numerator in a star

network with N nodes
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Network Centralization: Examples

e Regular networks (lattices, full networks) D _ > .(maxi{k;} — k)
(N =1)(N-=2)

v All nodes have the same degree, thus I'” = ()

e Star Networks

v There is 1 node (the center) with k=N-1 and N-1
nodes with k=1. Thus the numerator is equal to
(N-1)(N-2) and TP = 1 (check it)

e For the network below we have N=6 and
degrees equal to {3,2,2,3,1,3}, thus max
degree = 3 and:
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Node Closeness Centrality

e A node is more (globally) central the closer is on average to other nodes

1 1 - ¢; = ANPL

l; n Zj dij Zj s d;; = Distance between i and j

e Problems

v Geodesic distances in networks tend to be very small, hence CL tends
to span very small ranges, making it difficult to compare more and
less central nodes

v What if the network is not connected? Some distances become infinite
and closeness becomes zero. A solution: defining CL as the inverse of
the harmonic mean distance between nodes

1 1
CL, = —— ) —
’ N-l;dw
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Node Betweenness Centrality (1)

e A node is more (globally) central the more it lies on (geodesic) paths
connecting any other two nodes in the network

v Assume that (i) something flows through the network (message);
(ii) every pair of nodes exchange messages with equal probability per
unit time; (iii) messages always take the shortest path between any
two nodes (or choose one at random if there are several)

v" How many messages will be passed through a given node after a
suitably long period of time? A number proportional to the number of
geodesic paths the node lies on. This number is called betweenness
centrality (BC) of a node.

e Nodes with higher BC:
v" have higher influence because control flow (and might get paid for it)

v are crucial for the network: if they fail, most communication is
disrupted
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Node Betweenness Centrality (2)

e More formally

e Remarks:

4
4

<«

BCi:Zik

/ = # of geodesics from h to k passing through i

ok ghk \
= total # of geodesics from h to k

We count also geodesics from h to h, node i included; we count h to k separately from k to h

In undirected networks we count paths twice, but this is irrelevant as we are not interested in BC levels
but in rankings (who is more central)

Definition still applies in BDN and can be extended in WUN/WDN by appropriately weighting paths

The denominator g is needed to account for cases where there are more than one geodesic between h
and k

The maximum value of BC is attained by the center of a star network: it lies on all N? geodesics
between node pairs, except the N-1 paths between peripheral nodes to themselves. Thus
BC(center)=N?-(N-1). Prove it. Compute max when one only counts paths from any two nodes different
from i

What is the the minimum of BC? If the network is connected, then there must be at minimum: N-1
geodesics from all j#i to i; N-1 geodesics from i to all j#i; and a geodesic from i to i. Therefore
min(BC)=2(N-1)+1=2N-1. This happens to “leafs” in a network or peripheral nodes of a star (prove it).
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Eigenvector Centrality

® Main Idea

v Degree centrality awards to a given node one centrality point for
every neighbor it has. More generally: giving each node a score
proportional to the sum of the scores of its neighbors.

v Eigenvector node centrality: node centrality x is proportional to the
sum of centralities of its neighbors

X :)‘Zaiﬂj EX:AAX
J

v Hence x is an eigenvector of A. Usually we take the eigenvector
associated to the largest eigenvalue of A to ensure positive xs

v This is called Bonacich centrality: a node is more central either
because it has many neighbors or because it has important neighbors
(it is connected with nodes that count), or both
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Eigenvector Centrality in Digraphs

@ Problem #1

v If A is symmetric, there is only one eigenvector sequence. In digraphs
A is asymmetric, so there may be two ways to define centrality,
according to which type (inward or outward) of link contributes to
centrality

Ly — )\out E AijZEj Ly, — )\Zﬂ E Ajiili‘j
J J

v Example: in the WWW centrality depends on how many pages point
to you, not from the fact that you build a page that point to many
others... but in other networks it may not be so...
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Eigenvector Centrality in Digraphs

® Problem #2

v Any node who is in a chain of directed paths starting from a node who

has zero centrality score, will end up having zero centrality score as
well!

<\

/

Ly, — )\Zﬂ E Ajiﬂﬁj
J

Red node: no incoming links, so zero centrality

Green node: only one incoming link, but from a
zero-centrality node, thus zero centrality as well

v Only nodes that are in a strongly connected component (SCC) of two or

more vertices, or the out-component of such a component, can have
positive centrality scores

V' Acyclic networks? They have SCC of 1 node... only zero centrality nodes
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A First Solution

@ Katz Centrality Index

v Idea: assigning to every node a small initial (positive) centrality
bonus

J

v Setting the “bonus” equal to 1 for all and solving:

X =) NAx+1 X:(I—)\A)_ll

® Problems
v' How to set A?

v Centrality scores are passed via incoming links... so a highly influential
node with many outgoing links will give high centrality to all of them...
but received centrality should be smaller the more links are pointed...
if you are one among many you should receive less centrality....
Example: importance of a web page received from hubs in the WWW
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Google Page-Rank Centrality

o Diluting centrality scores from hubs
v Idea: rescaling induced centrality by out-degree

T
Xr; = )\ZAJ@ ij_Z/ut | 5
J

v Setting the “bonus” equal to 1 for all and solving:

x = AMAD 'x + 51 x=I-MAD 1)1

® How does Google search engine work?

v Searching using text queries and other methods in pre-assembled lists
of web pages

v Ranking pages according to a number of criteria, including Page-Rank
centrality: Google is not efficient in searching/finding but in ranking

v Setting A=0.85... Why?
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Hub and Authority Centrality (I)

® Problem

v' So far: Centrality scores can be received only through incoming
edges.

v Problem: in many cases (e.g., citation networks) nodes can be central
also if they point to many “selected” nodes

e (itation networks: review articles can be central because they
cite many other “influential” papers; influential papers can
become important because they are pointed by reviews

® Hubs and Authorities

v' Authorities: nodes that contain useful information, they are pointed by
many nodes, in particular by many hubs

v Hubs: nodes that tell us where authorities are located, they point to
many authorities

v A node can then have two measures of centrality and can be central
because it's a hub or an authority, or both!
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Hub and Authority Centrality (II)

® How to Compute Hub and Authority Centrality Scores?
v Assigning to each node an authority score (x) and a hub score (y)

v Authority score (x) depends on how many links a node receives from
nodes that have a (high) hub score

v Hub score (y) depends on how many nodes with a (high) autorithy
score a node points to

T; = @ZAjz’yj Yi = 521%‘%‘
J J
v Letting A=af and solving
x=(I-XATA) 11 y=(I-XAAT)11

v Authority (hub) scores are the eigenvectors of ATA (AAT) associated to
the same (largest) eigenvalue, which can be shown to exist
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The ITN

« Correlation structure among topological properties is stationary over time
and identifies a characteristic trade structure

 Fagiolo et al (2008, PHYSA; 2009, PRE)

1.0 : : :
X 5 s X X X XXX XXX s o XXXEX More-intensively connected countries are
0.8 1 more central and tend to form highly-
connected trade triangles

0.6 1 éééééééééxxxxxxxxxx
04 | OHOO0O0O0Ooopom
\ Countries with many trade partners do not
0.2 1 necessarily trade more intensively
0.0 -

Weighted WTW is only weakly disassortative:

021 / More-intensively connected countries tend to

A AANANANMN . . .
04{DAAALALLASALAALL trade with relatively less connected countries

Correlation

_06 i
-0.8 - Countries holding more partners tend to
101220200 Po e bbb b odrbdbg ¢ trade with countries with very few partners
1980 1985 1990 1995 2000 (strong disassortativity) and do not typically
Years form trade triangles
< ANND-ND CINS-ND A ANNS-NS
+BCC-ND X WCC-NS X RWBC-NS Binary WTW profoundly different

|:> from weighted WTW !
See Fagiolo et al, 2008, Physica A

Correlation Coefficients
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Rich-Club Coefficient

e Evaluating link concentration in networks

v Is there a (small) rich-club of tightly-connected nodes whose internal
connectivity accounts for a large percentage of total network
connections?

® Rich club coefficient (for BUN)
Rank nodes from the most to the least connected (in terms of ND)

Count the number of links in place between the first two, three, ...,
K, ... etc. most connected nodes

Plot how this number (divided by its maximum) varies with k

A correction is needed because this share is increasing also in purely
random networks

T R Y

RCC: ratio that is larger than one when the network displays rich-
club behavior
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Rich-Club Coefficient

2.0 2.0
_ Protein interactions _Internet
15 — 15—
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Rich-Club Coefficient in the ITN

2 1 T T T T
o Year=2000
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o 2 :
= = 0.8 95% Conf. Int. | .
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L 2 | /
5 2 |
S < 0.6 | .
3 = F
S <
S o4 S ',
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@ 2 0.2f o .
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0 10 20 50 100 159 1 2 345 10 20 50 159
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Rich-Club Coefficient: ITN vs IFN

Trade Total Assets
100 — - - - 100 — :
o Observed; year=2004 | o Observed; year=2004{|
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Community Structure (I)

e Detecting groups of tightly interconnected vertices
(Fortunato, 2009)

v In many networks the distribution of links is :
globally and locally inhomogeneous

v High concentration of links among special
groups of vertices, and low concentration of
links between these groups

e Community structure (CS) detection

v Identifying clusters or modules that due to
high inter-connectivity among them may
share common properties and/or play similar

roles \

v'  Definition of CS is not clear: therefore a 1
huge set of CS detection methods are !
available

v CS: Non-overlapping vs. overlapping

e Here: Non-overlapping CS detection via \
maximization of modularity function \

v Assigning each partition of the N nodes a
“Clua”ty" |nd|Cat0r Source: Fortunato (2009)
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Community Structure: Examples

Zig

Ripplefluke
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/T~
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FIG. 2 Community structure in social networks. a) Zachary’s karate club, a standard benchmark in community detection. The
colors correspond to the best partition found by optimizing the modularity of Newman and Girvan (Section VI.A). Reprinted
figure with permission from (Donetti and Munoz, 2004). (©2004 by IOP Publishing and SISSA. b) Collaboration network
between scientists working at the Santa Fe Institute. The colors indicate high level communities obtained by the algorithm
of Girvan and Newman (Section V.A) and correspond quite closely to research divisions of the institute. Further subdivisions
correspond to smaller research groups, revolving around project leaders. Reprinted figure with permission from (Girvan and
Newman, 2002). (©2002 by the National Academy of Science of the USA. ¢) Lusseau’s network of bottlenose dolphins. The
colors label the communities identified through the optimization of a modified version of the modularity of Newman and
Girvan, proposed by Arenas et al. (Arenas et al., 2008b) (Section XII.A). The partition matches the biological classification of
the dolphins proposed by Lusseau. Reprinted figure with permission from (Arenas et al., 2008b). (©2008 by IOP Publishing.

Source: Fortunato (2009)
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Community Structure (II)

e Consider one of all possible partitions of the N nodes of the network. Let this
partition be C={C;,...,C«}. To evaluate how good this partition is we can
compute the function:

Q= — > (Aij — Pij) 6(Ci, Cy)

2m

1]
where: i,j=1,...,,N, Ai are the entries of the adjacency matrix; Pirepresents

the expected number of edges between i and j; m is the total number of
links; and 0 yields one if i and j are in the same community, zero otherwise

e Suppose that the probability of connection between i and j is proportional to
the product of ki and kj. Thus the expected number of links between i and ]
is equal to ki*ki/2m (prove it). This is the configuration model that we will
study in Lecture 6. Then the modularity function becomes:

1 kik,
Q=5 2 (45 Gt ) €10
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Community Structure (III)

e Grouping all contributions that come from the same community together, the
modularity function can be rewritten as

Q_Cil [ZE N <2d;z>2]

where now n.=Kk, ¢ spans all clusters in C, I is total number of links joining
nodes of cluster ¢, and dc is the sum of degrees of nodes in cluster c

e Modularity maximization: since high values of Q indicate good partitions (as
compared to the null model), then finding the max of Q over the space of all
partitions would yield the best one

e Unfortunately maximizing Q is impossible: it is an NP-complete problem. No
fast solution is known and there is no known efficient way to locate a
solution

e That is, the time required to solve the problem using any currently known
algorithm increases very quickly as the size of the problem grows.
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Community Structure (IV)

e What is the number of all partitions of a set of N units? They are known as
Bell's numbers and grow very quickly as N increases

o

log(Bell Number)
= = N N w
(9] o (9] o (9]

o

e Therefore modularity maximization needs clever optimization algorithms to
deliver solutions (greedy techniques, simulated annealing, genetic algorithms)

e Extensions of modularity to the case of weighted directed networks are
possible
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Community Structures (CS) in the ITN

FIG. 2. World map showing communities of aggregate ITN in 2003. In gray countries not belonging to
any community or for which no data are available.



Commodity-Specific CS

(c)Mineral fuels ¢ = 27. (d)Organic chemicals ¢ = 29.

Year: 2003



Community Structure, Geography, and RTAs

® (Can geography and RTAs be employed as good predictors of
trade-detected communities!?

® Using NMI to compare trade communities with those deteced

optimizing modulairty of geographical closeness matrix (S) and
RTA matrices (M)

(a)RTAs. (b)Distances.
in 2003



Community Structure, Geography, and RTAs

Results for aggregate ITN

Increasing NMls across time until
2001 and a slight decrease afterwards

More similarity between aggregate
trade and geography based
communities with respect to
communities determined by RTAs:
geographically-related factors seem
to explain the pattern of global trade
more than political agreements

Similar results apply for the
commodity-specific case

Year

1990 1992 1994 1996 1998 2000 2002 2004

These results reinforce the traditional view put forth by standard gravity-equation trade em-
pirics, which stresses the importance of geographical distance in determining bilateral trade
flows (much more than trade agreements, whose impact is mixed, see Rose, 2004)

Here: geographical distance is important to predict not only the expected flow of a bilateral
trade relationship, but also the formation of trade communities, that is complicated trade

structures multilaterally involving groups of countries.

-



Simplifying Dense Weighted Networks

e \What if the network is very dense (i.e. L very large as compared to N)?
Visualization may suffer as too many links must be drawn

v'  Draw links only if their weight is larger than a given threshold (quantile of the distribution,
e.g. only top x% of links are drawn according to their weight)

v"  Use more sophisticated techniques, as the mimimal spanning tree (MST)

e MST: Transforms a symmetric graph into a tree, thus allowing for a meaningful
simplification (cycles are removed)

Transform link weights wij into a proper similarity measure sij (1-sij must be a distance)
Build a list of all vertices pairs by ranking all sij on a descending order
Draw a link (with weight equal to sij) between the first two vertices in the list

Proceed with the second pair in the list

A o

From the third onward, if by drawing a link we close a cycle we remove that entry in the
list and we proceed along the list (or, similarly, do not add pairs containing nodes that
have been both previously added)

6. Stop when all the vertices have been drawn (if the graph is complete the MST will contain
N-1 links)
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Simplifying Dense Weighted Networks
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The International Trade Network in 2000. Source: Fagiolo (2010).
All existing links are drawn with their own weight.
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Simplifying Dense Weighted Networks
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The MST for the International Trade Network in 2000. Source: Fagiolo (2010).
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What’s Next

® What is a network? Examples of networks

® Why networks are important for economists!?

® Networks and graphs

® Measures and metrics on networks

® Distributions of metrics and measures in large networks
® Models of network formation

® Null statistical network models

® Economic applications
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Social vs. Complex Network Analysis

e Social Network Analysis (SNA: Wasserman and Faust, 1994)

y

4

Small networks size, data often obtained through questionnaires or
experiments (N<100)

Fields: Sociology, Psychology, Economics (see Borgatti et al., Science, Vol.
323, February 2009)

e Complex Network Analysis (CNA, Newman, 2010)

y

4

Large network size, data often retrieved automatically from large
databases (Internet, WTW, biological nets, large social networks, etc.)

Fields: Physics, Biology, Computer Science, Economics (see Schweitzer,
Fagiolo, et al., Science, Vol. 325, July 2009)

e Different goals

y
4

SNA: node behavior, mostly descriptive analysis (no models)

CNA: network statistical properties, mostly quantitative (comparison with
models), focus on distributional properties of node- (and link)-specific
statistics and their dynamics over time
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Node-Specific Statistic Distributions

e
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Time-t node-distribution for X

> Distribution dynamics : f(Xt), t=1,2,...,T




Distributions in Complex Networks

e If the network is large enough (many nodes, many links) , one can
characterize heterogeneity in

v Node-specific statistics: degrees, strengths, etc.
v Link-specific statistics: link weights

e Underlying homogeneity assumption
v Node-specific observations x; are i.i.d. draws from the same RV

v Often not true, but cf. firm size and growth distributions, etc.:
homogeneity assumptions are necessary in economics and (time-series)
econometrics

e Stylized facts

v ND distributions: Poisson (friendship networks, cf. Dunbar’s number) vs.
Power-Law (Internet, the WWW)

v' Strength distributions: Log-normal, maybe with power law tail (ITN)
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ND Distribution in Real Networks
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ND Distribution in Real Networks

Internet, router level  Actor collaboration
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R. Govindan, H. Tangmunarunkit, IEEE Infocom (2000)
A.-L. Barabasi, R. Albert, Science 286, 509 (1999)
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ND Distribution and Network Topology

3 =
o o
(@)
ke,

AL Y
B NP
‘\..\_\ ", 4 . . .'_I
L L B B
.i‘\'. I '*E‘E%" P -

at e
o_:\\:.__d R e /AT

Wi

s

S II|
A = JAN
o AT S BTN N
AV 1 ol f Y
{ \ \_\ \

R
1)
Ey o A T
WIS Tfll .
| ." oL e
®see # J.h .

e The average degree gives the characteristic e Large variability, the average degree is not
scale (value) of the degree informative, no characteristic scale for the

degree (scale-free)
e All nodes are on average linked to the

same number of other nodes e There are nodes (hubs) that are connected
with a number of other nodes that is order-

of-magnitudes larger than that of nodes in
the left tail
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The ITN
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Log(NS) in yeart

Globalization?
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What’s Next

® What is a network? Examples of networks

® Why networks are important for economists!?

® Networks and graphs

® Measures and metrics on networks

® Distributions of metrics and measures in large networks
® Modeling Networks

® Economic applications
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