Economic Networks

Theory and Applications

Giorgio Fagiolo

Laboratory of Economics and Management (LEM) Sant'Anna School of Advanced Studies, Pisa, Italy
http://www.lem.sssup.it/fagiolo/
giorgio.fagiolo@sssup.it

Metrics and Distributions

What's Next

- What is a network? Examples of networks
- Why networks are important for economists?
- Networks and graphs
- Measures and metrics on networks
- Distributions of metrics and measures in large networks
- Modeling Networks
- Economic applications

Why Network Statistics?

- Visualization may be useful but often is not enough
\checkmark Large (many nodes) and dense networks (many links)
\checkmark Are two networks similar or different?
- Goal: Characterize networks by means of a set of statistics that capture graph-theoretic properties (topology)
\checkmark Network-wide indicators: one value attached to the network
\checkmark Node-specific indicators: one value attached to any single node
\checkmark Link-specific indicators: one value attached to any single link
- Main problems:
\checkmark How can one tell whether a value of a statistic computed on a given network is large or small?
\checkmark Comparing statistics across different networks or time snapshots

Density

- Network density: fraction of existing links (L) over all possible links

$$
\begin{aligned}
& d=\frac{2 L}{N(N-1)}=\frac{2 \sum_{i>j} a_{i j}}{N(N-1)} \\
& d=\frac{L}{N(N-1)}=\frac{\sum_{i, j} a_{i j}}{N(N-1)}
\end{aligned}
$$

- Densities range from 0 (empty graph) to 1 (complete graph)
- Bilateral density in a BDN: fraction of reciprocated links (L)

$$
r=\frac{\operatorname{tr}\left(A^{2}\right)}{N(N-1)}=\frac{\sum_{i, j} a_{i j} a_{j i}}{N(N-1)}
$$

Components: Number and Size Distribution

- Number of connected components in the graph
- Size distribution of connected components

> 10 components
> $s(1)=3$
> $s(2)=3$
> $s(3)=1$
> $s(4)=2$
> $s(5)=1$

- Extensions to digraphs: weakly and strongly connected components

Diameter, Distances, and Length

- Path length matrix: A symmetric NxN matrix L whose generic element $l(i, j)$ is the path length (length of geodesic path) between i and j
- Diameter of a graph (D): length of the longest geodesic path between any pair of nodes, i.e. max among all l(i,j)

$\mathrm{A}=$| | 1 | 2 | 3 | 4 | 5 | 6 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 0 | 0 | 1 | 1 | 0 | 1 |
| 2 | 0 | 0 | 0 | 0 | 1 | 1 |
| 3 | 1 | 0 | 0 | 1 | 0 | 0 |
| 4 | 1 | 0 | 1 | 0 | 0 | 1 |
| 5 | 0 | 1 | 0 | 0 | 0 | 0 |
| 6 | 1 | 1 | 0 | 1 | 0 | 0 |

$$
L=\begin{array}{c|cccccc}
& 1 & 2 & 3 & 4 & 5 & 6 \\
\hline 1 & 0 & 2 & 1 & 1 & 3 & 1 \\
2 & 2 & 0 & 3 & 2 & 1 & 1 \\
3 & 1 & 3 & 0 & 1 & 4 & 2 \\
4 & 1 & 2 & 1 & 0 & 3 & 1 \\
5 & 3 & 1 & 4 & 3 & 0 & 2 \\
6 & 1 & 1 & 2 & 1 & 2 & 0
\end{array}
$$

$\mathrm{D}=4$

- Extensions of path length to WUN/WDN do exist

Average Path Length

- Given a path length matrix L, we can compute the average node path length simply as:

$$
A N P L_{i}=\frac{\sum_{j \in J_{i}} l_{i j}}{\left|J_{i}\right|} \quad J_{i}=\left\{j=1, \ldots, N, j \neq i: l_{i j}<\infty\right\}
$$

- The average path length of the graph is the average of all ANPLi

$$
\mathrm{A}=\begin{array}{c|cccccc}
& 1 & 2 & 3 & 4 & 5 & 6 \\
\hline 1 & 0 & 0 & 1 & 1 & 0 & 1 \\
2 & 0 & 0 & 0 & 0 & 1 & 1 \\
3 & 1 & 0 & 0 & 1 & 0 & 0 \\
4 & 1 & 0 & 1 & 0 & 0 & 1 \\
5 & 0 & 1 & 0 & 0 & 0 & 0 \\
6 & 1 & 1 & 0 & 1 & 0 & 0
\end{array}
$$

$$
\mathbf{L}=\begin{array}{c|cccccc}
& 1 & 2 & 3 & 4 & 5 & 6 \\
\hline 1 & 0 & 2 & 1 & 1 & 3 & 1 \\
2 & 2 & 0 & 3 & 2 & 1 & 1 \\
3 & 1 & 3 & 0 & 1 & 4 & 2 \\
4 & 1 & 2 & 1 & 0 & 3 & 1 \\
5 & 3 & 1 & 4 & 3 & 0 & 2 \\
6 & 1 & 1 & 2 & 1 & 2 & 0
\end{array}
$$

$$
\begin{aligned}
& \text { ANPL }(1)=8 / 5 \\
& \text { ANPL }(2)=9 / 5 \\
& \text { ANPL(3) }=11 / 5 \\
& \text { ANPL(4)=8/5 } \\
& \text { ANPL(5)=13/5 } \\
& \text { ANPL }(6)=7 / 5
\end{aligned}
$$

$$
A P L=56 /(6 * 5)=28 / 15 \cong 1.8667
$$

Shortest Paths and Breadth-First Search (1)

- How can we find shortest paths and components?
\checkmark Naive implementation of a simple algorithm (breadth-first search, BFS)
\checkmark More sophisticated implementations and algorithms are possible
- BFS: finds shortest distance from a given starting node s to every other node in the same component as s
\checkmark We know s has $d=0$ from itself
\checkmark Find all neighbors of s: they have distance 1 from s
\checkmark Find all neighbors of neighbors of s excluding those we have already visited: they are distance $=2$ from s
\checkmark... Go on with the cycle by growing on each the set of visited node by one step

Node Degrees (BUN, BDN)

- Binary undirected: Node degree=number of links of a node

$$
k_{i}=\sum_{j=1}^{N} a_{i j}=A_{(i)} \mathbf{1}_{\mathbf{N}}=A_{(i)}^{T} \mathbf{1}_{\mathbf{N}}
$$

- Binary directed:
\checkmark Node in-degree=number of incoming links of a node
\checkmark Node out-degree=number of outcoming links of a node
\checkmark Node total degree=Node in-degree+Node out-degree

$$
\begin{gathered}
k_{i}^{i n}=\sum_{j=1}^{N} a_{j i}=A_{(i)}^{T} \mathbf{1}_{\mathbf{N}} \quad k_{i}^{o u t}=\sum_{j=1}^{N} a_{i j}=A_{(i)} \mathbf{1}_{\mathbf{N}} \\
k_{i}^{t o t}=\sum_{j=1}^{N}\left(a_{i j}+a_{j i}\right)=\left(A_{(i)}+A_{(i)}^{T}\right) \mathbf{1}_{\mathbf{N}}
\end{gathered}
$$

Node Strength (WUN, WDN)

- Weighted undirected: Node strength=sum of link weights of a node

$$
s_{i}=\sum_{j=1}^{N} w_{i j}=W_{(i)} \mathbf{1}_{\mathbf{N}}=W_{(i)}^{T} \mathbf{1}_{\mathbf{N}}
$$

- Weighted directed:
\checkmark Node in-strength=sum of incoming link weights of a node
\checkmark Node out-strength=sum of outcoming link weights of a node
\checkmark Node total strength=Node in-strength+Node out-strength

$$
\begin{gathered}
s_{i}^{i n}=\sum_{j=1}^{N} w_{j i}=W_{(i)}^{T} \mathbf{1}_{\mathbf{N}} \quad s_{i}^{\text {out }}=\sum_{j=1}^{N} w_{i j}=W_{(i)} \mathbf{1}_{\mathbf{N}} \\
s_{i}^{\text {tot }}=\sum_{j=1}^{N}\left(w_{i j}+w_{j i}\right)=\left(W_{(i)}+W_{(i)}^{T}\right) \mathbf{1}_{\mathbf{N}}
\end{gathered}
$$

Homophily and Assortative Mixing (1)

- Nodes have tendency to link to other nodes with similar characteristics
\checkmark Node-specific characteristics other than network-related (e.g. people form links in a social network if they are similar according to age, nationality, language, income, education level, etc.)
\checkmark Node-specific network characteristics, e.g. degree or strength: Do highdegree (or strength) nodes tend to be linked to nodes that in turn have a high degree or strength (assortativity) or they end up linked to low-degree or low-strength ones (disassortativity)?
\checkmark How can we measure assortativity or disassortativity in a network?

Average Nearest-Neighbor Degree (ANND)

- Node ANND in BUNs: Average degree of a node's neighbors

$\mathbf{A}=$| | 1 | 2 | 3 | 4 | 5 | 6 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 0 | 0 | 1 | 1 | 0 | 1 |
| 2 | 0 | 0 | 0 | 0 | 1 | 1 |
| 3 | 1 | 0 | 0 | 1 | 0 | 0 |
| 4 | 1 | 0 | 1 | 0 | 0 | 1 |
| 5 | 0 | 1 | 0 | 0 | 0 | 0 |
| 6 | 1 | 1 | 0 | 1 | 0 | 0 |

- Node 4 has $k(i)=3$ and its 3 neighbors are $(1,3,6)$
- $k(1)=3, k(3)=2, k(6)=3$
- Thus ANND $(4)=(3+2+3) / 3=8 / 3$

Average Nearest-Neighbor Degree/Strength

- Node ANND in BUNs: Average degree of a node's neighbors

$$
A N N D_{i}=\frac{\sum_{j} a_{i j} k_{j}}{k_{i}}=\frac{\sum_{j} \sum_{h} a_{i j} a_{j h}}{k_{i}}=\frac{A_{(i)} A \mathbf{1}_{\mathbf{N}}}{A_{(i)} \mathbf{1}_{\mathbf{N}}}
$$

- Node ANNS in WUNs: Average strength of a node's neighbors

$$
A N N S_{i}=\frac{\sum_{j} a_{i j} s_{j}}{k_{i}}=\frac{\sum_{j} \sum_{h} a_{i j} w_{j h}}{k_{i}}=\frac{A_{(i)} W \mathbf{1}_{\mathbf{N}}}{A_{(i)} \mathbf{1}_{\mathbf{N}}}
$$

ANND/ANNS in Directed Networks

- Total ANND or ANNS (d stands for degree)

$$
\begin{array}{r}
\text { annd }_{i}^{\text {tot }}=\left(d_{i}^{\text {tot }}\right)^{-1} \sum_{j}\left(a_{j i} d_{j}^{\text {tot }}+a_{i j} d_{j}^{\text {tot }}\right)= \\
=\left(d_{i}^{\text {tot }}\right)^{-1} \sum_{j}\left(a_{j i}+a_{i j}\right) d_{j}^{\text {tot }}= \\
=\left(d_{i}^{\text {tot }}\right)^{-1} \sum_{j} \sum_{h}\left(a_{j i}+a_{i j}\right)\left(a_{j h}+a_{h j}\right)= \\
=\frac{\left(A^{T}+A\right)_{(i)}\left(A^{T}+A\right) \mathbf{1}}{\left(A^{T}+A\right)_{(i)} \mathbf{1}}
\end{array}
$$

- Two additional dimensions to account for:
\checkmark Nearest neighbors may be either in-neighbors or out-neighbors
\checkmark Neighbors of nearest neighbors may be either in-neighbors or out-neighbors

Out-Out

Out-In

In-Out

In-In

Homophily and Assortative Mixing (2)

- How can we measure assortativity or disassortativity in a network?
\checkmark Computing node-level correlation coefficient between ND and ANND or NS and ANNS: are well connected nodes linked with nodes whose neighbors are themselves well connected?

$$
m=\frac{\operatorname{cov}\left\{k_{i}, A N N D_{i}\right\}}{\sigma\left(k_{i}\right) \cdot \sigma\left(A N N D_{i}\right)} \in[-1,+1]
$$

\checkmark Computing link-level degree-degree or strength-strength correlation coefficient. Let x_{i} be a node-level statistics, i.e. degree or strength:

$$
r=\frac{\operatorname{cov}\left\{x_{i}, x_{j}\right\}}{\sigma^{2}(x)}=\frac{\sum_{i} \sum_{j} a_{i j}\left(x_{i}-\mu_{x}\right)\left(x_{j}-\mu_{x}\right)}{\sum_{i} \sum_{j} a_{i j}\left(x_{i}-\mu_{x}\right)^{2}}
$$

Node Clustering (1)

- What is the likelihood that any two neighbors of a node are themselves neighbors? Computing this likelihood is about counting triangles...

- Node 4 has $k(i)=3$: how many pairs of distinct neighbors can one count? It's $3 * 2 / 2=3$. In general, $k(i)(k(i)-1) / 2$ pairs can be formed out of $k(i)$ neighbors.
- How many pairs of neighbors are themselves neighbors, i.e. how many triangles are present in the neighborhood of node 4? 2 out of 3, because $(1,3)$ and $(1,6)$ are neighbors, but $(3,6)$ are not.
- Therefore the clustering coefficient of node 4 is $2 / 3$

Node Clustering (2)

- How can one compute starting from A if a certain triangle is closed?

If: $a_{n} \cdot a_{n} \cdot a_{n}=1$ then triangle ($\mathrm{i}, \mathrm{j}, \mathrm{h}$) is closed

But triangles are cycles of order 3... thus the number of triangles in i's neighborhood is equal to the number of 3 -cycles starting and ending in i!

- The number of 3 -cycles starting and ending in node i can be recovered looking at the entry Zii of the matrix $\mathrm{Z}=\mathrm{A}^{3}$ and dividing that number by 2 (a cycle $i>j>h$ is different from $i>h>j$ but is the same triangle). Thus:

$$
C_{i}=\frac{\frac{1}{2} \sum_{j} \sum_{h} a_{i j} a_{i h} a_{j h}}{\frac{1}{2} k_{i}\left(k_{i}-1\right)}=\frac{\left(A^{3}\right)_{i i}}{k_{i}\left(k_{i}-1\right)}
$$

Clustering in WUNs

- How can one compute clustering coefficients in weighted undirected nets?

> If: $a_{\mathrm{ij}} \cdot a_{\mathrm{jh}} \cdot a_{\mathrm{nh}}=1$ then triangle $(\mathrm{i}, \mathrm{j}, \mathrm{h})$ is closed

Triangles must be weighted by their total intensity of interactions, as measured by some function of $\left(W_{i}, W_{n}, W_{n}\right)$

- There are many ways to weight a triangle, here's one of the most used:

$$
C_{i}(W)=\frac{\frac{1}{2} \sum_{i} \sum_{j} w_{i j}^{1 / 3} w_{i h}^{1 / 3} w_{j h}^{1 / 3}}{\frac{1}{2} k_{i}\left(k_{i}-1\right)}=\frac{\left(W^{[1 / 3]}\right)_{i i}^{3}}{k_{i}\left(k_{i}-1\right)}
$$

- Where $\left(W^{[1 / 3]}\right)_{i i}^{3}$ is the (i, i) entry of the matrix obtained first by raising all entries of W to $1 / 3$ and then by taking the 3 -rd power

Clustering in Directed Networks (1)

- Link directionality implies that there can be 8 different types of triangles and 4 classes that can be formed with node i as the reference node

Out

In

Middleman

Clustering in Directed Networks (2)

- CC in BDN and WDN (see Fagiolo, PRE, 2007)

Node Centrality

- Which are the most central nodes in a network?
\checkmark Depends on the definition of "centrality"... many difference measures
\checkmark Local node-centrality measures: take into account only the neighborhood of a node to measure its centrality in the network
\checkmark Global node-centrality measures: account for the position of the node in the whole network
- A simple and obvious local node-centrality measure
\checkmark (Total) node degree (divided by $\mathrm{N}-1$): a node is more (locally) central if it is more connected (degree centrality)

$$
\Gamma_{i}^{D}=\frac{k_{i}}{N-1}
$$

\checkmark Network centralization: How much centralized is the whole network?

$$
\Gamma^{D}=\frac{\sum_{i}\left(\max _{j}\left\{k_{j}\right\}-k_{i}\right)}{(N-1)(N-2))} \longleftarrow \quad \begin{gathered}
\text { Value attained by the } \\
\text { numerator in a star } \\
\text { network with } \mathrm{N} \text { nodes }
\end{gathered}
$$

Network Centralization: Examples

- Regular networks (lattices, full networks)
\checkmark All nodes have the same degree, thus $\Gamma^{D}=0$

$$
\Gamma^{D}=\frac{\sum_{i}\left(\max _{j}\left\{k_{j}\right\}-k_{i}\right)}{(N-1)(N-2)}
$$

- Star Networks
\checkmark There is 1 node (the center) with $\mathrm{k}=\mathrm{N}-1$ and $\mathrm{N}-1$ nodes with $\mathrm{k}=1$. Thus the numerator is equal to $(\mathrm{N}-1)(\mathrm{N}-2)$ and $\Gamma^{D}=1$ (check it)

- For the network below we have $\mathrm{N}=6$ and degrees equal to $\{3,2,2,3,1,3\}$, thus max degree = 3 and:

$$
\Gamma^{D}=\frac{(3-2)+(3-2)+(3-1)}{5 \cdot 4}=\frac{4}{20}=\frac{1}{5}
$$

Node Closeness Centrality

- A node is more (globally) central the closer is on average to other nodes

$$
C L_{i}=\frac{1}{\ell_{i}}=\frac{1}{\frac{1}{n} \sum_{j} d_{i j}}=\frac{n}{\sum_{j} d_{i j}} \quad \begin{aligned}
& \ell_{i}=\text { ANPL } \\
& d_{i j}=\text { Distance between } \mathrm{i} \text { and } \mathrm{j}
\end{aligned}
$$

- Problems
\checkmark Geodesic distances in networks tend to be very small, hence CL tends to span very small ranges, making it difficult to compare more and less central nodes
\checkmark What if the network is not connected? Some distances become infinite and closeness becomes zero. A solution: defining CL as the inverse of the harmonic mean distance between nodes

$$
C L_{i}^{\prime}=\frac{1}{N-1} \sum_{j \neq i} \frac{1}{d_{i j}}
$$

Node Betweenness Centrality (1)

- A node is more (globally) central the more it lies on (geodesic) paths connecting any other two nodes in the network
\checkmark Assume that (i) something flows through the network (message); (ii) every pair of nodes exchange messages with equal probability per unit time; (iii) messages always take the shortest path between any two nodes (or choose one at random if there are several)
\checkmark How many messages will be passed through a given node after a suitably long period of time? A number proportional to the number of geodesic paths the node lies on. This number is called betweenness centrality (BC) of a node.
- Nodes with higher BC:
\checkmark have higher influence because control flow (and might get paid for it)
\checkmark are crucial for the network: if they fail, most communication is disrupted

Node Betweenness Centrality (2)

- More formally

$$
B C_{i}=\sum_{h, k} \frac{\nu_{h k}^{i}}{g_{h k}}=\text { \# of geodesics from } \mathrm{h} \text { to } \mathrm{k} \text { passing through } \mathrm{i}
$$

- Remarks:
\checkmark We count also geodesics from h to h, node i included; we count h to k separately from k to h
\checkmark In undirected networks we count paths twice, but this is irrelevant as we are not interested in BC levels but in rankings (who is more central)
\checkmark Definition still applies in BDN and can be extended in WUN/WDN by appropriately weighting paths
$\checkmark \quad$ The denominator g is needed to account for cases where there are more than one geodesic between h and k
\checkmark The maximum value of BC is attained by the center of a star network: it lies on all N^{2} geodesics between node pairs, except the $\mathrm{N}-1$ paths between peripheral nodes to themselves. Thus $B C$ (center) $=\mathrm{N}^{2}-(\mathrm{N}-1)$. Prove it. Compute max when one only counts paths from any two nodes different from i
$\checkmark \quad$ What is the the minimum of $B C$? If the network is connected, then there must be at minimum: $N-1$ geodesics from all $j \neq i$ to $i ; N-1$ geodesics from i to all $j \neq i$; and a geodesic from i to i. Therefore $\min (B C)=2(N-1)+1=2 N-1$. This happens to "leafs" in a network or peripheral nodes of a star (prove it).

Eigenvector Centrality

- Main Idea
\checkmark Degree centrality awards to a given node one centrality point for every neighbor it has. More generally: giving each node a score proportional to the sum of the scores of its neighbors.
\checkmark Eigenvector node centrality: node centrality x is proportional to the sum of centralities of its neighbors

$$
x_{i}=\lambda \sum_{j} a_{i j} x_{j} \Rightarrow \mathbf{x}=\lambda \mathbf{A} \mathbf{x}
$$

\checkmark Hence \mathbf{x} is an eigenvector of A. Usually we take the eigenvector associated to the largest eigenvalue of A to ensure positive $\mathbf{x s}$
\checkmark This is called Bonacich centrality: a node is more central either because it has many neighbors or because it has important neighbors (it is connected with nodes that count), or both

Eigenvector Centrality in Digraphs

- Problem \#1
\checkmark If A is symmetric, there is only one eigenvector sequence. In digraphs A is asymmetric, so there may be two ways to define centrality, according to which type (inward or outward) of link contributes to centrality

$$
x_{i}=\lambda^{\text {out }} \sum_{j} A_{i j} x_{j} \quad x_{i}=\lambda^{i n} \sum_{j} A_{j i} x_{j}
$$

\checkmark Example: in the WWW centrality depends on how many pages point to you, not from the fact that you build a page that point to many others... but in other networks it may not be so...

Eigenvector Centrality in Digraphs

- Problem \#2
\checkmark Any node who is in a chain of directed paths starting from a node who has zero centrality score, will end up having zero centrality score as well!

$$
x_{i}=\lambda^{i n} \sum_{j} A_{j i} x_{j}
$$

Red node: no incoming links, so zero centrality

Green node: only one incoming link, but from a zero-centrality node, thus zero centrality as well
\checkmark Only nodes that are in a strongly connected component (SCC) of two or more vertices, or the out-component of such a component, can have positive centrality scores
\checkmark Acyclic networks? They have SCC of 1 node... only zero centrality nodes

A First Solution

- Katz Centrality Index
\checkmark Idea: assigning to every node a small initial (positive) centrality bonus

$$
x_{i}=\lambda \sum_{j} A_{j i} x_{j}+\beta
$$

\checkmark Setting the "bonus" equal to 1 for all and solving:

$$
\mathbf{x}=\lambda \mathbf{A} \mathbf{x}+\mathbf{1} \quad \mathbf{x}=(\mathbf{I}-\lambda \mathbf{A})^{-\mathbf{1}} \mathbf{1}
$$

- Problems
\checkmark How to set λ ?
\checkmark Centrality scores are passed via incoming links... so a highly influential node with many outgoing links will give high centrality to all of them... but received centrality should be smaller the more links are pointed... if you are one among many you should receive less centrality.... Example: importance of a web page received from hubs in the WWW

Google Page-Rank Centrality

- Diluting centrality scores from hubs
\checkmark Idea: rescaling induced centrality by out-degree

$$
x_{i}=\lambda \sum_{j} A_{j i} \frac{x_{j}}{k_{j}^{\text {out }}}+\beta
$$

\checkmark Setting the "bonus" equal to 1 for all and solving:

$$
\mathbf{x}=\lambda \mathbf{A} \mathbf{D}^{-\mathbf{1}} \mathbf{x}+\beta \mathbf{1} \quad \mathbf{x}=\left(\mathbf{I}-\lambda \mathbf{A} \mathbf{D}^{-\mathbf{1}}\right)^{-\mathbf{1}} \mathbf{1}
$$

- How does Google search engine work?
\checkmark Searching using text queries and other methods in pre-assembled lists of web pages
\checkmark Ranking pages according to a number of criteria, including Page-Rank centrality: Google is not efficient in searching/finding but in ranking
\checkmark Setting $\lambda=0.85 .$. Why?

Hub and Authority Centrality (I)

- Problem
\checkmark So far: Centrality scores can be received only through incoming edges.
\checkmark Problem: in many cases (e.g., citation networks) nodes can be central also if they point to many "selected" nodes
- Citation networks: review articles can be central because they cite many other "influential" papers; influential papers can become important because they are pointed by reviews
- Hubs and Authorities
\checkmark Authorities: nodes that contain useful information, they are pointed by many nodes, in particular by many hubs
\checkmark Hubs: nodes that tell us where authorities are located, they point to many authorities
\checkmark A node can then have two measures of centrality and can be central because it's a hub or an authority, or both!

Hub and Authority Centrality (II)

- How to Compute Hub and Authority Centrality Scores?
\checkmark Assigning to each node an authority score (x) and a hub score (y)
\checkmark Authority score (x) depends on how many links a node receives from nodes that have a (high) hub score
\checkmark Hub score (y) depends on how many nodes with a (high) autorithy score a node points to

$$
x_{i}=\alpha \sum_{j} A_{j i} y_{j}
$$

$$
y_{i}=\beta \sum_{j} A_{i j} x_{j}
$$

\checkmark Letting $\lambda=a \beta$ and solving

$$
\mathbf{x}=\left(\mathbf{I}-\lambda \mathbf{A}^{\mathbf{T}} \mathbf{A}\right)^{-\mathbf{1}} \mathbf{1} \quad \mathbf{y}=\left(\mathbf{I}-\lambda \mathbf{A} \mathbf{A}^{\mathbf{T}}\right)^{-\mathbf{1}} \mathbf{1}
$$

\checkmark Authority (hub) scores are the eigenvectors of $\mathrm{A}^{\top} \mathrm{A}\left(\mathrm{AA}^{\top}\right)$ associated to the same (largest) eigenvalue, which can be shown to exist

The ITN

- Correlation structure among topological properties is stationary over time and identifies a characteristic trade structure
- Fagiolo et al (2008, PHYSA; 2009, PRE)

Rich-Club Coefficient

- Evaluating link concentration in networks
\checkmark Is there a (small) rich-club of tightly-connected nodes whose internal connectivity accounts for a large percentage of total network connections?
- Rich club coefficient (for BUN)
\checkmark Rank nodes from the most to the least connected (in terms of ND)
\checkmark Count the number of links in place between the first two, three, ..., k, ... etc. most connected nodes
\checkmark Plot how this number (divided by its maximum) varies with k
\checkmark A correction is needed because this share is increasing also in purely random networks
\checkmark RCC: ratio that is larger than one when the network displays richclub behavior

Rich-Club Coefficient

Rich-Club Coefficient in the ITN

Binary

Weighted

Rich-Club Coefficient: ITN vs IFN

IFN

Community Structure (I)

- Detecting groups of tightly interconnected vertices (Fortunato, 2009)
\checkmark In many networks the distribution of links is globally and locally inhomogeneous
\checkmark High concentration of links among special groups of vertices, and low concentration of links between these groups
- Community structure (CS) detection
\checkmark Identifying clusters or modules that due to high inter-connectivity among them may share common properties and/or play similar roles
\checkmark Definition of CS is not clear: therefore a huge set of CS detection methods are available
\checkmark CS: Non-overlapping vs. overlapping
- Here: Non-overlapping CS detection via maximization of modularity function
\checkmark Assigning each partition of the N nodes a "quality" indicator

Source: Fortunato (2009)

Community Structure: Examples

FIG. 2 Community structure in social networks. a) Zachary's karate club, a standard benchmark in community detection. The colors correspond to the best partition found by optimizing the modularity of Newman and Girvan (Section VI.A). Reprinted figure with permission from (Donetti and Muñoz, 2004). ©2004 by IOP Publishing and SISSA. b) Collaboration network between scientists working at the Santa Fe Institute. The colors indicate high level communities obtained by the algorithm of Girvan and Newman (Section V.A) and correspond quite closely to research divisions of the institute. Further subdivisions correspond to smaller research groups, revolving around project leaders. Reprinted figure with permission from (Girvan and Newman, 2002). © 2002 by the National Academy of Science of the USA. c) Lusseau's network of bottlenose dolphins. The colors label the communities identified through the optimization of a modified version of the modularity of Newman and Girvan, proposed by Arenas et al. (Arenas et al., 2008b) (Section XII.A). The partition matches the biological classification of the dolphins proposed by Lusseau. Reprinted figure with permission from (Arenas et al., 2008b). © 2008 by IOP Publishing.

Community Structure (II)

- Consider one of all possible partitions of the N nodes of the network. Let this partition be $\mathbf{C}=\left\{\mathrm{C}_{1}, \ldots, \mathrm{C}_{\mathrm{k}}\right\}$. To evaluate how good this partition is we can compute the function:

$$
Q=\frac{1}{2 m} \sum_{i j}\left(A_{i j}-P_{i j}\right) \delta\left(C_{i}, C_{j}\right)
$$

where: $\mathrm{i}, \mathrm{j}=1, \ldots, \mathrm{~N}, \mathrm{~A}_{\mathrm{ij}}$ are the entries of the adjacency matrix; P_{ij} represents the expected number of edges between i and $j ; m$ is the total number of links; and δ yields one if i and j are in the same community, zero otherwise

- Suppose that the probability of connection between i and j is proportional to the product of k_{i} and k_{j}. Thus the expected number of links between i and j is equal to $\mathrm{k}_{i} * \mathrm{k}_{\mathrm{j}} / 2 \mathrm{~m}$ (prove it). This is the configuration model that we will study in Lecture 6. Then the modularity function becomes:

$$
Q=\frac{1}{2 m} \sum_{i j}\left(A_{i j}-\frac{k_{i} k_{j}}{2 m}\right) \delta\left(C_{i}, C_{j}\right)
$$

Community Structure (III)

- Grouping all contributions that come from the same community together, the modularity function can be rewritten as

$$
Q=\sum_{c=1}^{n_{c}}\left[\frac{l_{c}}{m}-\left(\frac{d_{c}}{2 m}\right)^{2}\right]
$$

where now $\mathrm{n}_{\mathrm{c}}=\mathrm{k}$, c spans all clusters in $\mathbf{C}, \mathrm{I}_{\mathrm{c}}$ is total number of links joining nodes of cluster c , and d_{c} is the sum of degrees of nodes in cluster c

- Modularity maximization: since high values of Q indicate good partitions (as compared to the null model), then finding the max of Q over the space of all partitions would yield the best one
- Unfortunately maximizing Q is impossible: it is an NP-complete problem. No fast solution is known and there is no known efficient way to locate a solution
- That is, the time required to solve the problem using any currently known algorithm increases very quickly as the size of the problem grows.

Community Structure (IV)

- What is the number of all partitions of a set of N units? They are known as Bell's numbers and grow very quickly as N increases

- Therefore modularity maximization needs clever optimization algorithms to deliver solutions (greedy techniques, simulated annealing, genetic algorithms)
- Extensions of modularity to the case of weighted directed networks are possible

Community Structures (CS) in the ITN

FIG. 2. World map showing communities of aggregate ITN in 2003. In gray countries not belonging to any community or for which no data are available.

Commodity-Specific CS

Year: 2003

Community Structure, Geography, and RTAs

- Can geography and RTAs be employed as good predictors of trade-detected communities?
- Using NMI to compare trade communities with those deteced optimizing modulairty of geographical closeness matrix (S) and RTA matrices (M)

(a)RTAs.
in 2003

(b)Distances.

Community Structure, Geography, and RTAs

- Results for aggregate ITN
- Increasing NMIs across time until 200 I and a slight decrease afterwards
- More similarity between aggregate trade and geography based communities with respect to communities determined by RTAs: geographically-related factors seem to explain the pattern of global trade more than political agreements
- Similar results apply for the commodity-specific case
- These results reinforce the traditional view put forth by standard gravity-equation trade empirics, which stresses the importance of geographical distance in determining bilateral trade flows (much more than trade agreements, whose impact is mixed, see Rose, 2004)
- Here: geographical distance is important to predict not only the expected flow of a bilateral trade relationship, but also the formation of trade communities, that is complicated trade structures multilaterally involving groups of countries.

Simplifying Dense Weighted Networks

- What if the network is very dense (i.e. L very large as compared to N)? Visualization may suffer as too many links must be drawn
\checkmark Draw links only if their weight is larger than a given threshold (quantile of the distribution, e.g. only top $\mathrm{x} \%$ of links are drawn according to their weight)
\checkmark Use more sophisticated techniques, as the mimimal spanning tree (MST)
- MST: Transforms a symmetric graph into a tree, thus allowing for a meaningful simplification (cycles are removed)

1. Transform link weights W_{ij} into a proper similarity measure $\mathrm{sij}_{\mathrm{ij}}$ ($1-\mathrm{Sij}_{\mathrm{ij}}$ must be a distance)
2. Build a list of all vertices pairs by ranking all $\mathrm{sij}_{\mathrm{i}}$ on a descending order
3. Draw a link (with weight equal to $\mathrm{Sij}^{\text {) }}$ between the first two vertices in the list
4. Proceed with the second pair in the list
5. From the third onward, if by drawing a link we close a cycle we remove that entry in the list and we proceed along the list (or, similarly, do not add pairs containing nodes that have been both previously added)
6. Stop when all the vertices have been drawn (if the graph is complete the MST will contain $\mathrm{N}-1$ links)

Simplifying Dense Weighted Networks

The International Trade Network in 2000. Source: Fagiolo (2010).
All existing links are drawn with their own weight.

Simplifying Dense Weighted Networks

What's Next

- What is a network? Examples of networks
- Why networks are important for economists?
- Networks and graphs
- Measures and metrics on networks
- Distributions of metrics and measures in large networks
- Models of network formation
- Null statistical network models
- Economic applications

Social vs. Complex Network Analysis

- Social Network Analysis (SNA: Wasserman and Faust, 1994)
\checkmark Small networks size, data often obtained through questionnaires or experiments ($\mathrm{N}<100$)
\checkmark Fields: Sociology, Psychology, Economics (see Borgatti et al., Science, Vol. 323, February 2009)
- Complex Network Analysis (CNA, Newman, 2010)
\checkmark Large network size, data often retrieved automatically from large databases (Internet, WTW, biological nets, large social networks, etc.)
\checkmark Fields: Physics, Biology, Computer Science, Economics (see Schweitzer, Fagiolo, et al., Science, Vol. 325, July 2009)
- Different goals
\checkmark SNA: node behavior, mostly descriptive analysis (no models)
\checkmark CNA: network statistical properties, mostly quantitative (comparison with models), focus on distributional properties of node- (and link)-specific statistics and their dynamics over time

Node-Specific Statistic Distributions

Time t

$f\left(X_{t}\right)$

Time-t node-distribution for X

Distribution dynamics : $f(X t), t=1,2, \ldots, T$

Distributions in Complex Networks

- If the network is large enough (many nodes, many links), one can characterize heterogeneity in
\checkmark Node-specific statistics: degrees, strengths, etc.
\checkmark Link-specific statistics: link weights
- Underlying homogeneity assumption
\checkmark Node-specific observations x_{i} are i.i.d. draws from the same RV
\checkmark Often not true, but cf. firm size and growth distributions, etc.: homogeneity assumptions are necessary in economics and (time-series) econometrics
- Stylized facts
\checkmark ND distributions: Poisson (friendship networks, cf. Dunbar's number) vs. Power-Law (Internet, the WWW)
\checkmark Strength distributions: Log-normal, maybe with power law tail (ITN)

ND Distribution in Real Networks

Co-Authorship Data (Newman, Grossman, I999)

Sexual behavior in Sweden (Liljeros et al, 1999)

ND Distribution in Real Networks

ND Distribution and Network Topology

- The average degree gives the characteristic scale (value) of the degree
- All nodes are on average linked to the same number of other nodes

$\log k$

- Large variability, the average degree is not informative, no characteristic scale for the degree (scale-free)
- There are nodes (hubs) that are connected with a number of other nodes that is order-of-magnitudes larger than that of nodes in the left tail

The ITN

Year: 2000

Globalization?

What's Next

- What is a network? Examples of networks
- Why networks are important for economists?
- Networks and graphs
- Measures and metrics on networks
- Distributions of metrics and measures in large networks
- Modeling Networks
- Economic applications

