Policy Research from Macro to Micro and Back

Eric Bartelsman*

*Vrije Universiteit Amsterdam, Tinbergen Institute, IZA

CompNet ECB — Frankfurt June 25, 2013

Overview

- Policy Questions
- Micro behavior and macro outcomes
- Examples from recent work

Comparisons of economic performance

- Traditional: Macro timeseries on expenditures, prices, and costs
- Recently: Industry Panels (STAN, EUKLEMS, Eurostat national acct's by industry) or single country micro studies
- Now: CompNet
 - WS 1: detailed productivity, prices and costs
 - WS 2: cross-country indicators (timeseries, moments) built up from firm-level data
 - WS 3: global value chains

What is the policy question?

- Choice of method should be preceded by the question asked or the problem to be studied
 - System of National Accounts (SNA) developed by Stone, was geared to signal the Keynesian problem of demand shortfall
 - No clear system of data collection and presentation has been developed to study the Schumpeterian view on the role of firms in cycles and growth
- Macro profession has not (in my opinion) come up with a definitive diagnosis of current economic problems
- So, even basic monetary policy questions may require broad-based indicators (and better theory to guide us...)

Policy Questions

- Monetary Policy
 - Potential GDP, Productivity Forecast (Taylor Rule)
 - Resource Bottlenecks (market frictions, price pressure)
 - Financial Fragmentation (see below)
- Structural Economic Policy
 - Trade imbalances
 - Factor Markets (labor frictions, financial markets)
 - Competition, (De)regulation
 - Innovation, R&D, Growth
-need performance indicators
 - that identify micro-level behavior and market (sectoral/macro) outcomes

Methods for cross-country analysis of micro data

- Microdata econometrics (structural or reduced form)
- Aggregation to country/industry level
 - Cross-country analysis using panel data
 - Model simulation and calibration using moments from firm-level data

From Micro to Macro

Macro models with heterogeneous firms

- For Financial Frictions, e.g. Buera and Moll (2012)
 - No need to actually model demand and supply for credit
 - Instead, look for wedges at firm-level (distortions in inputs and/or outputs) which can identify problem of credit constraints
- For Competitiveness: e.g. Melitz et al. (various years)
 - Relative changes in intensive and extensive margins can reveal changes in supply conditions (wages, non-traded inputs), using revealed behavior rather than measurement of price/quality in outputs and inputs.

My Research Questions

Based on observation of relative low productivity growth in EU, and variation within the EU:

- Does ICT use vary across countries?
- Does this matter for productivity?
- Does it relate to reallocation?
- What can policy do to boost ICT uptake?
- What are implications for future growth?

Eurostat (ESSNet) Project

- 14 countries, 2001-2010
- Data from Production Survey, ICT Usage Survey, Community Innovation Survey
- Common analysis in each country
- Collection of moments from firm-level data to country/industry/time panel

Variation in ICT usage Across countries

country	ICT	Mfg-x	Svc-x
FI	1	4	1
SE	2	1	2
DK	4	3	3
NO	3	2	4
NL	5	5	5
UK	6	6	6
LU	8	7	7
DE	10	8	9
SI	11	11	8
AT	7	10	10
FR	9	9	11
PL	12	13	12
IT	13	12	13
IE	14	14	15
RO	15	15	14

ICT usage is still increasing

Source: ESSLimit, ruwt

ICT impact continues to grow

Coefficient of productivity on ICT usage

Some moments to summarize allocation

- OP cross-term
 - $\sum_{i} \theta_{it} \omega_{it} = \bar{\omega}_{t} + \sum_{i} (\theta_{it} \bar{\theta}_{t}) (\omega_{it} \bar{\omega}_{t})$
 - Aggregage Productivity = average firm-level productivity + cross term
- Standard Deviation of Revenue TFP, σ_{TFP}
- Sum of absolute value of market share changes (Churn)

Moments to summarize allocation

Industry	Country	OP-gap	σ_{TFP}	Churn
Manufacturing	AT	0.65	0.19	0.13
excl.	DE	0.42	0.85	0.10
ICT	DK	0.08	0.72	0.17
	FR	0.21	0.76	0.13
	IT	0.42	1.00	0.16
	LU	0.41	0.89	0.12
	NL	0.38	0.83	0.13
	NO	0.58	0.97	0.18
	SE	0.49	0.85	0.18
	UK	0.32	0.84	0.13

Source: ESSnet

Prod and allocation: FI and SE, Mfg x ICT

Prod and allocation: IT and UK, Mfg x ICT

ICT use and dispersion: country/industry/time panel

Table: Std. Dev. of firm-level productivity distribution regressed on Broadband intensity

	Levels	First-differences	
γ	0.47 (5.02)	.28 (2.59)	
R^2	0.52	0.03	
D.F.	1180	1021	
	ctry, ind, time		
$\sigma_{c,i,t} = \alpha + \gamma BBI_{c,i,t} + FE + \varepsilon_{c,i,t}$			

FE: country, industry, time fixed effects
Source: ESSNet

ICT Use and Dispersion: Firm-level evidence

Table: Output Growth Dispersion by ICT intensity

	Time Series		Cross	Section
Country	ICT=0	ICT=1	ALL	ICT=1
DK	.057	.068	.29	.32
FI	.043	.097	.30	.33
FR	.047	.031	.21	.19
NL	.012	.017	.20	.21
NO	.043	.082	.33	.35
SE	.101	.141	.49	.52

Source: ESSnet

ICT Use and Dispersion: Firm-level evidence

Table: Productivity Growth Dispersion by ICT intensity

	Time Series		Cross	Section
Country	ICT=0	ICT=1	ALL	ICT=1
DK	.037	.044	.23	.24
FI	.036	.079	.25	.27
FR	.040	.034	.21	.18
NL	.016	.019	.22	.24
NO	.031	.070	.32	.35
SE	.039	.067	.33	.37

Source: ESSnet

ICT Investment: a response to shocks?

Worker flow rates as a function of firm-level growth

No. of observations in parantheses
Measure of ICT intensity: Percentage of employees with broadband ([0,100]). Data source: SSB Banen merged with ICT Bedrijven.
Sector: Manufacturing 16-37. Entries and exits are accounted for.

In the long-run: We're all rich

