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Abstract

Merton’s (1973) intertemporal Capital Asset Pricing Model is difficult to reconcile with
present value computation when investment opportunities are random and time-varying.
Merton assumes a geometric price process, and his equilibrium is constructed by solving for
the instantaneous expected rate of return. We argue that this method is generally inconsis-
tent with present value computations. We derive an alternative version of the Intertemporal
CAPM based explicitly on present value computation with a strictly exogenous cash flow.
Our model is derived without restrictive assumptions about the structure of the equilib-
rium price process. An essential feature of our model is that prices respond endogenously to
shocks in expected return. In an example model, we show that shocks to stochastic volatil-
ity is negatively correlated with stock returns in equilibrium. The correlation increases in

absolute magnitude with risk aversion.
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1 Introduction

One of the most fundamental concepts in finance is that the price of an asset equals the present
values of the assets’ future cash flows. If the price of an asset differs from its present value,
the price is generally inconsistent with equilibrium, and may create arbitrage opportunities.
For assets with well-defined future cash flows such as bonds, it is obvious how to construct asset
pricing models based on present values. However, for assets whose future payoffs are much harder
to model, as is the case with common stocks, the present value approach is less straightforward.
Indeed, in many asset pricing models, the financial market equilibria are often implemented by
assuming an exogenous price process and then solving for the expected rate of return period by
period. An example of this approach to constructing an equilibrium is found in Merton’s (1973)
seminal paper on the Intertemporal CAPM, which starts with the assumption that the price
process follows a Geometric Brownian Motion with time-varying expected rates of return and
volatility. The equilibrium is constructed by solving for the expected rate of return, or drift rate,

of the risky price process, which in equilibrium is a function of systematic risk.

We make two contributions in this paper. First, we critique the idea that dynamic equilibrium
models can be constructed simply by solving for the expected rate of return, period by period,
as in Merton (1973). Second, we derive a new CAPM model, which we call the “Present-Value
CAPM”. This model is based on the same general assumptions as the traditional one-period
CAPM except that it is derived through dynamic present value computations with time-varying

discount factors.

Our critique of Merton’s model is based on the fact that Merton derives his model under
the assumption of an exogenously specified price process. The problem with his analysis is that
the exogenous price process is not necessarily consistent with present value computation where
1) the supply of risky assets are exogenous to the model, and 2) the cash flows paid by the
risky asset are strictly exogenous. The first point was demonstrated in an unpublished paper
by Hellwig (1977).! Hellwig’s analysis shows that the exogenous price assumption in Merton’s
model is problematic even when investors have a constant investment opportunity set. He shows
by example that if investors face a normally distributed dividend stream, and exhibit constant
absolute risk aversion, prices should also be normally distributed unless one is willing to impose
counter-intuitive supply behaviors of risky assets - specifically, the assets’ supply needs to be
inversely proportional to their prices. Conversely, Hellwig demonstrates that if supplies are

fixed, equilibrium prices are normally distributed, not log-normal as assumed by Merton.

"'We are grateful to Suresh Sundaresan for pointing out to us the existence of Hellwig’s paper.



Our critique of Merton’s ICAPM is also that the price is assumed to be exogenously given.
Our argument, however, is linked to the dynamic structure of the model. The problem is that
expected rates of return play two different distinct roles. Since the assets’ price and future cash
flows are linked together by present value computation, either the current asset price or future
cash flow (or both) must adjust to reflect a change in the expected rate of return. However, the
ICAPM starts with an exogenous price process that a priori assumes that the asset price does not
depend on factors which impact time-varying discount rates, thus leaving no room for the current
asset price to adjust simultaneously to the change in discount rates. The direct consequence of
this restriction is that a corresponding change in future expected cash flow becomes the only way
to implement the change in expected return. This implied change in future expected cash flow
thus becomes an implicit assumption that is necessary for the price to be consistent with the
present value computations. Unfortunately, as we will argue, this implicit assumption is virtually
impossible to reconcile with reasonably constructed equilibria and is also at odds with casual
empirical observations of the relationship between financial prices, macro-economic growth, and

market volatility.

Our critique is relevant in the context of the large empirical literature on tests of the condi-
tional CAPM. The conditional CAPM is a dynamic implementation of the Sharpe-Lintner-Mossin
CAPM where their classic formula is assumed to hold period-by-period. The conditional CAPM
has no known theoretical foundation other than Merton’s (1973) continuous time ICAPM. Thus,
as we question the assumptions of Merton’s model, we also question the validity of the condi-
tional CAPM. While we do not discuss the consequences for empirical tests of the intertemporal
or conditional, CAPM models in detail here, it is clear that our critique has implications for tests
of conditional asset pricing models. For example, the misspecification of return distributions will
lead to incorrectly specified likelihood functions, which again, of course, will imply that empirical

estimates of model parameters will be biased.

So how do we construct asset pricing models that would not be subject to this critique?
The good news is that this is easy. In particular, pricing formulas that are derived explicitly
from dividend discounting as in Gordon (1959) obviously escape our critique. Early work on
dynamic present value models include Campbell and Shiller (1987), Campbell and Shiller (1988),
and Campbell (1993). Recently, the long run risk (LRR) model of Bansal and Yaron (2004)
endogenizes asset prices as the dynamic present value of future consumption or dividends. Part
of the appeal of the LLR model is that risk premia are proportional to the inverse of the speed
of mean reversion of the long run risk factor. Similarly, in a model with stochastic volatility of
aggregate consumption, the volatility risk premium is proportional to the inverse of volatility

speed of mean reversion. This delivers potentially very large risk premia, which in turn generate



realistically large equity returns and volatilities as well as potentially explaining other asset
pricing puzzles. Cochrane (2011) discusses the dual interpretation of expected returns as a
growth rate and as a discount factor. The first implies trivially that returns can be forecasted by
expected returns. The latter implies a negative relationship between contemporaneous returns
and shocks to discount factors. Cochrane (2011) also postulates that much of the variation in

stock returns is due to changes in discount-rates themselves.

We propose a new capital asset pricing model based on the idea that we wish to derive an In-
tertemporal CAPM which maintains the property that prices obtain as present values. Investors
in our model have utility of terminal wealth, as in the classic one period CAPM. We devise a very
simple technique for constructing general, affine Present-Value based CAPM’s. Our technology
can be seen to generalize Merton (1973) to provide a more general price process. In particular,

we do not impose any prior assumptions about the process that governs the equilibrium price.

Our model is connected to the long run risk model in some important ways. First, our present
value framework yields risk premium specifications that bear close resemblance to the equivalent
expressions obtained in the LRR literature. Risk premia in our model are magnified by the
reciprocal of mean-reversion coefficients in a manner identical to the Intertemporal Elasticity
of Substitution (IES) — oo limit of the LRR model. In our experience, risk premia in LRR
models converge very quickly as the TES increases and imply that even values of IES in the 3-5
range will yield model solutions that are close to the IES — oo limit. Our model shares similar
characteristics. Second, we do not model intermediate dividends or consumption but rather
terminal wealth, so our model resembles the traditional wealth-based CAPM. This is different
from LRR models at first glance. However, as we will show, when intermediate consumption is
small and negligible compared to the terminal wealth, the limiting case IES — co in LRR model
yields similar results to the wealth-based CAPM.?

While the model we develop in this paper has similarities with those in the extant literature,
it does differ in some important ways. Our model is not a dividend discounting model. Since
there are no intermediate dividends or consumption, we do not need to use the Campbell-Shiller
linearization of the returns process to obtain closed-form expressions for stock prices. Our price

formulas are exact. This is a large advantage in structural estimation of models. 3

2The fact that Epstein-Zin preferences yield the wealth based CAPM as a special case when EIS — oo is
shown in the original paper by Epstein and Zin (1989), p. 968.

3In long-run-risk models it is necessary to solve a set of non-linear equations for each new parameter update
in a numerical search (see Bansal, Kiku, and Yaron (2006)). Often these equations are difficult to solve for high
frequency data (see Eraker (2010)).



To see how our model shares similarities and differences with existing models, consider an
example. In a simple economy with a single asset where terminal payoff has stochastic volatility,

we derive the equilibrium return process as
_ T A2
In Rm,tJrl - Tf = )\0 — EAO-t + 04€4. (1)

The process o, is stochastic, stationary, and is interpretable as the volatility of beliefs about
economic growth. ¢; is a random shock representing economic growth news. The volatility
process, oy, is Markov, and E;Ao? &~ k(0 — o) so that E;(In Ry, 441) & 1 + y07 + constant
where the constant term reflects a risk compensation for variation in future expected cash flows
as well as volatility risk. The term —v/kAo? is an equilibrium volatility feedback term. This
volatility feedback term will lead to temporary price adjustments in order to reflect a higher or
lower risk premium depending on whether or not volatility is above or below its long run mean.
A positive shock to volatility leads to a simultaneous decrease in the price, allowing for higher
future expected returns. The model does not yield Merton’s ICAPM except in the special case
when the volatility process is constant. Generally, both volatility shocks and shocks to future

cash flows, ¢, are priced risk factors.

Our Present-Value CAPM model is also important for several other reasons. One primary
advantage of our modeling approach is that we recover an equilibrium model in which risk
premia have long run risk interpretations, but without the explicit link to consumption dynamics
on which the Bansal and Yaron model and its descendants are based. This can be useful in
constructing realistic models of stock prices for the purpose of pricing derivatives. In our model
the volatility feedback effect is endogenous. If used to price equity options, our model can
produce a large volatility risk premium. The skewness in the return distribution under both
the objective and risk-neutral measures is a function of risk aversion. This allows, among other
things, the econometric identification of risk aversion from option prices as, among other things,
the steepness of the volatility smile can be explicitly linked to risk aversion in our example model

in equation 1.

Our model also has important implications for the empirical testing and evaluation of asset
pricing models. Our present value CAPM model implies that stochastic volatility will lead to a
predictable component in returns. This is standard for the ICAPM, but in our model, shocks to
volatility generate temporary movements in stock prices that can be identified from the contem-
poraneous relation between the volatility shocks and returns. When the stock price goes down
in response to an increase in volatility, it will mean-revert. The speed in which this reversion

takes place is typically slow, which means that the correlation between volatility level and future



returns is low, whereas the contemporaneous correlation is strong. This has two econometric im-
plications. First, we can better identify the aggregate market risk-return relationship better from
the contemporaneous volatility feedback effect than we can from predictive regressions. Second,
econometric inference on the relationship between volatility and returns can be misleading if
inference is made from a model that ignores the contemporaneous relation. We investigate the

implication for inference on risk aversion in an intertemporal CAPM in a companion paper.

The rest of the paper is organized as follows: in the next section we outline the implicit rela-
tionship between future cash flows and risk in the ICAPM. Section three develops our new general
Present-Value CAPM for general valuation, and we discuss some specific examples. Section four

offers concluding remarks. Proofs and lengthy derivations are in the appendices.

2 A Critique of Merton’s ICAPM

In this section we outline our critique of Merton’s ICAPM model. The problem with Merton’s
model is that it starts by assuming an equilibrium price process. The assumed price process may
or may not be consistent with a reasonably defined dynamic equilibrium price. In particular, we
will show that there exists specifications of exogenously specified cash flows and utilities that are
impossible to reconcile with Merton’s model unless one is willing to make additional unwarranted

assumptions about the covariation between future cash flows and changes in expected returns.

We are not the first authors to criticize the exogenous price assumption in Merton’s model. In
an unpublished working paper, Hellwig (1977) questions the general validity of Merton’s model.
To proceed, we first briefly review Merton’s 1973 paper.

2.1 Merton’s ICAPM

Merton assumes that prices are driven by

APy
Py

= Oéi’tdt + O'Z'JgdZi’t (2)

where z;; is a Brownian motion. The Brownian motions driving prices are correlated, p;; =
Corr(dz; s, dz; ;). This notation follows that of Merton (1973), with the exception of the added ¢



subscripts for clarity. The processes governing the expected rates of return, a; and the conditional

stock market standard deviation, o;, are assumed to be stochastic processes,

doi; = a;dt + bidg, 4, (3)
doiy = [idt + gidx;y. (4)

Merton does not discuss whether the coefficients a;, b;, f; and g; are to be interpreted as constants,

Ito-processes, deterministic functions of time, or functions of the levels of «; and or ;.

Merton assumes that utility of agent ¢ is given by
E; [/ U'(csis 8)ds + B* (Wry i) | (5)
t

where U’ is the agent i’s utility of his consumption stream c,; and B’ is the Bequest utility.

Merton derives the following equilibrium expected rate of return of the ith asset,

O_i,t(pi,M - pi,an,n)
o (1 — PZ,M)

Ui,t(pi,n - pl,Mpm,n)( ;- Tt) (6)

N

Qi — Ty =
Here the subscript M refers to the market portfolio while n refers to an nth asset where returns
are assumed to be perfectly correlated with changes in the investment opportunity set («, o, 7).

The coefficients p; ; are correlations between assets ¢ and j and are assumed to be constant.

2.2 Hellwig’s Critique

Hellwig (1977) criticizes Merton’s ICAPM. The premise is the same premise as ours - the price
process in Merton’s model is assumed rather than derived fully endogenously. While we discuss
the validity of Merton’s ICAPM in the context of a changing investment opportunity set, Hell-
wig’s analysis focuses specifically on the case where the investment opportunity set is constant.
In this case, equation (6) reduces to the standard Sharpe-Lintner-Mossing static CAPM formula
for logarithmic expected returns, . Moreover, since by assumption «, o, and r are constant,
equation (2) implies that prices are log-normal. Hellwig points out that log-normality is inconsis-
tent with dividend discounting if dividends follow an arithmetic process (i.e, if dD;; = adt+bdB, ;
for constants a and b and a Brownian motion B;) and investors have exponential utility, and if

assets are in fixed supply. Hellwig writes, p. 1



Merton’s analysis of capital market equilibrium is unsatisfactory: he determines
equilibrium prices by assumption rather than by demand and supply. First, he derives
the portfolio behavior under the assumption that asset prices follow a log-normal
process. Then he considers the implication of market clearing for average rates of
return under a log normal process. He fails to verify that the assumption of log-

normality itself is compatible with market clearing.

Hellwig further shows that by relaxing the log-normality assumption on asset prices, he can
recover the CAPM with normally distributed prices and fixed supply. This, he contends, is also

unsatisfactory as it conflicts with the idea of limited liability of equity.

Hellwig also considers the possibility of solving for assets’ supply in order to maintain the
log-normal price assumption under the same economic assumptions (i.e, constant investment
opportunities). He shows that the CAPM holds in this case, but only if prices follow an arithmetic
process (not geometric, log-normal). He concludes that

“... equilibrium risky assets can only be log-normally distributed, if all agents
have constant relative risk aversion, if the supply of each risky asset is inversely

proportional to its price.”

Hellwig’s analysis shows that the intertemporal CAPM of Merton is problematic even in the
case of constant investment opportunities. Again, the problem with Merton’s analysis is that
the price process is assumed rather than derived in equilibrium, and that equilibrium can be

established by just solving for the conditionally expected rate of return, o ;.

The idea that any dynamic equilibrium model can be solved just by solving for the expected
rates of return under an assumed price dynamic is troublesome. The problem is that the expected
rate of return serves two purposes: it is both the average growth rate of investment as well as
the discount rate of future cash flows. It is not true in general that an assumed price process is
consistent with a reasonably defined equilibrium if only its expected return satisfies a first order
condition, as in Merton’s ICAPM.

2.3 Expected Returns in Dynamic Models

In this section we outline the basic critique of the idea of solving for expected rates of return

in dynamic models. We consider, without loss of generality, capital market equilibrium in the



context of a single asset market. Let us, as in Merton, assume that the price can be written as

a geometric process with time-varying drift and diffusion

dP,
—t = /Jtdt + O'tdBt (7)
P
or P P
% = [t + Ot€441, (8)
t

where dB; or €1 are exogenous shocks using the continuous or discrete time formulations,
respectively. Merton postulates that the equilibrium price process is found through solving for
the drift rate u; in (7) or (8). An equilibrium solution is taken to be a sequence of expected

returns, (i, that are measurable wrt. a time ¢ information set (say J;) available to the investor.

Merton (1980) gives the expected returns on the market portfolio as

[ =T+ Y07 (9)

Empirical investigations of Merton’s ICAPM, including Merton (1980), typically implement this
exact specification for the conditional expected return for the market portfolio. This particular
model is a special case of Merton’s ICAPM when the relative risk aversion coefficient is constant
and equal to 7, and the model ignores the hedging demand terms that appear due to time-
variations in the investment opportunity set in Merton’s model. Merton (1980), p.329, footnote
12, argues that these hedging demands can be ignored whenever the (endogenous) consumption
stream is less sensitive to changes in state-variables (that affect the investment opportunity set)
than to changes in wealth, or alternatively that the variance of the change in wealth is much

larger than the variance of the change in the state-variables.

Our critique of Merton’s ICAPM is based upon the fact that it is not possible to write
down price processes as in (7) or (8) while maintaining time-varying expected returns without
simultaneously making implicit assumptions about how the future expected payoffs correlate
with changes in expected return. Suppose for the sake of argument that we consider the discrete
time model in (8) and that the market wide volatility oy is stochastic. For simplicity let us
assume a finite horizon, single asset, representative agent endowment economy. Assume that at
the terminal date T, the representative agent receives a payoff & and before T', the representative
agent has no consumption. We ask the simple question: What is the value of a claim to this
payoff at dates t = 0,1,..,77 We claim that it is impossible for the price process in (8) to
represent an equilibrium price process without making implicit assumptions about how shocks

to the expected terminal payoff T correlate with shocks to risk, o.
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Figure 1: Possible price paths with and without volatility feedback.

The crucial point of our argument is that in an appropriately specified equilibrium price
process temporal variations in expected rates of return should be given by changes in the market
price of the risky asset. If there is a positive shock to expected returns, the price needs to adjust
negatively to this shock. We illustrate this in Figure 1. The solid line represents the expected
path at time 0. At time 1, there is a positive, unanticipated shock to volatility o7 — o7 > 0,
giving an increase in the required expected return going forward. There are two ways in which
the investor can receive a higher expected return. By keeping the expected terminal payoff
unchanged, F1(Z) = Ey(Z), the price needs to adjust downward to point A in order to reflect
the higher expected returns going forward. This adjustment is possible if and only if the price
process incorporates an explicit equilibrium volatility feedback term in which the price moves by
exactly the right amount to generate the steeper expected price path going forward, as illustrated
with the dotted path.

The second possibility is that the expected terminal payoff increases. If there is no impact of
the increase in volatility on the price, it continues along the path anticipated at time zero (steady

state), and thus reaches point B in the figure. Since the expected rate of return between time
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1 and T is now higher without the price being adjusted, it must be that the expected terminal
value increases, F1(Z) > Ey(Z). In other words, a positive shock to expected return at time 1 is

only consistent with equilibrium if the future expected terminal payoff increases as well.

Our simple figure illustrates that without an explicit equilibrium volatility feedback in the
price process, the model will necessarily imply a positive correlation between the shocks to
expected returns and the shocks to expected future cash flows. Accordingly, any model that
does not explicitly incorporate dynamic volatility feedback effects in the specification of the
price process will at best be making implicit assumptions about a positive covariation between
shocks to expected returns and future cash flows, and in the worst case be inconsistent with

equilibrium in the sense that it breaks the present value computations.
We formalize this intuition in the following.

Consider a simple three-period economy. A single risky asset trades at dates 0 and 1. This
asset provides the representative investor with an aggregate terminal payoff, x, which she will
receive at date 2. Let Fy and P; denote the price of this claim at times 0 and 1. Denote
by R; = P,11/P; the gross return. We assume the model to be consistent with present value
computation, giving the terminal condition P; = . We assume that the expected rates of return
are stochastic. At time 1, the investor receives news that may require her to demand a higher
or lower expected rate of return going forward. The expected return in the first period, pu, is
known at time 0. We assume further that the expected return process is in “steady state,” by

which we mean that the investor does not anticipate a shock to expected returns at time 1, so

Eo(Mz) = M- 1

The investor receives news about the terminal payoff, z and the next period’s expected return
2 at time 1. The relative change in the expected return, po/p; and the expected terminal payoff
E,(Z)/Ey(Z) are random variables as of time 0. At time 1 both random variables are known.
We are interested in the covariation between these random variables and the following theorem

characterizes their relationship.

Theorem 1. Assume that the price process satisfies Corr(Ry, ps) = 0, its expected return process

W 18 random, in steady state Eous = 1, and that the price process is consistent with present
(i
Corr (—1(%) ; &) > 0. (10)
Eo(Z)"

4The term steady condition is similar to requiring that the expected return process’ initial condition is its
unconditional mean in a multi-period model.

value computations. Then

11



The theorem verifies the simple intuition conveyed in Figure 1. If there is a shock to expected
returns at time 1, the future expected cash flow needs to increase to keep the price moving along

the steady state path. An immediate corollary follows

Corollary 1. Under the same assumptions as in Theorem 1, if
(i
Corr (ﬂ,&) =0, (11)
Eo(2)

the price process is inconsistent with present value computations.

Consider now how the endogenous price process we derive compares to the assumed price in
Merton. We get

P
% = Nodt + NdX, + o(X,)dB, (12)
t

= (\y+0'Xy) dt + N0, (t)dB} 4+ o(X;)dB, (13)

for state-variables X; that follow a stationary, affine process® where 3 has the usual interpretation
as the conditional expected returns’ sensitivity with respect to changes in the state-variables.
The innovation term dBy captures the shocks to state-variables that may change the expected
rates of return, and the innovation term dB; represents the shocks to the terminal flow. The

equilibrium expected returns are thus given by (A + 8'X})dt.
In comparing this equilibrium price to Merton’s. He assumes

dpr,

=

If the two methods yield the same equilibrium expected return, we have p; = A\§ + ' X;, and

ar,

5 = (+FX)dt+0(X,)dB,. (15)

In comparing (13) to (15) we see that the latter is missing the term
Nyo(X,)dBy. (16)

This is precisely the term that allows prices to adjust to changes in discount rates/expected rates

of return. Without this term, prices are uncorrelated with shocks to expected returns, dBy. In

SSpecifically, if dX; = u(X;)dt + X(z;)dBf where the drift and diffusion functions can be written p,(t) =
Ko + K1 X; and $(X;) = Ho + Y.~ | H; X;; such that = A\ K.

12



this case, the price process either contains an implicit assumption that future cash flows will
increase to offset shocks to discount rates, or the resulting price process in (15) is not consistent
with an equilibrium based on present value computations. One may argue that the innovation
term dB; in equation (15) can be taken as a composite effect of dBf and dB; terms in equation
(13). We can write (13) as a scalar Ito process, but the diffusion term of this scalar process
depends on the equilibrium parameter \;.® The difference between our model Merton’s in this

case is that we also solve for the endogenous diffusion function.

All stochastic present value models will have feedback terms similar to equation (16). For
example, in the Bansal-Yaron LRR models the capital gains are given by Aln P, = Aln D, +
B'AX,; where X, is a vector of state-variables (i.e., expected consumption growth and stochastic
volatility in their basic model). Thus, in their model the innovations to the priced risk factors
X; will have immediate, contemporaneous impact on prices. Eraker and Shaliastovich (2008)
generalize the BY model to a continuous time-setting with general state-variables and recover
equilibrium stock price dynamics with the form of (12). These contemporaneous terms imply
that both cash flow news, dB;, and discount rate news, dBy, impact prices. This gives a “bad-
beta/good-beta” interpretation as in Campbell and Vuolteenaho (2004). Our argument implies
that properly specified asset pricing models should have shocks that have a “bad-beta/good-
beta” interpretation. One implication of our argument is that at least two risk factors are priced

in a dynamic model. In the next section we give an example of such a model.

2.4 Conditional CAPM

A large body of empirical articles are concerned with empirical tests of CAPM models with time-
varying expected returns. In discrete time, the model is typically referred to as the conditional
CAPM. The literature seems to have originated from Merton (1980) who estimated v based on
equation 9. French, Schwert, and Stambaugh (1987), Bollerslev, Engle, and Wooldridge (1988),
and Bali and Engle (2010a) also follow Merton (1980) and estimate v based on equation 9.
Tests of the conditional CAPM using additional cross-sectional information include Gibbons
and Ferson (1985), Engle, Lilien, and Robins (1987), French, Schwert, and Stambaugh (1987),
Nelson (1988), Harvey (1989), Engle, Ng, and Rothschild (1990), Harvey (1991), Ng (1991),
Bodurtha and Nelson (1991), Ferson and Harvey (1993), Glosten, Jagannathan, and Runkle
(1993), Whitelaw (1994), Evans (1994), Moskowitz (2003), Guo and Whitelaw (2006), and Bali
and Engle (2010, 2010), among others.

6Specifically, \jo.(t)dBf + (T(Xt)dBt = o*(t)dB; for o*(t) = \/Tro,(t)o,(t) + Tro(X;)o(X,)') and B} =
(Mox(t)dB? + 0(X1)dBy)./(\/Tro, (t)o.(t) + Tro(X;)o (Xt)’)) (element by element).
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The problem with the conditional CAPM literature is that the model itself has no theoretical
foundation other than Merton’s (1973) analysis. We have argued, as did Hellwig (1977), that
Merton’s analysis is problematic because it does not verify that the assumed price dynamics are
consistent with equilibrium under reasonable assumption about how future cash flows covary
with expected returns and assumptions about the supply of risky assets. In the next section we
derive an equilibrium model which is based on a subset of the same assumptions as in Merton,
but where we relax Merton’s exogenous price assumption. As we shall see, this model does not

yield Merton’s ICAPM unless one considers the special case of constant investment opportunities.

3 The Present Value CAPM

In the following section we discuss our equilibrium dynamic asset pricing framework. We consider
first an economy with a single risky asset. This asset does not pay any intermediate dividends.
The asset has a terminal value at some fixed date T" of 7. Absence of arbitrage implies Pr = Zr.
We take P; to be the market value of z7 at time t. Z7 is a random variable, and we will assume
that this variable follows some stochastic process. We assume that investors learn about Z7 over
time. One such example would be a random walk specification for £ would imply E;2r = Z; such

that the current level of z; is interpretable as the expected future wealth.

We do not think of Z; as a market value or wealth process. Rather, we take Z; to be some
exogenous process that converges to terminal wealth. In a single firm or investment project,
it is natural to think of the terminal payoff as a cash distribution generated by an irreversible
investment. In the aggregate economy we think of Z as a portfolio of such irreversible investments
where intermediate cash flows are re-invested. The idea is that investors cannot disinvest physical
capital invested through corporations in response to increases in discount rates. This setup gives
an implicit sluggishness in physical capital, reflected in a completely exogenous terminal cash
flow, 7. It is understood that in general P, # Z, for all t # T'. By not forcing the terminal wealth
process, Tr, to equal its present value at all times ¢, we are avoiding any implicit assumptions

about the dynamics of its market price. This allows prices to be derived completely endogenously.

The representative investor has utility of terminal wealth,
Eou(Zr). (17)

We assume that Eu/(Zr) > 0 and Eu”(Zr) < 0 for all ¢.

14



There are no intermediate dividends. The return from holding the market from time ¢ to T’
is therefore
Rt:T,m - jT/Pt

where P, is the market value of the terminal payoff ;. We have Pr = zp.

Let
Rt;T(Q{) = aRt:Tﬂn + (1 - a)Rt:T,f (18)

denote the gross return to a buy and hold portfolio initiated at time ¢. The term R.7 s is the
gross risk free rate of return from time ¢ to 7. We assume that the risk free return is independent
of Zp. If we assume a short rate process, R, s, representing the risk free return over a unit of
time, we can write .
Rizy =E; ] Res-
s=t+1
To facilitate direct comparison with the traditional one period CAPM, it can be useful to assume

that the path of interest rates is deterministic, or that the rates are constant. Note that Rz =
T
E ] lacis Rug B [lucgir Rug = Res g Rory.

We define an equilibrium as a price process P; that clears the market oy = 1 and maximizes

investors’ utility.
Proposition 2. The equilibrium market price P, of the aggregate wealth claim Tt is given by

. Et {u’(f:T)i"T}
B B ()} Rory

vVt € [0, 7). (19)

The price of an arbitrary asset, P,;, with terminal payoff Tr,; in infinitesimal supply is

ARy
P, = Eﬁiﬁgizi vt € [0,T). (20)
These prices obtain irrespectively of the frequency of trade and portfolio rebalancing. The pricing
kernel is i (Er)
= B W) Ry 2
The Euler equation can also be written in multi-period return form as
E{u (Zr)Rerm} = Ev{u'(Zr)Reri} - (22)
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This Euler equation appears in a slightly different form in Merton and Samuelson (1969) in the
context of pricing warrants. It follows directly from the first order conditions for optimal portfolio
allocation. It can also be derived by dynamic programming. The fact that this price process
obtains irrespectively of the frequency of portfolio rebalancing implies that the Euler equation

holds for both continuous and discrete time trading schemes.

A few notes on equations (19) and (20) are in order. These equations contain ratios of ex-
pectational expressions. The key to developing tractable pricing models is to be able to compute
these expectations. Below we will show that this is easy in the context of the usual workhorse
class of affine processes. It is important to see that our model differs from the usual case where
P, equals 7; for all t. We specifically do not impose this restriction. If we did, we would just
be reverting to Merton’s solution because our price dynamics would be entirely driven by the

assumed dynamics for Zr.

3.1 Power Utility

Our theory will give closed form expressions for the evolution of stock prices in economies where

the representative agent has power utility of wealth,

u'(Tr) = Tp"

and the process that generates the final payoff, 7, is driven by exponential affine processes. This

means that we can write
Ew!'(ir) = B = exp(—yInZr) = exp(a(y,t,T) + B(v,t,T)' X;) (23)

for some exogenously specified, stationary process X;. where o and /3 solve Riccati ODE’s (see

appendix B).

Consider a representative agent with power utility and suppose that the conditional moment
generating function of InZr is known and given by equation (23). Equation 19 now gives the

general expression

hlpt - O[(l _77taT> - a(77t7T) - [/B(]- _7at7T) _ﬂ(_77taT>], Xt - Rt,T,f
= )\O(7a t7 T) + )‘$(’77 ta T),Xt —TeTf (24)
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where 7.7y = In Ryr s is the continuously compounding risk free return from ¢ to 7. We can
think of A, as representing factor sensitivities. Unlike multi-factor no-arbitrage models as the
class considered by Ross (1976), factor loadings, A, in our model, are not free parameters. They
depend on preferences and importantly, on the dynamic characteristics of the state-variables X.

We demonstrate this in the example below.

3.2 An Example Stochastic Volatility Model for the Market Portfolio

To illustrate our approach, consider the following model for the terminal exogenous wealth Zp

o
S udt+0,dB, (25)
Tt

do} = k(0 — o})dt + 0,00dB; + &dN; (26)

where we assume the standard affine state dependent jump arrival intensity, ((0?) = Iy + [0
where [y, [; are parameters. The jump sizes are assumed to be exponentially distributed, as in
Duffie, Pan, and Singleton (2000).

The state-variable X; in this economy is defined X; = (InZ;,0?). The equilibrium price
process is now characterized by a solution to the coefficients in equation (24). The model’s
equilibrium coefficients solve a system of Ricatti ordinary differential equations. We shall discuss
some special cases. In particular, we first consider the case where the variance process o? is a
pure jump process with constant arrival intensity. In the appendix we show that the equilibrium

coeflicients are available in closed form as

AG(VthT) - 30(1 _77t7T) _60'(_77t7T)
_ —k(T—t) 8
= (e —-1)—. 27
( )2 o)
Figure 2 shows the value of A\, for different investment horizons. The figure is computed using a
volatility speed-of-mean-reversion x = 0.01, which is typical of estimates found in daily aggregate
financial market time series. As can be seen from the figure, the volatility sensitivity is essentially
constant up to a few years prior to the terminal payoff. Thus, unless the investor is close to the
termination date, the volatility sensitivity is given by —</k, which is the infinite horizon limit

of the model. We discuss the infinite horizon limit in more detail below.
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Figure 2: The volatility sensitivity, \,, for a T' = 40 year investment horizon.
3.3 Infinite Horizon Limit

It is useful to consider the infinite horizon limit of our model for two reasons. First, in the
infinite horizon limit return processes are stationary. Second, it is easy to find the equilibrium
coefficients, A,. To see the this, we note that any economy in which the fundamental In Zp

depends on a set of stationary state-variables we have

Proposition 3. If the infinite horizon limit exists, the value of the market portfolio is given by

(24) where the coefficients o and B solve the non-linear equation system

0 = KB+ 8Hp 1 (of) 1), (28)

als) = (MB+ 1 0l8) - 1) s (20)
where 5 = [(u,00) is a constant vector.

Thus, in the infinite horizon limit the usual Riccati equations associated with affine asset

pricing models reduce to a quadratic, matrix-valued equation. It is straightforward to verify that
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eqn. (28) reproduces the solution f3,(c0) = v/k. Using (29) we find that the example model in
(25) and (26) gives the constant term

Xo= (07 +1o (1= pefo(1 =) = (1= pefo(=7)) 1)) - (30)

This term is interpretable as a steady-state, unconditional risk premium, E(d1ln P)/dt — rf.

We can now apply Ito’s lemma to (24) to find

dln P = \dt — Ldo? + 0,dB, (31)
KR

Equation (31) is the continuous time analogue of equation (1) from the introductory section.

We now examine this equation in more detail.

Figure 3 plots a simulated sample path for the exogenous terminal payoff z;, its volatility oy,
and the endogenous returns and price relative to the fundamental, z;. We use a finite horizon
economy on purpose, illustrating that the price process converges to the fundamental z at the
final date, T. Remember that P, = ; if there is no risk premium. An increase in risk leads to
an increase in the risk premium, and hence lowers the P/Z ratio. The particular sample path
shown in the figure has a clustering of volatility jumps in the middle time period. These volatility
shocks are barely visible in the ”fundamental” Z; shown on the bottom right, but very clearly
affect realized stock returns, shown on the bottom left. The volatility jumps are clearly visible
in the endogenous returns and lead to large negative returns (less than negative twenty percent),
mimicking crashes. The upper right plot shows the ratio of the price P, to the fundamental z;.
This ratio is interpretable as a discount. The price P is below z if and only if investors are
risk-averse. The P/Z ratio is plotted for different values of risk aversion -y, and shows clearly
how larger risk aversion leads to larger stock market crashes in response to volatility jumps.
Higher values of v also give a higher unconditional return, as illustrated by the lower initial price
(relative to Zp). The unconditional expected return is given by Ag which is generally an increasing
function of v as well as the parameters that govern the volatility dynamics. The expected rate
of return is higher than the unconditional average, Ao, whenever o2 exceeds its long run mean

and vise versa.

It is also worthwhile to notice that in this simple model, o2 is not the variance of the market
portfolio. Rather, taking the conditional variance of both sides of (31) we get Var(dln P)/dt =
A+ Bo? in general. This means that the expected rate of (logarithmic) return for the aggregate
stock market can be written as a linear function of the stock market variance, but does not obey

a direct proportionality relationship such as in (9). This has implications for empirical inference,
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Figure 3: Asset pricing implications for the aggregate market model

as the econometrician needs to obtain some estimate of o7 rather than Var,(In R;) in order to

estimate .

Another special case of the stochastic volatility process (26) is obtained by setting the jump
term to zero. In this case the volatility process follows a square root process as in Heston (1993).

The equilibrium stock price process is given by

dP, 1
=" = (3An00 = Aur)otdt + Mo uoudB7 + oudB (32)
t
where
A = VE2—02(Y2 +7) — VK2 — 02(7% — ) (33)
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on empirically reasonable values for the speed of mean reversion, x, and volatility-of-volatility,
Oy

is the volatility sensitivity of the stock price.

The strong negative relationship between market returns and changes in volatility suggests
that we can exploit this contemporaneous relationship to recover more accurate empirical es-
timates of v than what is typically found by regressing future returns onto lagged conditional
market variance. Figure 4 shows how unconditional moments in our model depend on risk aver-
sion, ~, for different values of the model parameters 6, x and o,. As can be seen from the bottom
plot, it is evident that the model is capable of producing a very large negative correlation be-
tween innovations in volatility and returns. As this correlation is typically estimated to be in
the range —0.5 to —0.9 range, we see that v’s exceeding 4 are consistent with these estimates.
The figure also illustrates that the model can generate a very substantial equity premium, and
some even exceed the empirically plausible values. The model also produces empirically plausible
annualized volatility numbers that generally range from 10% to 20%. An example parameter

constellation that produces empirically plausible values are § = 0.00752, k = 0.007, o, = 0.0008
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and v = 5. These parameters imply an expected (log) excess rate of return of 9%, volatility
of 14.5% and a correlation of —0.57. A full empirical analysis of this model will be reported in

future work.

3.4 Comparison to Existing Models
3.4.1 Merton’s ICAPM

Our example model coincides with Merton’s ICAPM as a special case only when o, is constant.

When o; is random, our model is different in two important practical ways:

e There are at least two priced risk factors.

e The market portfolio is not a priced risk factor.

In our example model, shocks to expected future cash flows, dB;, are priced independently from
shocks to the stochastic volatility process. If we include additional random factors such stochastic
interest rates, shocks that drive these processes will also be priced giving at least two priced risk

" The return on the market portfolio is not a priced factor in our model because the

factors.
market return itself is driven by two priced risk factors. The standard market beta, conditionally

or unconditionally, is not a sufficient statistic in characterizing returns to risky assets.

It is important to emphasize that our modeling assumptions are special cases of Merton’s,
with the exception that we do not make any assumptions about the structure of the price process.
Yet our equilibrium price process is very different from those assumed in Merton. Moreover, if
the economy is driven by pure diffusion processes, our equilibrium price endogenizes both the
expected instantaneous return as well as the diffusion process that governs the equilibrium price

process.

3.4.2 Long Run Risk

Our model is connected to long run risk in important ways. In particular, our return process
in eqn. Equation (31) contains the volatility feedback term where —v/k is the volatility factor

loading. This volatility feedback term decreases in risk aversion and explodes as the speed of

"Jagannathan and Wang (1996) point out that a single factor discrete time ICAPM can be interpreted as
having two factor unconditional CAPM factor structure. By the same argument our model has at least two
priced risk factors conditionally and may generate as many or more factors unconditionally as conditionally.
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mean-reversion x becomes small. x can be approximated as one minus the first order autocorrela-
tion of volatility so the volatility factor loading explodes as volatility autocorrelation approaches

unity.

The fact that the volatility factor loading increases with the reciprocal of x is reminiscent
of the equilibrium factor loadings produced by LRR models. In fact, both models produce a
volatility feedback term which is proportional to —y/k. ® Thus, our model reproduces the key
aspect of long-run-risk models - the longer the impact of a shock, the higher the associated
equilibrium risk premium. The long run risk effects will also show up if we modify our model to
have additional persistent state-variables. For example, including an AR(1)-like process (i.e. OU
process) for the conditional mean of Z; will give a pricing effect similar to expected consumption

in Bansal & Yaron.

How is it that our model produces these long run risk effects? To answer this, it is important
to understand why those effects show up in the BY model in the first place. In LRR, the aggregate
wealth is defined as the present value of future aggregate consumption. The key is to see that
our utility-of-terminal wealth framework can be written as a special case of Esptein-Zin utility
when the agent is indifferent to the timing of his or her consumption flows. We now formalize

this insight.

As above, we assume that the economy is driven by a terminal payoff £ and state-variables

X;. Epstein-Zin utility is defined through the recursion

1 1—

Uz, Xy) = {(1 - ﬁ)ui_E + 5[Et(U(55t+1,Xt+1)177)] - }1_i

[

where the per-period utility u,; typically depends on intermediate consumption, say ¢;. The pa-
rameters [, v and 1 represent the subjective discount factor, risk aversion, and IES, respectively.

Without intertemporal consumption, we have u; = 0 and the following result holds:

Proposition 4. Our terminal utility of wealth model

il
‘/; — 5T—tEt { : T }

-7

is a special case of EZ when limy — oo and uy = 0 (no utility from intermediate consumption).

8In BY’s expression for As on p. 1487, remove the expected consumption growth, z,, by setting p = ¢. = 0,
and take the limit ¢ — oo in their model. The approximate identity x = 1 — vy where v is first order volatility
autocorrelation in the BY model gives Ay = (1 —~) /.
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Since the utility of terminal wealth specification is a special case of Epstein-Zin, we expect
that present value computations based on terminal utility of wealth look similar to present values
computed in an Epstein-Zin utility framework with large TES. This is of course precisely what

we observe in our model.

Our model still has a large advantage over present value models based on discrete time
dividend discounting. It does not require linearization of the return process as in Campbell
and Shiller (1987). The Campbell-Shiller linearizations lead to approximation errors. The lin-
earization coefficients can also be hard to compute numerically which again leads to difficulties
in empirical estimation.” Therefore our model is considerably easier to implement than LRR

models.

3.4.3 Reduced Form Models

Consider adding a quick fix to the problems described by allowing for a pre-specified correlation
term between the volatility shocks and the returns. For example, Heston (1993) proposes a
stochastic volatility model where the shocks to the volatility process are correlated with price

shocks. The correlation is assumed to be constant.

This solution is a reduced form approach which will yield a price process that is consistent
with equilibrium only in a few cases. Consider the case when our example volatility process
contains both jump and diffusive components, where the former has intensity that is a linear
function of the volatility level (i.e., arrival intensity parameters [, and l; and the volatility-of-
volatiliy parameter o, are assumed to be strictly positive.) In this case it is easy to show that
the equilibrium correlation between volatility and price shocks is a non-linear function of o; in

our model. This is inconsistent with the constant correlation in Heston’s (1993) model.

Even if we specify a reduced-form model that happens to be consistent with equilibrium, it is
not obvious what a particular numerical choice for ad hoc correlation terms should be. Thus, in
general, it is unlikely that a reduced form guess at a model structure will yield a model solution

or estimated model parameters that are consistent with equilibrium.

9The linearization coefficients can be computed through a numerical solution to a fixed point problem. The
computation of the linearization coefficients should be done for each parameter update in a non-linear structural
estimation of LRR models, as in Bansal, Kiku, and Yaron (2006).
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Figure 5: Conditional stock market volatility and earnings growth: The figure shows the pre-
dictive ability of stock market volatility for subsequent aggregate earnings growth rates. 95%
pointwise confidence intervals were computed using 60 month block bootstraps.

4 Conditional Beta

How does financial market volatility impact the real economy? It is quite reasonable to postulate
an equilibrium in which firms face higher financing costs when markets are volatile. Both equity
and debt financing become more costly when volatility is higher. This can have real effects on
firms’ cash flows. Also, economic uncertainty could curb spending, leading to a negative aggregate
demand shock. Campbell, Lettau, Malkiel, and Xu (2001) and Fornari and Mele (2011) present
empirical evidence suggesting that financial market volatility predicts a substantial fraction of
the variation in aggregate output growth. Figure 5 shows the correlation between conditional
volatility and subsequent earnings growth in the data. The figure illustrates that earnings growth
rates are significantly negatively correlated with past volatility. The correlation is strongest at

about a four month forecasting horizon.
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A full structural model of how financial market risk impacts firm financing, and thus earnings

growth, is beyond the scope of this paper. We consider the following “reduced form” model

dz
= = (o + Guon )t + 0004dBny
t
dafm o G afnyt)dt + OpmOmtdZm

The cash flow process and the idiosyncratic stochastic volatility process for asset ¢ are specified

as

dz; ¢

= (i + @aﬁ%t)dt +0,4dB; 4 + Ci0m 1d By

Lit

dazt = k(0 — U?,t)dt + 04,1047, 4

The coefficients, ¢ and ¢; measure the sensitivity of fundamentals to the systematic volatility,
om,. 1f these coefficients are negative, shocks to volatility lead to subsequent lower growth rates.
If ¢; < ¢, the cash flow sensitivity of stock i is greater than that of the average stock in the
economy. Individual assets also have asset-specific sensitivity to shocks in volatility as captured
by the term C;o,, dB,, . Thus, we can think of the ¢, coefficients as capturing the sensitivity of
long run expected cash flows to systematic volatility, and C; as capturing the sensitivity of firm

specific cash flows to aggregate cash flows, much like a beta in a standard CAPM model.

Under these assumptions about exogenous fundamentals, we show in Appendix A that the

equilibrium price processes given by

dP,,
e it Tf,tdt = (2)\3n vm )\mffm>0- dt -+ Om, tdBmt + >\m0v ,mOm, tdth (34)
m,t
and
dP;
5 L ppdt = (2/\3 02— Nitim )0 At + 0:4dB;  + Ci0n 4dBrt + NiOumOmidZpmy (35)
2,t

where the coefficients, \,, and \; are given by

I %[\//@ —02 (2 + (1= 20,)y \/ w72 = (14 2¢p)7 + 2¢0m]  (36)
and
M= %h/n? = 02,(72 + (1= 265)7) = ([ K2 — 02,117 + (1 = 2C; — 26m)7 + 26)(37)
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The traditional conditional (;, defined as the ratio of the conditional covariance of individual

asset returns with the market divided by market variance, is equal to

CZ‘ + )\i)‘m012)7m
14202

m~ v,m

The conditional betas are constant with this particular model specification. More generally,
the betas will be ratios of linear functions of state-variables. It is generally not true that risk
premiums are linear functions of market beta in our model. Figure 6 illustrates this. This figure
plots expected returns as functions of the coefficients C; and ¢; under two different assumptions
about the initial value of the market volatility o,,;. The figure shows that the expected rates
of return look as if they are almost linear functions of ¢’s and C’s. Also, the expected returns
are differ greatly across the two different initial volatility regimes, suggesting that expected rates
of return can vary greatly over time in our model. In periods of low volatility, there may be a
discernible risk premium and therefore it may be difficult to detect a strong empirical relationship
between average returns and systematic risk during these periods. Conversely, in periods of high
volatility we should see a greater overall market risk premium, as well as a greater cross-sectional
dispersion in expected returns. When volatility moves up, high-risk stocks lose value relative to
their low risk counterparts, and vice versa. These implications are potentially important for
cross-sectional tests of asset pricing models. Ang, Hodrick, Xing, and Zhang (2006) find that

volatility predicts cross-sectional return premiums.

5 Concluding Remarks

Merton’s ICAPM is based on the idea that by postulating an exogenously given geometric process,
one can solve for the period-by-period expected rate of return in order to derive the equilibrium
price process. The problem with this approach is that the expected rate of return serves two
purposes. It is the average return per period but also the discount rate. The practice in academic
finance of simply solving for the expected rate of return ignores the issue of where expected returns
come from. As soon as one fixes the cash flow paid by an asset, whether it is a perpetual dividend
stream as with stocks, a state-contingent claim as with an option, or a fixed income stream as in
a bond, the present value should depend negatively on discount rates. This holds for all arbitrage
free bond pricing models and stock pricing models based explicitly on dividend discounting. Any
stock price process that claims to represent an equilibrium with time-varying expected returns
that does not incorporate contemporaneous discount rate shocks is either not an equilibrium or

is at best an equilibrium under the implicit assumption that future cash flows covary positively
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Figure 6: Expected annual rates of return as functions of the factor exposures, C; and ¢;. The
upper (lower) graphs represent low (high) initial market volatility, o,,; respectively.
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with changes in discount factors, such that any change in the discount factor is exactly offset by

an increase in future expected payofts.

We are not the first to criticize Merton’s model. In an unpublished paper Hellwig (1977),
shows that Merton’s exogenous price assumption is difficult to reconcile with particular choices
of dividend and utility specifications. Bick (1990) conducts a theoretical analysis searching for
particular utility functions consistent with an assumed equilibrium price process within Merton’s
ICAPM. The objective of this exercise seems by itself to contradict the assertion that ... the
assumptions of continuous trading and diffusion-type stochastic processes justify the use of vari-
ance as a sufficient statistic for risk without the objectionable assumptions of either quadratic
utility or normally-distributed stock returns” (Merton, 1980, p. 329).

Our critique of Merton’s analysis is relevant in the context of empirical implementations of
the intertemporal, or conditional CAPM. The direct consequence of our critique is that return
processes which have been assumed to be consistent with equilibrium are missing contempora-
neous feedback effects, and potentially also ignore priced risk factors associated with changing
discount rates. All in all, this could imply that empirical tests of conditional CAPM models are
potentially misleading. This is, in some sense, good news, since the empirical evidence on the

conditional CAPM is conflicting and not very supportive of the model.

We outline a general multi-period Euler equation that is aimed at developing a dynamic
CAPM consistent with present value computations. In doing so we start with a strictly exogenous
process that provides some terminal payoff at a terminal date T". By solving the agents’ portfolio
choice problem we obtain a simple Euler equation which can be used to find the equilibrium
price process. The usual combination of exponential affine processes, coupled with power utility

of wealth, accordingly produce closed-form equilibrium prices.

Our general idea can be expanded upon in numerous ways. In this paper we have been
wanting to keep the modeling as close to the traditional ICAPM as possible, and in doing so,
we have not considered the impact of stochastic interest rates. In examining equations (19)
and (20) it is clear that under the usual affine process - power utility combination, log returns
will have a term containing —dIn R;.7 s in continuous time. This term thus provides a feedback
term to stock prices suggesting that stocks should respond negatively to increases in interest
rates. It is possible to generalize this again, for example, by introducing stocks with differing
duration characteristics. It is easy to do this by allowing for the terminal payoff date to differ
across assets. This introduces different interest rate sensitivities across classes of stocks that

have different dividend durations.
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It is possible to generalize our model in various other ways. In our basic setup we have assumed
that the terminal payoffs 21 and Z7; are exogenous. In our model, these quantities are interpreted
as “fundamentals” to which the stock price will eventually converge. We have explicitly assumed
that the processes driving these fundamentals are strictly exogenous. In particular, we did not
assume that the mean expected growth rate of these processes were somehow determined in
equilibrium. This is what led us to gettin a different solution other than the standard ICAPM

style models without feedback terms.

It is perhaps difficult to interpret exactly how these terminal payoffs relate to tangible macro
economic quantities. As an investment project, Zr; should be interpreted as the date 7" value of
(reinvested) cash flows generated by the project up until that time. It is natural in this case to
interpret the investment project as irreversible. Our framework should in general be thought of
as one where there is some implicit friction on the conversion of physical capital into consumer
goods. If not, we could have interpreted Z;; as the value of a firm, in which case P,; # 2, would
imply arbitrage. We believe our assumption is reasonable. Corporations do not sell off assets
instantaneously to compensate investors for shocks to uncertainty. They respond sluggishly, if
at all. Financial prices, on the other hand, respond immediately. The volatility feedback effect
implicitly evinces the existence of corporations’ sluggish responses to changes in financial market

volatility.

In future extensions of our model it is natural to consider macro-economic models in which
cash flows, 7;,; are also endogenous. It is natural to think that the cash flows should depend on
financing costs, and as such, need to be solved in a bigger general equilibrium setup than we

consider here.
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Appendix A: Proofs

Proof of theorem 1. By definition, the expected rates of returns satisfy Ey(R;) = Eo(P)/FPy =
1+ w1 and Ey(Roa) = Eo(R1Rs) = Eo(2)/Py = Eo(1 + u2) = (1 4 p1) where the last equality

follows from the steady state assumption.

We need to prove that
1
Covo(—,y) >0
x

where

8|
—_
_|_
kS

Since we have

we can rewrite it as

LR
.Z'Eo[Rl] Y-
Substitute y into Cov(2,y) to get:
1 11 R
Covyg (E,y> = Covy (E’EEO[Rl])
11 Rl 1 1 Rl
= —(= — Eo(=)Eo(—
O[ZE((L’EQ[Rl])] O(ZL’) O(CL’E()[Rl]
142, R 14 o L+ps Ry
= F — E E .
0[(1+N1) EO[RI]] 0(1+70%) 0(1+M1 Eo[Ri]

No leverage, Covy(u3, Ry) = 0, implies

L4 a5 Ry (1 + p2)? R
B {(1 T Eo[Rlﬂ = b LHW] Fo {EO[RA]
B+ )]
(14 pu1)?
(Eo[l + pe])?

(14 m)?
=1
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Now, it is clear that

EOGiZf)EO(iZfEfW - E"(iizf)E(’(Ef%ﬂ)_l
Accordingly,
1 1+ R
Covy (E’y) = FEy (1+M1) FolR1]
> 1-1
=0

_E (1+M2>E (1+M2 Ry >
° L+ ‘ 1+ B[R]

[]

Proof of Proposition 2. The Euler equation follows directly from the first order conditions the
optimal portfolio problem, max, Fyu(Z;R.r(a)) and the market clearing condition o = 1. To
prove that the solution is independent of the frequency of trade, consider buying the market at

time ¢ and hold it until time s. The value of this claim is

. BWGEOPY [ B {0 |
B Ry {“ @), {u'<5T>}Rs:T,f} X E (00} Fomy
o Ul(i'T) ES {u’(:iT)fT} o ES {U,I(fT)} ES {Ul<i'T)ZZ‘T}
- ks { E, (u(i1)} B (u/(ir)} Rors } =B { B ()} B (@) Ry }
_ E ' (Zr)2r} | E{u'(Zr)7r}
— b {E (W) Rt:T,f}

" E (i)} Rery B (38)

Since P = P, the market value is unchanged by portfolio re-balancing at date s. O

Proof of Proposition 3. By assumption the infinite horizon limit exists, so 5(T) — 3 (constant).
]

Proof of Proposition 4. EZ utility is defined as

1
-4 'y

U@ Xo) = {1 - B)uy 7 + BIE(U(Fysr, Xepr) )] )%
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In our economy, there is no intermediate consumption, so the period utility u, = 0.If at the

same time, we let ¢ — 0o, we can get:

U(Zy, Xy) = BIE(U(Zyy1, Xt_i_l)l—’)/)]ﬁ

Let’s redefine V; = U(F‘f%v)l_w and the subjective discount factor § = 5177 :

Vi = 0E, [Vi+1]
= J0F, [5Et+1 [WHH
= §°Ey[Viio]

As a result, our terminal utility of wealth model is a special case of EZ when 9 — oo and

there is no intermediate consumption.

]

Deriving A\, in section 3.2. The coeflicients characterizing the expectations in (24) gives the
ODEs

Bw 3 0
aais" —% —K By 2 [ Buw Bo ] 0 0'12) ] [ 8, ll(@(ﬁa) - 1)
We get B, =1 — v and 3, = —7 respectively. The ODE for (5, becomes
0B 1 1 .
ai = _§Bw - ’iﬁa + 55121) + Jgﬂg + ll(@(ﬁcf) - ]')7 60(0> =0. (39)

In general, this equation does not admit an analytic solution. The parametric constraints o, =

l; = 0 give the solution

60(“7 S) _ (e—ns _ 1) Bw(u)(ﬁéul{(u) — 1)‘ (40)

Equation 27 now follows. O
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Derivation of the beta model in section 4. The cash flow process and stochastic volatility process

of the market portfolio are specified as

dz
= = (o + Guon )t + 0004dBny
t
dafm o G afnyt)dt + OpmOmtdZm

The cash flow process and the idiosyncratic stochastic volatility process for asset ¢ are specified

as
dx; 4 9
7 : = (/'I’l + ¢i0m7t)dt + Ui,tdBi,t + Cio-m,tdBm,t
it
dO—iQ,t = Hl(gz — Jzt)dt + Uv,iai,tdZi,t
As a result, the log cash flow processes are
~ L, 2
dinz;, = (pm — 3%m + GOy )t + Ot d By g
1 1
dln 577;775 = (,uz — Eazt — 50120'72”715 + ¢i0-3n,t)dt + Ui,tdBi,t -+ C(Z'O'mﬂgdBm’t
We assume that covy(dB,, ¢, dB;t) = 0; covi(dB, 1, dZp 1) = 0; covy(dB;t, dZ; ) = 0; covy(dZy, 4, dZ;y) =
0.
Let the state variable be X; = (Iny, In Z; 4, 0’7271,15, ait)T. Assume that the representative agent
has power utility, u(x) = ””11;: By the F.O.C, the price of the asset i at time ¢, P;; is given as:
p - Bl
Et [xm,T]RfatiT

Eylexp(u; X7)]
E\lexp(uoX7)|Rysr
exp{a(t,uy) + BT (t,u1)X;}
exp{a(t, UO) + /BT(ta UO)Xt}Rf,t:T
=L et —attan) 48 ()7 el Xe
Ryvr

_ b neonnox

Rf,t:T

where the vector u; = (—7,1,0,0) and ug = (—7,0,0,0). X 5(t) = [N, (1), Mgy (£), Nigs (£), Ni g, (8)]F
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Similarly, the price of the market portfolio P,,; is

E[iy ]
Ey[27" | Rygr
1
Rf,t:T
L e 0

Rf,t:T

Pm,t =

plo(tum)—a(t,uo)l+[BT (tum) =BT (t,u0)] Xe

where the vector u,, = (1 —7,0,0,0)A\n.5t) = Am.sy (6), Mg (6), A (), Amga ()] T
Using similar notation in Duffie et. al. (2000), we summarize the dynamics of state variable
X, as:
dX, = p(X,)dt + o(X,)dB;*
where 1(X;) and o(X;) are affine functions of X :

w(Xe) = Ko+ KX,
(0(X)o(X)" )iy = (Ho)ij + (Hi)i - Xy

In our model, we can also write the variance-covariance matrix as

O'(Xt)O'(Xt)T == Ho + Hl,wmwmi + HLwiwi,t + Hl,tfmo-fn,t + HLgiUit

The matrices are defined as below:

Hm 00 ¢m - % 0
; 00 ¢;—% -1
Ko - M Kl - ¢ 2 2
Kmbm 00 —kn 0
/@'ﬂi 00 0 —KR;
Hy = 044, Hi ,, = Oaxa, H1 4, = 0414 and
1 C; 0 000 O
c, C? 0 01 0 O
Hl,cfm ’ Hl,al -
0 o2, 0 000 0
0 0 0 0 000 o2
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The coefficients a(¢,u) and 87 (¢, u) in the formula of P;; are solved by the ODEs:

. 1

B = —K{B—58" Hi-p
0 0 0 O 0
0 0 0 O 1 0

T i Co6 ke 0|73 rHL 8
2 m 2 i m Lom

0 3 0 Ky BTHy .3
o = ~KJS

= _[Mm Hi Kfmem /{z‘ei ]ﬁ

with boundary conditions:
BT, u) =u

Stationarity of o, implies that 4(t) = 0 when T' — t — 00)

To solve the coefficients, let’s denote the vector B(t, u) = [Bu,, (t, 1), Buw. (t, 1), By, (t, 1), By, (L, u)]T.
It is clear that

Bun (t,u) = 0
Bu(t,u) = 0

Let u = [u(1),u(2),u(3),u(4)], then we obtain
/me(t’u) = u(l)
Pui(t,u) = u(2)

Bo,, (t,u) and B, (t,u) are solved by two quadratic equations respectively:

U?),mﬁgm - 2"imﬁam + ﬁim + QOiﬁwmﬁwi - (1 - 2¢m)ﬁwm - (012 - Q(bi)ﬂwi + CZBZ}Z =0
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The solutions of these two quadratic equations are given as:

B, (tu) = o (Km £ VA

Ay (u) = /<;72n — aim[uQ(l) +2C1u(D)u(2) — (1 = 2¢m)u(l) — (C? — 2¢;)u(2) + Cu(2)?]

Br(t0) = (£ /BW)

Uv,z
2 2 1 2 1
Aifw) = =202, [50(2) - Su(2)

The roots with ” 4+ sign explode when o, ,, and/or o,; goes to zero. We drop these roots
because S,,, (t,u) and f,,(t,u) are bounded.

Now let’s calculate the instantaneous excess return of asset ¢ and market portfolio:

dp, : : 1
5 : —rpedt = o) + A (DXt + N ()AX + SN () (dXdX )N 5(t)
1
= Ko Aip(t)dt + N p(1)dXs + SN (D) ([dXud X )i p(1)
by, : ; 1
e :* —rpedt = Dona(t) + A g (Xt + X7, 5 (D)dX, + ST, (8 (dXedXT ) A p (1)

1
= —KAnpt)dt + Afw(t)dxt + gxﬁﬁ(t)(dxtdxf M s(t)

The second step follows because when T'— ¢t — oo, Azﬁ(t) = )\Qﬁ = 0; Nialt) = &t ug) —
a(t, ug) = —KT(B(t,uy) — B(t, ug)) = —KT X 5(t). Similarly, Ao (t) = =K Ay s(t).

Let’s use the formula of §(¢,u) we obtained above and plug in u; = (—v,1,0,0), uy =
(—7,0,0,0) and u,, = (1 —,0,0,0) to calculate the expressions of \; 5(t) and A, s(t) :

Aip(t) = B, Ul) B(t, uo)

= 0,1, — 2 (VAm(uo) = /A (ur)) \/A (o) — v/ Ai(wr))]"
= 21 \/ UO Y Am<u1>>70]
= [0, 1, )\i,O]
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< m) = B(t, uo)
_ ,j (VB () = VB ), = ¢A (u0) = Vi)
1

(V Am(uo) = vV Am(um)), O]T

= [1707)‘77170]

>
E
i)
=
I

Now, let’s plug the solutions of \; 5(¢) and A, g(¢) into the instantaneous excess return:

dP,, 1
;t —rpedt = —K§ A p(t)dt + AL S(8)dX, + §A§ﬁ(t)(dxtdxf)xmﬂ(t)
= ( A?n vm — )\m/im>0' dt + Om, tdBmt + >\mav mOm, tdth
dpi,t T T 1 T T
— Tf7tdt = _KO )\iﬁ(t)dt + )\iﬁ(t)dXt + 5)\1-75(75) (dXtht ))\iﬂ(t)

= ( )\2 2 )\K]m)O' dt+aztdet+CUmtdBmt+/\0vmamtdth

2 (2 vm

The expected instantaneous excess return of asset ¢ and the market portfolio are:

dp;
B[ — rpadt] fdt = (= )\f Tom = Nifim) 0
Py ’ 2 '
dP,,
Et[ L - Ty tdt]/dt ( )‘En 0y m /\mlim)ag@t
Py ’ 2 '

The covariance between the instantaneous return of asset 7 and the instantaneous return of

market portfolio is:

— —rpdt) /dt = (O 4+ NAn02,,) 0%,
t

The variance of instantaneous return of market portfolio is:

dpP,,
VCL?"t[ P L Tf,t]/dt (1 + )\En Oy m)o_sn,t

m,t

41



So the traditional beta; is equal to:

Ci + Xidm02
beta, = T )\gnagm
The formulas for \,, and \; are:
A = - \/Am(um>>
- 0_2 K2, — 02, (72 + (1= 26, )7 \/ 2 = (14 26m)7 + 260]

A= o (VBalu) — VB far)

b /K2, —o2, (V?+ (1 —26n) \/ + (1 = 2C; — 2¢m)7y + 2¢4]

- Ugm Km Uv,m g m 7 m )7 ?

Now, we can easily check that CAPM holds when o,,, — 0 and we set the parameter

Om=0¢i=0:

~
lim A, = ——
0y, m—0 Km
) Ciy
lim A\, = —
0y,m—0 Km

lim beta, = C;

0y, m—0

: db;
leygri)OEt[ P —rpdt]/dt = —Niknoa,,
= Ci'YUTZn,t
. de,t
a,,hmIgOEt[ Py —rpadt]/dt = —Npkmor,
= 7072n,t
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As a result, CAPM holds in the sense that

dP . de,t
thmrgOEt[ P,t — 1y dt]/dt = avl,mobemt x By Py rpadt]/dt

Or equivalently,

dP;; dP; dby,
avl;rgoEt[ P,t — 1y dt]/dt = %,lifri Couvy( P”t — T Ktt —rydt)/dt

Appendix B: Affine jump diffusions

An affine jump diffusion X, is a Markov process in D € R" with a stochastic differential equation
representation

W, is a standard Brownian motion in R™. The term & - dN; (element-by-element multiplica-
tion) captures independent Poisson jump arrivals of size & and with arrival intensity {(X;) and
jump size distribution & on R™. The distribution of jump sizes is specified through the Laplace
transform p : C — C,

Ee" = o(u).

which is assumed to be well-defined. In our equilibrium theory, o(u) is assumed to exist for real

arguments u € R and is interpretable as a moment generating function in that case.
The drift, diffusion and arrival intensities are assumed to be given by
w(Xy) = M+ KX,
(XN =h+ Y HiXe,
U(Xy) =l + 11 Xy,

for (M, K) € R* xR™*" (h, H) € R™" x R™"™*™ ([y,11) € R" x R™". For X to be well defined,
there are additional joint restrictions on the parameters of the model, which are addressed in
Duffie and Kan (1996) and Duffie, Pan, and Singleton (2000). Our notation follows Eraker and
Shaliastovich (2008).
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The affine jump diffusion framework allow us to compute conditional moment generating

function as
o(u, X, 5) = E, (e“’X“rS) . (42)

for u € R™.

Under appropriate technical regularity conditions ( see Duffie, Pan and Singleton (2000)), ¢
is exponential affine in X,
O, Xy, 5) = et P,

where o and 3 satisfy the ODE’s

op 1
gzK'6+§6’H6+lll(g(B)—l), ( )
43
da _ / 1 / /
g—/\/lﬁ+§5h5+lo (o(B) — 1),
subject to boundary conditions f(u,0) = w,a(u,0) = 0. Note that the time argument s is

interpretable as a time to maturity, s = T —t. A change of variable from s to T — t leads to the

equivalent ODEs

e R L (R
o . (44)
= M G~ 1 (o(8) ~ 1),

with boundary conditions (u,T,T) = u, a(u, T,T) = 0.
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