“Price Stability and Volatility in Markets with Positive and Negative Expectations Feedback: An Experimental Investigation”

Heemeijer, Hommes, Sonnemans, Tuinstra

Discussion: Oliver Kirchkamp
Dynamics
negative: \(p = \frac{20}{21} (123 - \bar{p}^e) + \epsilon_t \)

positive: \(p = \frac{20}{21} (3 + \bar{p}^e) + \epsilon_t \)
Dynamics

negative: \(p = \frac{20}{21} (123 - \bar{p}^e) + \epsilon_t \)

positive: \(p = \frac{20}{21} (3 + \bar{p}^e) + \epsilon_t \)
Dynamics

negative: \[p = \frac{20}{21} (123 - \bar{p}^e) + \epsilon_t \]

positive: \[p = \frac{20}{21} (3 + \bar{p}^e) + \epsilon_t \]
Dynamics

negative: $p = \frac{20}{21} (123 - \bar{p}^e) + \epsilon_t$

adaptive

positive: $p = \frac{20}{21} (3 + \bar{p}^e) + \epsilon_t$

why the noise?
Dynamics

negative: \(p = \frac{20}{21} (123 - \bar{p}^e) + \epsilon_t \)

adaptive rational exp.

positive: \(p = \frac{20}{21} (3 + \bar{p}^e) + \epsilon_t \)
Dynamics

negative: $p = \frac{20}{21} (123 - \bar{p}^e) + \epsilon_t$

positive: $p = \frac{20}{21} (3 + \bar{p}^e) + \epsilon_t$
Dynamics

negative: \(p = \frac{20}{21} (123 - \bar{p}^e) + \epsilon_t \)

positive: \(p = \frac{20}{21} (3 + \bar{p}^e) + \epsilon_t \)
Dynamics

negative: \(p = \frac{20}{21} (123 - \bar{p}^e) + \epsilon_t \)

positive: \(p = \frac{20}{21} (3 + \bar{p}^e) + \epsilon_t \)

Oliver Kirchkamp, Discussion of “Price Stability and Volatility in Markets with Positive and Negative Expectations Feedback: An Experimental Investigation” – p.2/6
Dynamics

negative: \(p = \frac{20}{21} (123 - \bar{p}^e) + \epsilon_t \)

adaptive rational exp.

almost rational expectations

Oliver Kirchkamp, Discussion of “Price Stability and Volatility in Markets with Positive and Negative Expectations Feedback: An Experimental Investigation” – p.2/6
Dynamics

negative: \(p = \frac{20}{21} (123 - \bar{p}^e) + \epsilon_t \)

positive: \(p = \frac{20}{21} (3 + \bar{p}^e) + \epsilon_t \)

- what is going on here?
- coordination game
- how much depends on parameters?

Oliver Kirchkamp, Discussion of “Price Stability and Volatility in Markets with Positive and Negative Expectations Feedback: An Experimental Investigation” – p.2/6
Dynamics

negative: \(p = \frac{20}{21} (123 - \bar{p}^e) + \epsilon_t \)

positive: \(p = \frac{20}{21} (3 + \bar{p}^e) + \epsilon_t \)

- what is going on here?
- coordination game
- how much depends on parameters?
- is this robust to \(\frac{20}{21} \)?
Dynamics

negative: \(p = \frac{20}{21} (123 - \bar{p}^e) + \epsilon_t \)

positive: \(p = \frac{20}{21} (3 + \bar{p}^e) + \epsilon_t \)

• what is going on here?
• coordination game
• how much depends on parameters?
• is this robust to \(p \)?

Oliver Kirchkamp, Discussion of “Price Stability and Volatility in Markets with Positive and Negative Expectations Feedback: An Experimental Investigation” – p.2/6
Dynamics

negative: \(p = \frac{20}{21} (123 - \bar{p}^e) + \epsilon_t \)

positive: \(p = \frac{20}{21} (3 + \bar{p}^e) + \epsilon_t \)

- What is going on here?
- Coordination game
- How much depends on parameters?
- Is this robust to \(\frac{20}{21} \)?

Oliver Kirchkamp, Discussion of “Price Stability and Volatility in Markets with Positive and Negative Expectations Feedback: An Experimental Investigation” – p.2/6
Dynamics

negative: $p = \frac{20}{21} (123 - \bar{p}^e) + \epsilon_t$

positive: $p = \frac{20}{21} (3 + \bar{p}^e) + \epsilon_t$

- what?
- coordination game
- how much depends on parameters?
- is this robust to $\frac{20}{21}$?
- did punishment differ?
- if so, how?
Dynamics

negative: \(p = \frac{20}{21} (123 - \bar{p}^e) + \epsilon_t \)

positive: \(p = \frac{20}{21} (3 + \bar{p}^e) + \epsilon_t \)

- what?
- coordination game
- how much depends on parameters?
- is this robust to 20/21?

- did punishment differ?
- if so, how?
Results

71 out of 78 participants follow

\[p_{h,t}^e = c + \beta_1 p_{t-1} + \beta_2 p_{t-2} + \beta_3 p_{t-3} + \gamma_1 p_{h,t-1}^e + \gamma_2 p_{h,t-2}^e + \gamma_3 p_{h,t-3}^e + \nu_t \]
Results

71 out of 78 participants follow

\[p_{h,t}^e = c + \beta_1 p_{t-1} + \beta_2 p_{t-2} + \beta_3 p_{t-3} + \gamma_1 p_{h,t-1}^e + \gamma_2 p_{h,t-2}^e + \gamma_3 p_{h,t-3}^e + \nu_t \]

should we use this experimental setup to estimate \(p^e(\cdots) \)?
Results

71 out of 78 participants follow

\[p_{h,t}^e = c + \beta_1 p_{t-1} + \beta_2 p_{t-2} + \beta_3 p_{t-3} + \gamma_1 p_{h,t-1}^e + \gamma_2 p_{h,t-2}^e + \gamma_3 p_{h,t-3}^e + \nu_t \]

should we use this experimental setup to estimate \(p^e(\cdots) \)?

- do we have experimental control over beliefs of participants?
Results

71 out of 78 participants follow

\[p_{h,t}^e = c + \beta_1 p_{t-1} + \beta_2 p_{t-2} + \beta_3 p_{t-3} + \gamma_1 p_{h,t-1}^e + \gamma_2 p_{h,t-2}^e + \gamma_3 p_{h,t-3}^e + \nu_t \]

should we use this experimental setup to estimate \(p^e(\cdots) \) ?

- do we have experimental control over beliefs of participants?
- what do they know about the feedback process?
Results

71 out of 78 participants follow

\[p_{h,t}^e = c + \beta_1 p_{t-1} + \beta_2 p_{t-2} + \beta_3 p_{t-3} + \gamma_1 p_{h,t-1} + \gamma_2 p_{h,t-2} + \gamma_3 p_{h,t-3} + \nu_t \]

should we use this experimental setup to estimate \(p^e(\cdots) \)?

- do we have experimental control over beliefs of participants?
- what do they know about the feedback process?
- what do they know about interaction with other participants?
Results

71 out of 78 participants follow

\[p_{h,t}^e = c + \beta_1 p_{t-1} + \beta_2 p_{t-2} + \beta_3 p_{t-3} + \gamma_1 p_{h,t-1}^e + \gamma_2 p_{h,t-2}^e + \gamma_3 p_{h,t-3}^e + \nu_t \]

should we use this experimental setup to estimate \(p^e(\cdots) \)?

- do we have experimental control over beliefs of participants?
- what do they know about the feedback process?
- what do they know about interaction with other participants?
- shouldn’t we give participants more clues about what is going on?
Results

71 out of 78 participants follow

\[p_{h,t}^e = c + \beta_1 p_{t-1} + \beta_2 p_{t-2} + \beta_3 p_{t-3} + \gamma_1 p_{h,t-1}^e + \gamma_2 p_{h,t-2}^e + \gamma_3 p_{h,t-3}^e + \nu_t \]

should we use this experimental setup to estimate \(p^e(\cdots) \)?

- do we have experimental control over beliefs of participants?
- what do they know about the feedback process?
- what do they know about interaction with other participants?
- shouldn’t we give participants more clues about what is going on?

40 out of 78 participants follow

\[p_{h,t}^e = (1 - \beta_1 - \gamma_1) \cdot 60 + \beta_1 p_{t-1} + \gamma_1 p_{h,t-1}^e + \alpha_1 (p_{t-1} - p_{t-2}) + \nu_t \]
Results II

40 out of 78 participants follow

\[p_{h,t}^e = (1 - \beta_1 - \gamma_1) \cdot 60 + \beta_1 p_{t-1} + \gamma_1 p_{h,t-1}^e + \alpha_1 (p_{t-1} - p_{t-2}) + \nu_t \]
Results II

40 out of 78 participants follow

\[p_{h,t}^e = (1 - \beta_1 - \gamma_1) \cdot 60 + \beta_1 p_{t-1} + \gamma_1 p_{h,t-1}^e + \alpha_1 (p_{t-1} - p_{t-2}) + \nu_t \]

Conclusion:

• feedback structure (pos/neg) matters
Results II

40 out of 78 participants follow

\[p_{h,t}^e = (1 - \beta_1 - \gamma_1) \cdot 60 + \beta_1 p_{t-1} + \gamma_1 p_{h,t-1}^e + \alpha_1 (p_{t-1} - p_{t-2}) + \nu_t \]

Conclusion:

- feedback structure (pos/neg) matters
- when and how does it matter?
Results II

40 out of 78 participants follow

\[
p^e_{h,t} = \left(1 - \beta_1 - \gamma_1\right) \cdot 60 + \beta_1 p_{t-1} + \gamma_1 p^e_{h,t-1} + \alpha_1 (p_{t-1} - p_{t-2}) + \nu_t
\]

Conclusion:

- feedback structure (pos/neg) matters
- when and how does it matter?
- could these expectations explain the lab dynamics?
\[p_{h,t}^e = p_{t-1} - 0.5 \cdot (p_{t-1} - p_{t-2}) \]

\[p_{h,t}^e = p_{t-1} + 0.9 \cdot (p_{t-1} - p_{t-2}) \]
Lab (negative)

$p_{t} = p_{t-1} - 0.5 \cdot (p_{t-1} - p_{t-2})$

Lab (positive)

$p_{t} = p_{t-1} + 0.9 \cdot (p_{t-1} - p_{t-2})$

is the dynamics essentially different?
\[p_{h,t}^e = p_{t-1} - 0.5 \cdot (p_{t-1} - p_{t-2}) \]

\[p_{h,t}^e = (p_{t-1} + \frac{1}{2}(p_{t-1} - p_{t-3})) \]

\[p_{h,t}^e = p_{t-1} + 0.9 \cdot (p_{t-1} - p_{t-2}) \]

\[p_{h,t}^e = (p_{t-1} + \frac{1}{2}(p_{t-1} - p_{t-3})) \]
\(p_{h,t}^e = p_{t-1} - 0.5 \cdot (p_{t-1} - p_{t-2}) \)

\(p_{h,t}^e = \frac{1}{2} p_{h,t-1} + \frac{1}{2} \left(p_{t-1} + \frac{1}{2} (p_{t-1} - p_{t-3}) \right) \)

\(p_{h,t}^e = p_{t-1} + 0.9 \cdot (p_{t-1} - p_{t-2}) \)

\(p_{h,t}^e = \frac{1}{2} p_{h,t-1} + \frac{1}{2} \left(p_{t-1} + \frac{1}{2} (p_{t-1} - p_{t-3}) \right) \)
\[p_{h,t}^e = p_{t-1} - 0.5 \cdot (p_{t-1} - p_{t-2}) \]

\[p_{h,t}^e = p_{t-1} + 0.9 \cdot (p_{t-1} - p_{t-2}) \]

\[p_{h,t}^e = \frac{1}{2} p_{h,t-1} + \frac{1}{2} (p_{t-1} + \frac{1}{2}(p_{t-1} - p_{t-3})) \]

\[p_{h,t}^e = \frac{1}{2} p_{h,t-1} + \frac{1}{2} (p_{t-1} + \frac{1}{2}(p_{t-1} - p_{t-3})) \]
\[p_{h_t} = p_{t-1} - 0.5 \cdot (p_{t-1} - p_{t-2}) \]

\[p_{h_t} = \frac{1}{2} p_{h_{t-1}} + \frac{1}{2} (p_{t-1} + \frac{1}{2}(p_{t-1} - p_{t-3})) \]
Summary

• why the noise?
• how much depends on parameters?
• how crucial is 20/21?
• did punishment differ in the experiment?
• if so, how?
• should we use this experimental setup to estimate $p^e(\cdots)$?
 • do we have experimental control over beliefs of participants?
 • what do they know about the feedback process?
 • what do they know about interaction with other participants?
 • shouldn’t we give participants more clues about what is going on?
• how does the feedback structure matter?
• could these expectations explain the lab dynamics
• is the dynamics really essentially different?