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‘Amazingly, the stock market knows better than the analysts do.’
Henry Herrmann, Chief Investment Officer, Waddell & Reed

1 Introduction

Economists, businessmen and lay people all talk about the knowledge of the market:
‘The market learns. . . ’ and ‘the market knows . . . ’ are all accepted explanations for
observed pricing phenomena. The ultimate expression of this idea is the wide and
recent interest in prediction markets. Despite the embarrassment of the United States
Defense Department’s FutureMAP program, today companies like Microsoft, Eli Lilly
and Hewlett-Packard use information markets as a way of eliciting information from
workers and managers in order to guide decisionmaking.1 Even very early studies of
market efficiency compared market performance to the performance of experts, and
most found that the market did at least as well (Figlewski 1979, Snyder 1978). There
are three ways in which a market can predict: The market can ‘balance’ the different
beliefs of traders. On this account the market could be more accurate than any single
trader’s information. The market can ‘select’ beliefs; that is, markets favor traders
with more accurate information, and as these traders grow in wealth, market prices
come to reflect their views. This is an old Chicago School argument often attributed
(incorrectly) to Milton Friedman, and its implications for asset markets were drawn
out by Fama (1965) and Cootner (1964). The market can exchange information among
traders; that is traders can learn what others know from market prices. This is the idea
behind rational expectations and the literature on learning from prices.

The literature on informational exchange in markets is huge. Market balancing
and market selection, on the other hand, are much less studied. Here we will build
some simple dynamic equilibrium models to investigate the the long run behavior of
asset prices in markets with heterogeneous beliefs. We build upon the market selection
results of Blume and Easley (1992), Sandroni (2000) and Blume and Easley (2006).
Along the way we will extend the analysis of these papers. In particular, we will show
that the necessary conditions for traders’ long-run survival developed in these three
papers are not sufficient. But our main purpose is to illustrate the implications of our
(extended) selection analysis for the behavior of asset prices.
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We study complete markets. The assets we price are Arrow securities. More
complex assets can be priced by arbitrage from these assets. We do not allow traders
to learn. Blume and Easley (2006) conduct a detailed examination of the market
selection hypothesis when traders learn, and the implications of that analysis for asset
prices could be traced out. The interaction of selection and asymmetric information
is addressed in Mailath and Sandroni (2003). Here we prefer to study the effects of
balancing and selection in isolation, without the interesting but confounding effects of
information sharing.

2 The Model

Our model is an infinite horizon exchange economy which allocates a single commodity.
Our method is to examine Pareto optimal consumption paths and the prices which
support them. The first welfare theorem applies to the economies we study, so every
competitive path is Pareto optimal. Thus any property of all optimal paths is a prop-
erty of any competitive path. In this section we establish basic notation, list the key
assumptions and characterize Pareto optimal allocations.

We assume that time is discrete and begins at date 0. The possible states at each
date form a finite set S = {1, . . . , s}, with cardinality s = |S|. The set of all infinite
sequences of states is Σ with representative sequence σ = (σ0, . . .), also called a path.
σt denotes the value of σ at date t, and σt = (σ0, . . . , σt) denotes the partial history
through date t of the path σ. Let Ht denote the set of all partial histories through date
t, let H0 = {σ0}, the set containing the null history, and let H = ∪t=0,1,...Ht denote
the set of all partial histories. Since the processes and beliefs are iid, counts will be
important. Let ns

t(σ
t) = |{τ ≤ t : στ = s}|.

The set Σ together with its product sigma-field is the measurable space on which
everything will be built. Let p denote the “true” probability measure on Σ. It is the
distribution on sequences consistent with iid draws from prob ability distribution ρ on
S. The ‘true probability’ of state s is ρ(s).

Expectation operators without subscripts intend the expectation to be taken
with respect to the measure p. For any probability measure p′ on Σ, p′t(σ) is the
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(marginal) probability of the partial history σt = (σ1, . . . , σt). That is, p′t(σ) = p′({σ1}×
· · · × {σt} × S × S × · · · ).

In the next few paragraphs we introduce a number of random variables of the
form xt(σ). All such random variables are assumed to be date-t measurable; that is,
their value depends only on the realization of states through date t. Formally, Ft

is the σ-field of events measurable through date t, and each xt(σ) is assumed to be
Ft-measurable.

2.1 Traders

An economy contains I traders, each with consumption set R++. A consumption plan
c : Σ →

∏∞
t=0 R++ is a sequence of R++-valued functions {ct(σ)}∞t=0 in which each ct

is Ft-measurable; that is, ct : Ht → R++. Each trader is endowed with a particular
consumption plan ei, called the endowment stream.

Trader i has a utility function Ui(c) which assigns to each consumption plan
the expected presented discounted value of the plan’s payoff stream with respect to
some beliefs. Specifically, trader i has beliefs about the evolution of states, which
are represented by a probability distribution pi on Σ. She in fact believes that states
are iid draws from probability distribution ρi on S. She also has a payoff function
ui : R++ → R on consumptions and a discount factor βi strictly between 0 and 1. The
utility of a consumption plan is

Ui(c) = Epi

{ ∞∑
t=0

βt
iui

(
ct(σ

t)
)}

.

We will assume throughout the following properties of payoff functions:

A. 1. The payoff functions ui are C1, strictly concave, strictly monotonic, and satisfy
an Inada condition at 0.

Each trader’s endowment is a consumption plan. We assume that endowments
are strictly positive and that the aggregate endowment is uniformly bounded. Let
et(σ

t) =
∑

i e
i
t(σ

t) denote the aggregate endowment at date t on path σ.
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A. 2. For all traders i, all dates t and all paths σ, ei
t(σ

t) > 0. Furthermore, there are
numbers F ≥ f > 0 such that f ≤ inft,σt et(σ

t) ≤ supt,σ et(σ
t) < F < ∞.

The upper bound in particular is important to the derivation of our results. The
conclusions hold when F grows slowly enough, but may fail when F grows too quickly.

The following assumption about beliefs will be maintained for convenience through-
out the paper. Any trader who violates this axiom would not survive, so there is no
cost to discarding them now.

A. 3. For each trader i and s ∈ S, if ρ(s) > 0 then ρi(s) > 0.

2.2 Pareto Optimality

Standard arguments show that in this economy, Pareto optimal consumption allocations
can be characterized as maxima of weighted-average social welfare functions. If c∗ =
(c1∗, . . . , cI∗) is a Pareto optimal allocation of resources, then there is a non-negative
vector of welfare weights (λ1, . . . , λI) 6= 0 such that c∗ solves the problem

max
(c1,...,cI)

∑
i

λiUi(c)

such that
∑

i

ci − e ≤ 0

∀t, σ ci
t(σ

t) ≥ 0

(1)

where et =
∑

i e
i
t. The first order conditions for problem 1 are:

For all t there is a positive Ft−1-measurable random variable ηt such that

λiβt
iu
′
i

(
ci
t(σ

t)
) ∏

s

ρi(s)
ns

t (σ
t) − ηt(σ

t) = 0 (2)

almost surely, and ∑
i

ci
t(σ

t) = et(σ
t) (3)

These equations will be used to characterize the long-run behavior of consumption plans
for individuals with different preferences, discount factors and beliefs.
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2.3 Competitive Equilibrium

A price system is a price for consumption in each state at each date such that the value
of each trader’s endowment is finite.

Definition 1. A function p : Σ →
∏∞

t=0 R++ such that each pt is Ft−1-measurable is a
present value price system if, for all traders i,

∑
σt∈H pt(σ

t) · ei
t(σ

t) < ∞.

As is usual, a competitive equilibrium is a price system and, for each trader, a
consumption plan which is affordable and preference maximal on the budget set such
that all the plans are mutually feasible. The existence of competitive equilibrium price
systems and consumption plans is straightforward to prove. See Peleg and Yaari (1970).

At each partial history σt and for each state s there is an Arrow security which
trades at partial history σt and which pays off one unit of account in partial history
(σt, s) and zero otherwise. The price of the state s Arrow security in units of con-
sumption at partial history σt is the price of consumption at partial history (σt, s) in
terms of consumption at partial history σt, which is q̃s

t (σ) ≡ pt+1(σ
t, s)/pt(σ). Under

our assumptions, every equilibrium present-value price system will be strictly positive
(because every partial history is believed to have positive probability, and because con-
ditional preferences for consumption in each possible state are non-satiated), and so all
current value prices are well defined. We will be particularly interested in normalized
current-value prices: qs(σt) = q̃s(σt)/

∑
ν q̃ν(σt).

It is not obvious what it means to price an Arrow security (or any other asset)
correctly. The literature contains notions such as (for long-lived assets): Prices should
equal the present discounted value of the dividend stream. But in a world in which
traders’ discount factors are not all identical, it is not intuitively obvious what the
discount rate should be; and to say that the ‘correct’ discount rate is the ‘market’
discount rate is to beg the question. Is the market discount rate, after all, correct?
With Arrow securities, it seems that prices should be related to the likelihood of the
states. But in a market with endowment risk in which attitudes to risk are not all
identical, risk premia should matter too, and again in a market in which not all traders
have the same attitude to risk, it is not obvious what the correct risk premium is. So
that we can meaningfully talk about correct prices, we make the following assumption:
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A. 4. There is an e > 0 such that for all paths σ and dates t, et(σ
t) ≡ e.

That is, there is no aggregate risk. The only risk in this economy is who gets what, not
how much is to be gotten. The reason for this assumption is the following result:

Theorem 1. Assume A.1–4.

1. If all traders have identical beliefs ρ′, then for all dates t and paths σ, qs
t (σ

t) = ρ′.

2. On each path σ at each date t and for all ε > 0 there is a δ > 0 such that if
|ci

t(σ
t)− e| < δ, then ||qt(σ

t)− ρi|| < ε.

A consequence of the first point is that in a rational expectations equilibrium, the Arrow
securities spot prices will be ρ, the true probabilities of the state realizations. Thus we
now know what it means for assets to be ‘correctly’ priced. The second point asserts
that when one trader is dominant in the sense that his demand is very large relative to
that of the other traders, the equilibrium will primarily reflect her beliefs. The proof
of both points is elementary, in the first case from a calculation and in the second from
a calculation and the upper hemi-continuity of the equilibrium correspondence.

3 Selection

By ‘selection’ we mean the idea that markets identify those traders with the most
accurate information, and the market prices come to reflect their beliefs. We illustrate
this idea with an example.

3.1 A Leading Example

Consider an economy with two states of the world, S = {A, B}. States are iid draws,
and the probability of state A at any date t is ρ. Arrow securities are traded for each
state at each date, so markets are complete. Trader i has endowment ei(σ), and suppose
that the aggregate endowment is a constant e > 0 at each date and event. Traders have
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logarithmic utility, and have identical discount factors, 0 < β < 1. Trader i knows
that the state process is iid, and believes that A will occur in any given period with
probability ρi. This is basically just a big Cobb-Douglas economy, and equilibrium is
easy to compute. Let wi

0 denote the present discounted value of trader i’s endowment
stream, and let wi

t(σ
t) denote the amount of wealth which is transferred to partial

history σt, measured in current units. The optimal consumption plan for trader i is

to spend fraction (1 − β)βtρ
nA

t (σ)
i (1 − ρi)

nB
t (σ) of wi

0 on consumption at date-event σt.
This can be described recursively as follows: In each period, eat fraction 1 − β of
beginning wealth, wi

t, and invest the residual, βwi
t, in such a manner that the fraction

αi
t of date-t investment which is allocated to the asset which pays off in state A is ρi.

let qA
t denote the prices of the security which pays out 1 in state A at date t and 0

otherwise; let qB
t denote the corresponding price for the other date-t Arrow security.

Given the beginning-of-period wealth and the market price, trader i’s end-of-period
wealth is determined only by that period’s state:

wi
t+1(A) =

βρiw
i
t

qA
t

wi
t+1(B) =

β(1− ρi)w
i
t

qB
t

Each unit of Arrow security pays off 1 in its state, and the total payoff in that state
must be the total wealth invested in that asset. Thus in equilibrium,∑

i

βρiwi
t

qs
t

=
∑

j

βwj
t ,

and so the price of asset s at date t is

qA
t =

∑
i

ρi wi
t∑

j wj
t

=
∑

i

ρiri
t

qB
t =

∑
i

(1− ρi)ri
t

where ri
t is the share of date t wealth belonging to trader i. That is, the price of asset

s at date t is the wealth share weighted average of beliefs. So at any date, the market
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prices states by averaging traders’ beliefs. Of course there is no reason for this average
to be correct since the initial distribution of wealth was arbitrary. But the process of
allocating the assets and then paying them off reallocates wealth. The distribution of
wealth evolves through time, and the limit distribution of wealth determines prices in
the long run. We can work this out to see how the market ‘learns’. In this model it
should be clear what “correct” asset pricing means. If all traders had rational expecta-
tions, then the price of the A Arrow security at any point in the date-event tree would
be ρ, and the price of the B Arrow security would be 1− ρ.

Let 1A(s) and 1B(s) denote the indicator functions for states A and B, respec-
tively. Along any path σ of states,

wi
t+1(σ

t+1) = βi

( ρi

qA
t (σt)

)1A(σt+1)( 1− ρi

qB
t (σt)

)1B(σt+1)

wi
t(σ

t),

and so the ratio of is wealth share to js evolves as follows:

ri
t+1(σ

t+1)

rj
t+1(σ

t+1)
=

(ρi

ρj

)1A(σt+1)(1− ρi

1− ρj

)1B(σt+1) ri
t(σ

t)

rj
t (σ

t)
.

This evolution is more readily analyzed in its log form:

log
ri
t+1(σt + 1)

rj
t+1(σt + 1)

= 1A(σt+1) log
(ρi

ρj

)
+

1B(σt+1) log
(1− ρi

1− ρj

)
+ log

ri
t(σ

t−1)

rj
t (σ

t)
. (4)

To understand how the market can learn, consider a Bayesian whose prior beliefs about
state evolution contain I iid models in her support, {ρ1, . . . , ρI}, and let ri

t denote
the probability she assigns to model i posterior to the first t − 1 observations. The
Bayesian rule for posterior revision is exactly that of equation (4). The market is a
Bayesian learner. The evolution of the distribution of wealth parallels the evolution
of posterior beliefs. Market prices are wealth share-weighted averages of the traders’
models, and so the pricing function for assets is identical to the rule which assigns a
predictive distribution on outcomes to any prior beliefs on states. In other words, the
price of asset A in this example is the probability the Bayesian learner would assign to
the event that the next state realization will be A.
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From these observation we can draw several conclusions. If some trader holds
correct beliefs, then in the long run his wealth share will converge 1, and the market
price will converge to ρ. The assets are priced correctly in the long run. Second, if no
model is correct, the posterior probability of any model whose Kullback-Leibler distance
from the true distribution is not minimal converges a.s. to 0. In this example, selection
cannot make the market do better than the best-informed trader. In particular, if there
is a unique trader whose beliefs ρi are closest to the truth, then prices converge in the
long run to ρi almost surely, and so assets are mispriced.

3.2 Selection in Complete IID Markets

Traders are characterized by three objects: A payoff function ui, a discount factor βi

and a belief ρi. We will see that, so long as payoff functions satisfy the Inada condition,
they are irrelevant to survival. Only beliefs and discount factors matter. We would
expect that discount factors matter in a straightforward way: Higher discount factors
reflect a greater willingness to trade present for future consumption, and so they should
favor survival. Similarly, traders will be willing to trade consumption on unlikely paths
for consumption on those they think more likely. Those traders who allocate the most
to the highest-probability paths have a survival advantage. This advantage, as we will
see, can be measured by the Kullback-Leibler distance of beliefs from the truth, the
relative entropy of ρ with respect to ρi:

Iρ(ρi) =
∑

s

ρs log
ρs

ρs
i

The Kullback-Leibler distance is not a true metric. But it is non-negative, and 0 iff
ρi = ρ.2 Assumption A.3. ensures that Iρ(ρ

i) < ∞ (and this is its only role).

Our results will demonstrate several varieties of asymptotic experience for traders
in iid economies. Traders can vanish, they can survive, and the survivors can be divided
into those who are negligible and those who are not. Definitions are as follows:

Definition 2. Trader i vanishes on path σ if limt c
i
t(σ

t) = 0. She survives on path
σ if lim supt c

i
t(σ

t) > 0. A survivor i is negligible on path σ if for all 0 < r < 1,
limT→∞(1/T )|{t ≤ T : ci

t(σ
t) > ret(σ

t)}| = 0. Otherwise she is non-negligible.
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In the long run, traders can either vanish or not, in which case they survive. There are
two distinct modes of survival. A negligible trader is someone who consumes a given
positive share of resources infinitely often, but so infrequently that the long-run fraction
of time in which this happens is 0. The definitions of vanishing, surviving and being
negligible are reminiscent of transience, recurrence and null-recurrence in the theory of
Markov chains.

3.3 The Basic Equations

Our method uses the first order conditions to solve for the optimal consumption of each
trader i in terms of the consumption of some particular trader, say trader 1. We then
use the feasibility constraint to solve for trader 1’s consumption. The fact that we can
do this only implicitly is not too much of a bother.

Let κi = λ1/λi. From equation 2 we get that

u′i
(
ci
t(σ

t)
)

u′1
(
c1
t (σ

t)
) = κi

(
β1

βi

)t ∏
s∈S

(
ρ1

s

ρi
s

)ns
t (σ

t)

(5)

It will sometimes be convenient to have this equation in its log form:

log
u′i

(
ci
t(σ

t)
)

u′1
(
c1
t (σ

t)
) = log κi + t log

β1

βi

−
∑

s

ns
t(σ

t)

(
log

ρi
s

ρs

− log
ρ1

s

ρs

)
.

We can decompose the evolution of the ratio of marginal utilities into two pieces: The
mean direction of motion, and a mean-0 stochastic component.

log
u′i

(
ci
t(σ

t)
)

u′1
(
c1
t (σ

t)
) = log κi + t log

β1

βi

− t
∑

s

ρs

(
log

ρi
s

ρs

− log
ρ1

s

ρs

)
+

∑
s

(
ns

t(σ
t)− tρs

)(
log

ρi
s

ρs

− log
ρ1

s

ρs

)
= log κi + t

(
log β1 − Iρ(ρ

1)
)
− t

(
log βi − Iρ(ρ

i)
)
+∑

s

(
ns

t(σ
t)− tρs

)(
log

ρi
s

ρs

− log
ρ1

s

ρs

)
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The mean term in the preceding equation gives a first order characterization of traders’
long fun fates.

Definition 3. Trader i’s survival index is si = log βi − Iρ(ρ
i).

Then

log
u′i

(
ci
t(σ

t)
)

u′1
(
c1
t (σ

t)
) = log κi + t(s1 − si) +

∑
s

(
ns

t(σ
t)− tρs

)(
log

ρi
s

ρs

− log
ρ1

s

ρs

)
(6)

3.4 Who Survives? — Necessity

Necessary conditions for survival have been studied before, notably by Blume and Easley
(2006) and Sandroni (2000). In this economy, a sufficient condition guaranteeing that
trader i vanishes is that trader i’s survival index is not maximal among the survival
index of all traders. Consequently, a necessary condition for survival is that the survival
index be maximal.

Theorem 2. Assume A.1–3. If si < maxj sj, then trader i vanishes.

The analysis compares one trader, say trader 1, to other traders in the economy.
We use equation (6) to show that if trader i has a larger survival index, than trader
1, trader 1 must vanish. The first step is to relate long-run survival outcomes to the
ratios of traders marginal utilities, the lhs of (6).

Lemma 1. If on a sample path σ, log u′i
(
ci
t(σ

t)
)
/u′1

(
c1
t (σ

t)
)
→ −∞ for some trader i,

then limt c
1
t (σ

t) = 0. If lim sup mini log u′i
(
ci
t(σ

t)
)
/u′1

(
c1
t (σ

t)
)

> −∞, then lim supt c
1
t (σ

t) >
0.

Proof: Suppose first that the limit of the log of the ratio of marginal utilities converges
to −∞ along a path σ. This can happen in one of two ways: If either the denominator
converges to 0 or the numerator diverges to infinity. It must be the latter, because the
numerator is bounded below by u′i(F ) > 0. Consequently, on any such path, ci

t(σ
t) → 0.
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In every period t, there is a trader i(t) who consumes at least ci(t)(σ
t) ≥ f/I. If

trader 1 were to vanish, then limt log u′i(t)
(
c
i(t)
t (σt)

)
/u′1

(
c1
t (σ

t)
)

converges to −∞ (since

the number of traders is finite). But if the limsup condition is satisfied, then there is

an ε such that log u′i(t)
(
c
i(t)
t (σt)

)
/u′1

(
c1
t (σ

t)
)

> ε infinitely often.

Proof of Theorem 2. We prove this theorem by examining equation (6). Take time
averages of both sides and observe that for each s, t−1(ns

t−ρs) converges p-almost surely
to 0, to conclude that for almost all paths σt,

lim
t→∞

1

t
log

u′i
(
ci
t(σ

t)
)

u′1
(
c1
t (σ

t)
) = s1 − si .

If s1 is not maximal, there is an i for which s1 − si < −ε < 0. For almost all paths σt

there is a T such that if t > T , then u′i
(
ci
t(σ

t)
)
/u′1

(
c1
t (σ

t)
)

< −εt. According to lemma
1, trader 1 vanishes.

This result is a consequence of the SLLN. Blume and Easley (2006) extend this result
to identify necessary conditions for survival in many different, non-IID settings.

3.5 Market Equilibrium — Selection

The implications for long-run asset pricing are already illustrated in the example which
began this section.

Corollary 1. If there is a unique trader i with minimal survival index si among the
trader population, then market prices converge to ρi almost surely.

This Corollary is an immediate consequence of Theorems 1 and 2. If only trader i has
maximal survival index, then almost surely all other traders vanish and qt converges to
ρi. The beliefs of the trader with minimal survival index may not be correct, in which
case Arrow securities are incorrectly priced in the long run. This may happen because
no trader has correct beliefs, or because a trader’s incorrect beliefs are compensated
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for by a higher discount factor. In the latter case, allowing for heterogeneous discount
factors, the prices need not converge to the most accurate beliefs present in the market.

Using the tools of Blume and Easley (2006) we can extend this result in various
ways. For instance, we can provide a survival index analysis of (finite state) Markov
economies with traders who hold Markov models of the economy or even traders who
hold (misspecified) iid models. If all traders are Bayesian learners satisfying certain
regularity conditions, and the truth is in the support of their beliefs, then all will
eventually learn the true state distribution and so prices will ultimately be correct.
But those traders with low-dimensional belief supports will learn faster than those with
higher-dimensional belief supports, and prices will converge to the true prices at the
faster rate.

4 Balancing

When a single trader (type) has the highest survival index, market prices converge to
his view of the world. There is no room for balancing of different beliefs because, in the
long run, there is only one belief and discount factor present in the market. But if the
market process is more complicated than the world view of any single trader so that no
trader has correct beliefs, or if traders are asymmetrically informed, it is possible that
multiple traders could have maximal survival index. Will all such traders survive, and
what are the implications for sufficiency?

4.1 Who Survives? — Sufficiency

Theorem 2 shows that traders with survival indices that are less than maximal in the
population vanish. This does not imply that all those with maximal survival indices
survive. The rhs of equation (6) is a random walk, and the analysis of the previous
section is based on an analysis of the mean drift of the rhs of equation (6). Theorem
2 shows that a non-zero drift has implications for the survival of some trader. When
two traders with maximal survival indices are compared, the drift of the walk is 0, and
further analysis of equations (5) and (6) is required. Since the long run behavior of
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a random walk depends upon the dimension of the space being walked through, our
results will depend upon the number of states s.

More definitions are required. For a probability distribution θ on S, define the

vector of log-probabilities: lo(θ) =
(
log θ(s)/θ(s)

)s−1

s=1
. Let Sur denote the set of traders

with maximal survival index. Theorem 1 indicates that these are the only potential
survivors. The fate of a trader in Sur is determined by how her beliefs, as represented
by lo(ρi), are positioned relative to the beliefs of the other traders in Sur. Denote
by C{lo(ρj)}I

j=1 the closed convex cone generated by the log-probability vectors of the
traders.

Definition 4. Trader i is interior if lo(ρi) is in the relative interior of C{lo(ρj)}I
j=1. She

is extremal if lo(ρi) is an extreme point, that is, not a non-negative linear combination
of the other lo(ρj), and boundary otherwise.

We are interested in markets with heterogeneous potential survivors. To simplify the
statements of theorems it will be convenient to focus on the case where Sur contains at
least two traders, and no two traders have identical beliefs.3

Theorem 3. Assume A.1–3, and suppose s ≤ 3 and 0 < r < 1.

1. If i ∈ Sur, then trader i survives.

2. Trader i is negligible if and only if she is not extremal.

3. For each trader i, limT→∞(1/T )|t ≤ T : ci
t < ret}| > 0 a.s.

4. If trader i is extremal, limT→∞(1/T )|{t ≤ T : ci
t > ret}| > 0 a.s.

When s ≤ 3, a maximal survival index is sufficient (as well as necessary) for survival.
But how one survives depends upon ones position in the group of survivors. Boundary
and interior survivors are negligible. The fraction of time they consume a positive
share of aggregate endowment is 0. Extremal traders, on the other hand, have highly
volatile consumption. The fraction of time each consumes an arbitrarily small share of
aggregate endowment in positive, as is the fraction of time each consumes nearly all of
the aggregate endowment.

When s > 3, the picture is even more stark. Interior traders vanish. Maximality
of a trader’s survival index is no longer a sufficient condition for survival.
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Theorem 4. Assume A.1–3, and suppose s > 3 and 0 < r < 1.

1. If i is extremal or boundary, then trader i survives.

2. Trader i vanishes if she is interior, and is negligible if she is boundary.

3. For each trader i, limT→∞(1/T )|t ≤ T : ci
t < ret}| > 0 a.s.

4. If trader i is extremal, limT→∞(1/T )|{t ≤ T : ci
t > ret}| > 0 a.s.

Proof. Suppose that trader 1 is in Sur, and consider trader i 6= 1. Since 1 and i are
both in Sur, they have identical survival indices, and so the right hand side of equation
(6) becomes

ẑit(σ) = log κi +
∑

s

(
ns

t(σ
t)− tps

)
log

ρ1
s

ρi
s

We want to investigate if the limit of ẑi is infinitely often arbitrarily large, converges to
−∞, or is bounded above but also bounded away from −∞ infinitely often. To answer
this question the constants on the right can be discarded, and we are left with

zit(σ) =
∑

s

(
ns

t(σ
t)− tps

)
log

ρ1
s

ρi
s

.

Thus the vector zt(σ) =
(
zt(σ)i∈Sur

)
is a random walk in RI. Rewriting,

zt(σ) = Ã · w̃t(σ)

where w̃t(σ) is the random walk in Rs whose sth term is ns
t(σ

t)− tps, and the (i− 1)st
row of the (I − 1)× s matrix Ã is the vector

(
log(ρ1

s)− log(ρi
s)

)s
s=1

. The random walk
{w̃t(σ)}∞t=1 is an s − 1 dimensional random walk that lives in the subspace W of Rs

consisting of all vectors v such that
∑

s vs = 0. Simple algebra shows that the random
walk can be rewritten as

zt(σ) = A · wt(σ)

where the (i−1)st row of the (I−1)×s matrix A is the vector
(
lo(ρ1

s)− lo(ρi
s)

)s−1

s=1
and

wt(σ) the vector in Rs−1 whose coordinates are the first s− 1 coordinates of w̃t(σ).

We consider three cases of matrices A. Case 1: There is a direction x such that
Ax � 0. Case 2: For all directions x there is a row ai such that aix < 0. Case 3: There
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is a direction x such that Ax ≥ 0 but no direction x for which Ax is strictly positive.
First we establish conditions under which each of these cases occurs.

Lemma 2. The inequality system Ax � 0 has a solution iff lo(ρ1) is an extreme point
of the convex hull of the loi(ρ

i) ∈ Sur, that is, iff trader 1 is extremal. If trader 1 is
interior, then for all directions x there is an ai such that aix < 0. If neither of these
two cases occurs, lo(ρ1) is on the boundary of the convex hull of the lo(ρi).

Proof of Lemma 2. A theorem of the alternative (see the Appendix) states that there
is an x such that Ax � 0 iff no non-trivial, non-negative linear combination of the rows
is 0. That is, there is no non-trivial and non-negative set of weights {λi}i≥2 such that∑

i≥2 λi lo(ρi) = lo(ρ1). In other words, a strictly positive direction x exists iff lo(ρ1) is

extremal in C{lo(ρj)}I
j=1.

A Theorem of the Alternative (Gale 1960) also shows that either Ax ≥ 0 (and
not equal to 0 in every component) has a solution, or the ai are linearly dependent with
strictly positive weights. Thus if trader 1 is interior, there is no non-negative direction,
and in the remaining case, where lo(ρ1) is on the boundary of the convex hull of the
lo(ρi) but not an extreme point, a non-negative but not strictly positive direction must
exist.

Now we examine the three types of traders.

Extremal Traders: Suppose that trader 1 is extremal. Then there is an open cone C1

of directions such that for all w ∈ C1 and for all traders i 6= 1, w ·
(
lo(ρ1)− lo(ρi)

)
> 0.

Furthermore, for all consumption shares r < 1 there is a bound b(r) such that if, for all
i 6= 1, wt(σ) ·

(
lo(ρ1)− lo(ρi)

)
> b(r), then c1

t (σ
t) > ret(σ

t). The set of such w values is
the open cone less a compact set containing the origin. When s ≤ 3 (so that s− 1 ≤ 2)
such sets are positive recurrent. Consequently limT→∞(1/T )|{t ≤ T : c1

t (σ
t) > ret(σ

t)}|
exists and is positive.

Interior Traders: If trader 1 is interior, then for any direction of the walk, there is a
trader i such that log u′i(c

i
t)/u

′
1(c

1
t ) is arbitrarily negative when the walk is far enough out

in that direction. Consumption for trader 1 is bounded away from 0 only on compact
sets containing the origin. Such sets are recurrent but rare for two dimensional walks,
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and transient for walks in dimension three or higher. So when s ≤ 3, trader 1 is
negligible; otherwise trader 1 vanishes.

Boundary Traders: For boundary traders, the set of directions D for which zt does not
grow negatively in some direction is lower dimensional. Hence the set of vectors w for
which zt is bounded from below is an open neighborhood of D. Such sets are in the
plane and recurrent but rare in higher dimensions.

The following figures demonstrate the geometry of Theorem 3 when s = 3.
The left illustration in Figure 1 plots the log-odds ratios of five surviving beliefs. The
discount factors for all traders cannot be all the same. The log-odds vector of the true
distribution can be anywhere in the plane, but it is most entertaining to think of it as
being inside the triangle, and perhaps even coincident with E. Figure 1 plots the log-

A

B

C

D

E

A-B

A-CA-D

A-E

Figure 1: Five Surviving Beliefs

odds ratios of five surviving beliefs. (The discount factors for all traders cannot be all
the same.) The cone on the right indicates the directions in which the random walk can
move so as to increase the wealth share of extremal trader A relative to all other traders.
In Figure 2, the direction of increase for boundary trader D is the intersection of three
half spaces while on the right there is no direction of increase for interiorr trader E.
Trader E nonetheless survives because her wealth share is positive on a recurrent set,
such as any neighborhood of the origin.
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D-A

D-B

D-C

D-E

E-A

E-B

E-C

E-D

Figure 2: Survival of Beliefs D and E

4.2 Market Equilibrium — Balancing

The implication for market equilibrium from the existence of multiple survivers is per-
haps surprising:

Corollary 2. If multiple traders have maximimal survival index, then for all extremal
traders i and all ε > 0, |qt − ρi| < ε infinitely often. If s > 3 it is possible that for
ε > 0 sufficiently small, the event |qt−ρ| is transient, even if some survivor has rational
expectations.

With multiple survivors, asset prices are volatile. Furthermore, asset prices need be
approximately right; specifically, approximately right prices may be transient. One
might hope that, nonetheless, the time average of prices is approximately correct. We
believe that this weaker notion of correct asset pricing may fail, and we hope to have a
proof shortly.

Figure 4.2 illustrates some of the possibilities for prices with multiple surivors
in the leading example of the previous section with log utility. In this figure the true
distribution is ρ. The closed curve connecting points P , Q and R is a curve of constant
relative entropy, in this case 0.18. Suppose all traders have identical factors, and all
have beliefs which are on or outside the curve. Those traders with beliefs outside the
curve will vanish. Suppose now that Sur contains three traders with beliefs P , Q and
R. All three will survive. The equilibrium price will wander around inside the convex
hull of these three points. As the three points are drawn, ρ is in their convex hull, and it
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0.333

0.629
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Figure 3: Multiple survivors, s = 3.

is at least possible that the average behavior of prices over time could be approximately
correct. On the other hand, suppose Q and R were higher up on the iso-relative entropy
curve, nearer to P . It is possible to arrange them so that ρ is no longer in the convex
hull, and so the long-run time average of prices would be nowhere near ρ. Finally,
consider moving point Q off the curve. If it moves in, this trader is the unique surviver,
and selection dictates that prices converge to Q. On the other hand, if Q moves out,
this trader is no longer a survivor. The two survivors are P and R, and in the long run
prices will move up and down on the line segment connecting these two points. Again
there is no connection between the long-run behavior of prices and ρ.
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5 Conclusion

This analysis suggests that, contrary to Henry Herrman’s view in the epigram which
begins this paper, the market knows not better but only as well as the analysis do (unless
there is someone in the market who knows better than the analysts). The market can
be no better informed than the most fit trader according to the fitness index metric,
and if there are several most-fit traders with distinct beliefs, then the market beliefs as
expressed in limit equilibrium prices may fail to converge.

The necessity of a maximal survival index for long-run selection has frequently
been noticed, including Sandroni (2000) and Blume and Easley (2006). The observation
that it is not sufficient, and the sufficient condition derived here for the iid economy,
are new. It is not surprising that only beliefs matter for the sufficient condition. Since
discount factors are non-stochastic, they are part of the “mean term” which gives the
necessary condition. Were discount factors stochastic, the analysis of necessary condi-
tions for survival would remain essentially unchanged, but deviations from the mean
log-discount factor would appear in the sufficient condition.

It is clear how this analysis extends to Markov and other stochastic complete
market environments in which the necessary conditions for survival described in Blume
and Easley (2006) can be summarized in a real-valued index. We have not attempted
to find sufficient conditions for survival at the level of generality of that analysis.

Perhaps an even more compelling question is an asymptotic analysis of wealth
shares and prices when markets are incomplete. (Blume and Easley 2006) have some
simple examples of how incomplete markets can select for the wrong trader, which makes
the market, in the limit, less smart than its smartest trader. In the most compelling
example, an excessively optimistic trader oversaves, and thus comes to dominate in the
limit. Becker et. al. (2006) analyse a market in which the only assets are money and one
risky asset, so that (with enough states) the market is incomplete. They too find that
long-run price volatility with multiple survivors. In particular, if two or more traders
survive in the long run, then the each trader consumes arbitrarily little infinitely often.

In studying prediction markets like those contracts traded on Iowa Electronic
Market which make book on political races, it is important to take account of learning
through prices, and to entertain the possibility that the accurate performance of these
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markets is due at least as much to trader learning from prices (as opposed to more
‘outside’ information) as it is to market selection. In our view, this is less important
when it comes to large markets for securities and other financial assets. This is not
to say that learning is not important; surely it is. But these markets are sufficiently
complicated, and trading occurs for so many diverse motives, that the possibility of
consistent learning rules seems, to us, remote. This leaves room for the market to be,
in the long run, smarter than its traders; and so we are led to ask, how is the market’s
learning experience different than that of its traders.

Appendix: Linear Algebra

Let A be an n×m matrix.

Theorem 1. One and only one of the following equation systems has a solution:

Ax � 0 (7)

yA = 0,

y ≥ 0, y 6= 0
(8)

This Theorem is an immediate consequence of the following theorem, due to Fan, Glicks-
berg, and Hoffman (1957), concerning m convex functions, each mapping the non-empty
convex set K to R.

Theorem 2 (Fan et. al.). One and only one of the following alternatives holds:

1. The system of inequalities fi(x) < 0, i = 1, . . . ,m, x ∈ K has a solution;

2. There are non-negative scalars λi, not all 0, such that
∑

i λifi(x) ≥ 0 for all
x ∈ K.

Proof of Theorem 1. Take fi(x) = −aix, where ai is the ith row of the matrix A.
The fi are convex functions and W is a convex set. If (7) has no solution, then according
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to Fan et. al., there are non-negative scalars yi not all 0 such that for all x ∈ W ,∑
i

yi(−aix) ≥ 0. (9)

In particular,
∑

i yiaix = 0 for all x, because if not it will be possible to make this
term arbitrarily negative by suitable choice of x, and so the inequality will be violated
for some x. This will be true if and only if

∑
i yiai = 0.
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Notes

1“The End of Management”, Time Magazine Bonus Section, August 2004, http://www.time.com/time/insidebiz/article/0,9171,1101040712-
660965-
1,00.html. For a popular account of prediction markets, see Surowiecki (2003).

2In fact, it is jointly convex in (ρ, ρi), but we will not need to make use of this fact.

3If two traders i and j in Sur have identical beliefs, then they have identical discount
factors, and the ratio of their marginal utilities is a constant on every path. This fact
and assumption A.2. imply that there are constants 0 < k < K such that almost surely,
kci

t(σ
t) < cj

t(σ
t) < Kci

t(σ
t).
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