Monetary Policy and Housing Prices in an Estimated DSGE Model for the US and the Euro Area

Matthieu Darracq Pariès \(^1\) Alessandro Notarpietro\(^2\)

\(^1\)European Central Bank
\(^2\)Banca d’Italia

Monetary policy transmission mechanism in the euro area in its first 10 years
European Central Bank, 28-29 September 2009
Role of **housing** markets and credit **frictions** for business cycle analysis and monetary policy conduct in **open** economy

- Recent growing literature on housing and credit frictions in monetary economies
- Empirical evidence on monetary policy and housing (Jarocinski and Smets (2008)): accounting for house prices may sharpen inference on monetary policy conduct over time
- Open economy: quantify degree of international spillovers and explore implications for optimal monetary policy cooperation
Motivation

- Role of housing markets and credit frictions for business cycle analysis and monetary policy conduct in open economy
- Recent growing literature on housing and credit frictions in monetary economies
Motivation

- Role of **housing** markets and credit **frictions** for business cycle analysis and monetary policy conduct in **open** economy
- Recent growing literature on housing and credit frictions in monetary economies
- Empirical evidence on monetary policy and housing (Jarocinski and Smets (2008)): accounting for house prices may sharpen inference on monetary policy conduct over time
Motivation

- Role of **housing** markets and credit **frictions** for business cycle analysis and monetary policy conduct in **open** economy

- Recent growing literature on housing and credit frictions in monetary economies

- Empirical evidence on monetary policy and housing (Jarocinski and Smets (2008)): accounting for house prices may sharpen inference on monetary policy conduct over time

- Open economy: quantify degree of international **spillovers** and explore implications for **optimal** monetary policy cooperation
This paper: contributions

- Merge two (separate) strands of literature:

 1. Credit frictions and housing DSGE: mainly closed economy (Aoki (2004), Iacoviello (2005), Iacoviello and Neri (2008), Calza et al. (2009), Monacelli (2009)), very few open economy (Christensen et al. (2008), soe for Canada)

 2. New Open Economy Macro (estimated) models for monetary policy analysis (Adjemian et al. (2008), Adolfson et al. (2007), De Walque et al. (2005), Rabanal and Tuesta (2006))

- Build and estimate two-country model with housing sector

- Analyze monetary policy response to housing-related disturbances

- Derive optimal monetary policy cooperation results
This paper: contributions

- Merge two (separate) strands of literature:

1. Credit frictions and housing DSGE: mainly closed economy (Aoki (2004), Iacoviello (2005), Iacoviello and Neri (2008), Calza et al. (2009), Monacelli (2009)), very few open economy (Christensen et al. (2008), soe for Canada)
This paper: contributions

- Merge two (separate) strands of literature:

1. Credit frictions and housing DSGE: mainly closed economy (Aoki (2004), Iacoviello (2005), Iacoviello and Neri (2008), Calza et al. (2009), Monacelli (2009)), very few open economy (Christensen et al. (2008), soe for Canada)

2. New Open Economy Macro (estimated) models for monetary policy analysis (Adjemian et al. (2008), Adolfson et al. (2007), De Walque et al. (2005), Rabanal and Tuesta (2006))
This paper: contributions

- Merge two (separate) strands of literature:

1. Credit frictions and housing DSGE: mainly closed economy (Aoki (2004), Iacoviello (2005), Iacoviello and Neri (2008), Calza et al. (2009), Monacelli (2009)), very few open economy (Christensen et al. (2008), soe for Canada)

2. New Open Economy Macro (estimated) models for monetary policy analysis (Adjemian et al. (2008), Adolfson et al. (2007), De Walque et al. (2005), Rabanal and Tuesta (2006))

- Build and estimate two-country model with housing sector and credit frictions
This paper: contributions

- Merge two (separate) strands of literature:
 1. Credit frictions and housing DSGE: mainly closed economy (Aoki (2004), Iacoviello (2005), Iacoviello and Neri (2008), Calza et al. (2009), Monacelli (2009)), very few open economy (Christensen et al. (2008), soe for Canada)
 2. New Open Economy Macro (estimated) models for monetary policy analysis (Adjemian et al. (2008), Adolfson et al. (2007), De Walque et al. (2005), Rabanal and Tuesta (2006))

- Build and estimate two-country model with housing sector and credit frictions
- Analyze monetary policy response to housing-related disturbances
This paper: contributions

- Merge two (separate) strands of literature:

1. Credit frictions and housing DSGE: mainly closed economy (Aoki (2004), Iacoviello (2005), Iacoviello and Neri (2008), Calza et al. (2009), Monacelli (2009)), very few open economy (Christensen et al. (2008), soe for Canada)

2. New Open Economy Macro (estimated) models for monetary policy analysis (Adjemian et al. (2008), Adolfson et al. (2007), De Walque et al. (2005), Rabanal and Tuesta (2006))

- Build and estimate two-country model with housing sector and credit frictions

- Analyze monetary policy response to housing-related disturbances

- Derive optimal monetary policy cooperation results
This paper: main results

- Reinforce existing evidence on role of housing and mortgage markets for US, provide new for euro area
This paper: main results

- Reinforce existing evidence on role of housing and mortgage markets for US, provide new for euro area
- *Collateral channel*: sizeable effects of housing-related shocks on (home) consumption, but *small* international spillovers
This paper: main results

- Reinforce existing evidence on role of housing and mortgage markets for US, provide new for euro area
- *Collateral channel*: sizeable effects of housing-related shocks on (home) consumption, but *small* international spillovers
- Monetary policy:
This paper: main results

- Reinforce existing evidence on role of housing and mortgage markets for US, provide new for euro area

- *Collateral channel*: sizeable effects of housing-related shocks on (home) consumption, but *small* international spillovers

- Monetary policy:

 1. *Positive*: direct response to house price fluctuations improves model fit
This paper: main results

- Reinforce existing evidence on role of housing and mortgage markets for US, provide new for euro area
- *Collateral channel*: sizeable effects of housing-related shocks on (home) consumption, but *small* international spillovers
- Monetary policy:
 1. *Positive*: direct response to house price fluctuations improves model fit
 2. *Normative*: some degree of reaction consistent with optimal response to housing-related shocks
Road map

- Model snapshot
Road map

- Model snapshot
- Estimation results: parameters, moments, role of housing shocks
Road map

- Model snapshot
- Estimation results: parameters, moments, role of housing shocks
- Housing and business cycle: housing shocks transmission
Road map

- Model snapshot
- Estimation results: parameters, moments, role of housing shocks
- Housing and business cycle: housing shocks transmission
- Monetary policy response to house price fluctuations:
Road map

- Model snapshot
- Estimation results: parameters, moments, role of housing shocks
- Housing and business cycle: housing shocks transmission
- Monetary policy response to house price fluctuations:
 1. Historical perspective
Road map

- Model snapshot
- Estimation results: parameters, moments, role of housing shocks
- Housing and business cycle: housing shocks transmission
- Monetary policy response to house price fluctuations:
 1. Historical perspective
 2. Normative perspective
Road map

- Model snapshot
- Estimation results: parameters, moments, role of housing shocks
- Housing and business cycle: housing shocks transmission
- Monetary policy response to house price fluctuations:
 1. Historical perspective
 2. Normative perspective
- Conclusions
Model

- State-of-the-art two-country DSGE model well-suited for empirical exercise:
Model

- State-of-the-art two-country DSGE model well-suited for empirical exercise:

 - nominal rigidities: sticky prices and wages
Model

State-of-the-art two-country DSGE model well-suited for empirical exercise:

- nominal rigidities: sticky prices and wages
- real rigidities: habit formation, variable capital utilization
Model

- State-of-the-art two-country DSGE model well-suited for empirical exercise:
 - nominal rigidities: sticky prices and wages
 - real rigidities: habit formation, variable capital utilization
 - imperfect exchange rate pass-through (LCP-PCP)
Model

- State-of-the-art two-country DSGE model well-suited for empirical exercise:
 - nominal rigidities: sticky prices and wages
 - real rigidities: habit formation, variable capital utilization
 - imperfect exchange rate pass-through (LCP-PCP)
 - incomplete international financial markets
Model

- State-of-the-art two-country DSGE model well-suited for empirical exercise:
 - nominal rigidities: sticky prices and wages
 - real rigidities: habit formation, variable capital utilization
 - imperfect exchange rate pass-through (LCP-PCP)
 - incomplete international financial markets
 - home bias
Model

- State-of-the-art two-country DSGE model well-suited for empirical exercise:
 - nominal rigidities: sticky prices and wages
 - real rigidities: habit formation, variable capital utilization
 - imperfect exchange rate pass-through (LCP-PCP)
 - incomplete international financial markets
 - home bias

- Add:
Model

- State-of-the-art two-country DSGE model well-suited for empirical exercise:
 - nominal rigidities: sticky prices and wages
 - real rigidities: habit formation, variable capital utilization
 - imperfect exchange rate pass-through (LCP-PCP)
 - incomplete international financial markets
 - home bias

- Add:
 - housing production: non-traded final good sector
Model

- State-of-the-art two-country DSGE model well-suited for empirical exercise:
 - nominal rigidities: sticky prices and wages
 - real rigidities: habit formation, variable capital utilization
 - imperfect exchange rate pass-through (LCP-PCP)
 - incomplete international financial markets
 - home bias

- Add:
 - housing production: non-traded final good sector
 - household heterogeneity (patient/impatient)
Model

- State-of-the-art two-country DSGE model well-suited for empirical exercise:
 - nominal rigidities: sticky prices and wages
 - real rigidities: habit formation, variable capital utilization
 - imperfect exchange rate pass-through (LCP-PCP)
 - incomplete international financial markets
 - home bias

- Add:
 - housing production: non-traded final good sector
 - household heterogeneity (patient/impatient)
 - credit frictions: collateralized household debt
Housing sector and credit frictions

- Two household types: savers and borrowers
Housing sector and credit frictions

- Two household types: savers and borrowers
 - Borrowers more impatient: issue debt
Housing sector and credit frictions

- Two household types: savers and borrowers
 - Borrowers more impatient: issue debt
 - Collateral constraint depending on value of housing stock
Housing sector and credit frictions

- Two household types: savers and borrowers
 - Borrowers more impatient: issue debt
 - Collateral constraint depending on value of housing stock

- Residential goods sector: treated as durable good in consumption
Housing sector and credit frictions

- Two household types: savers and borrowers
 - Borrowers more impatient: issue debt
 - Collateral constraint depending on value of housing stock

- Residential goods sector: treated as durable good in consumption
 - Produced out of labor, capital and land
Housing sector and credit frictions

- Two household types: savers and borrowers
 - Borrowers more impatient: issue debt
 - Collateral constraint depending on value of housing stock
- Residential goods sector: treated as durable good in consumption
 - Produced out of labor, capital and land
 - Land in fixed supply
Housing sector and credit frictions

- Two household types: savers and borrowers
 - Borrowers more impatient: issue debt
 - Collateral constraint depending on value of housing stock
- Residential goods sector: treated as durable good in consumption
 - Produced out of labor, capital and land
 - Land in fixed supply
 - Flexible prices, sticky wages
Housing sector and credit frictions

- Two household types: savers and borrowers
 - Borrowers more impatient: issue debt
 - Collateral constraint depending on value of housing stock

- Residential goods sector: treated as durable good in consumption
 - Produced out of labor, capital and land
 - Land in fixed supply
 - Flexible prices, sticky wages
 - Non-tradable good

Housing shocks: demand (preference), technology, loan-to-value ratio
Housing sector and credit frictions

- Two household types: savers and borrowers
 - Borrowers more impatient: issue debt
 - Collateral constraint depending on value of housing stock

- Residential goods sector: treated as durable good in consumption
 - Produced out of labor, capital and land
 - Land in fixed supply
 - Flexible prices, sticky wages
 - Non-tradable good

- Housing shocks: demand (preference), technology, loan-to-value ratio
Model: closed economy

Equations
Model: open-economy (I)

NON-RESIDENTIAL GOODS SECTOR

DISTRIBUT. (F)

FINAL CONSUMPTION GOOD (F)

IMPORTED GOOD $Y_H^* (j)$

DOMESTIC GOOD $Y_F^* (j)$

INTERMEDIATE CONSUMPTION GOODS (F)

INTERMEDIATE CONSUMPTION GOODS

H-exports

F-exports

K

N

K*

N*
Model: open-economy (II)

RESIDENTIAL GOODS SECTOR (NO TRADE)

FINALE GOODS

Y_D

Y_D (j)

INTERMEDIATE RESIDENTIAL GOODS

FINAL GOODS

Y_D

Y_D (j)

INTERMEDIATE RESIDENTIAL GOODS

FINALE GOODS

Y_D

Y_D (j)

INTERMEDIATE RESIDENTIAL GOODS

Capital
Labor
Land
Capital*
Labor*
Land*
Econometric strategy

Econometric strategy

- Method: Bayesian estimation of the DSGE model: calibration and prior choice
- Symmetric specification of behavioural equations for US and Euro Area

Data: 1985q1 : 2005q4
- macro variables for each area: GDP, cons, invest, employment, CPI, GDP deflator, real wages, 3-month interest rate
- housing variables: real house prices, residential investment, household debt

Open-economy: US current account, euro/dollar exchange rate

Exogenous shocks:
- inefficient shocks and monetary policy shocks are i.i.d.
- all other shocks: AR(1)
Econometric strategy

- Method: Bayesian estimation of the DSGE model: calibration and prior choice

- Symmetric specification of behavioural equations for US and Euro Area

- **Data:**
Econometric strategy

- Method: Bayesian estimation of the DSGE model: calibration and prior choice

- Symmetric specification of behavioural equations for US and Euro Area

- **Data:**

 - 1985q1 : 2005q4
Econometric strategy

- Method: Bayesian estimation of the DSGE model: calibration and prior choice
- Symmetric specification of behavioural equations for US and Euro Area
- Data:
 - 1985q1 : 2005q4
 - macro variables for each area: GDP, cons, invest, employment, CPI infl, GDP infl, real wages, 3-month int.rate
Econometric strategy

- Method: Bayesian estimation of the DSGE model: calibration and prior choice

- Symmetric specification of behavioural equations for US and Euro Area

- Data:
 - 1985q1 : 2005q4
 - Macro variables for each area: GDP, cons, invest, employment, CPI infl, GDP infl, real wages, 3-month int. rate
 - Housing variables: real house prices, residential inv., household debt
Econometric strategy

- Method: Bayesian estimation of the DSGE model: calibration and prior choice
- Symmetric specification of behavioural equations for US and Euro Area

Data:

- 1985q1 : 2005q4
- Macro variables for each area: GDP, cons, invest, employment, CPI infl, GDP infl, real wages, 3-month int.rate
- Housing variables: real house prices, residential inv., household debt
- Open-economy: US current account, euro/dollar exchange rate
Econometric strategy

- Method: Bayesian estimation of the DSGE model: calibration and prior choice

- Symmetric specification of behavioural equations for US and Euro Area

- **Data:**
 - 1985q1 : 2005q4
 - macro variables for each area: GDP, cons, invest, employment, CPI infl, GDP infl, real wages, 3-month int.rate
 - housing variables: real house prices, residential inv., household debt
 - open-economy: US current account, euro/dollar exchange rate

- Exogenous shocks:
Econometric strategy

- Method: Bayesian estimation of the DSGE model: calibration and prior choice

- Symmetric specification of behavioural equations for US and Euro Area

- Data:
 - 1985q1 : 2005q4
 - macro variables for each area: GDP, cons, invest, employment, CPI infl, GDP infl, real wages, 3-month int.rate
 - housing variables: real house prices, residential inv., household debt
 - open-economy: US current account, euro/dollar exchange rate

- Exogenous shocks:
 - inefficient shocks and monetary policy shocks are i.i.d.
Econometric strategy

- Method: Bayesian estimation of the DSGE model: calibration and prior choice
- Symmetric specification of behavioural equations for US and Euro Area

Data:
- 1985q1 : 2005q4
- macro variables for each area: GDP, cons, invest, employment, CPI infl, GDP infl, real wages, 3-month int.rate
- housing variables: real house prices, residential inv., household debt
- open-economy: US current account, euro/dollar exchange rate

- Exogenous shocks:
 - inefficient shocks and monetary policy shocks are i.i.d.
 - all other shocks: AR(1)
Estimation results: posterior distributions

- Closed economy: results broadly in line with literature (Smets and Wouters (2005)), except for:
 - Risk aversion: $\sigma_X = 0.64$, $\sigma_X = 1.06$.
 - Habit: $h = 0.58$, $h = 0.83$, $h_B = 0.31$, $h_B = 0.28$.

- Open economy: in line with literature (Adjemian et al. (2008)).
 - High home bias (0.98).
 - Low pricing-to-market ($\eta = 0.98$, $\eta = 0.86$).

- Housing-related parameters:
 - Share of borrowers (ω, ω) posterior modes: 0.24, 0.19, lower than prior mean (0.35).
 - Low nominal rigidity in housing sector.
 - High persistence of housing shocks.
Estimation results: posterior distributions

- Closed economy: results broadly in line with literature (Smets and Wouters (2005)), except for:

 . risk aversion: $\sigma_X = 0.64$, $\sigma^*_X = 1.06$

- Open economy: in line with literature (Adjemian et al. (2008)).

 high home bias (0.98)
 low pricing-to-market ($\eta = 0.98$, $\eta^* = 0.86$)

- Housing-related parameters:

 share of borrowers (ω, ω^*) posterior modes: 0.24, 0.19, lower than prior mean (0.35)

 low nominal rigidity in housing sector
 high persistence of housing shocks
Estimation results: posterior distributions

- Closed economy: results broadly in line with literature (Smets and Wouters (2005)), except for:
 - risk aversion: $\sigma_X = 0.64, \sigma_X^* = 1.06$
 - habit: $h = 0.58, h^* = 0.83, h_B = 0.31, h_B^* = 0.28$

- Open economy: in line with literature (Adjemian et al. (2008)).
 - high home bias (0.98)
 - low pricing-to-market ($\eta = 0.98, \eta^* = 0.86$)

- Housing-related parameters:
 - share of borrowers (ω, ω^*) posterior modes: $0.24, 0.19$, lower than prior mean (0.35)
 - Borrowers share
 - low nominal rigidity in housing sector
 - high persistence of housing shocks
Estimation results: posterior distributions

- Closed economy: results broadly in line with literature (Smets and Wouters (2005)), except for:
 - risk aversion: $\sigma_X = 0.64$, $\sigma_X^* = 1.06$
 - habit: $h = 0.58$, $h^* = 0.83$, $h_B = 0.31$, $h_B^* = 0.28$

- Open economy: in line with literature (Adjemian et al. (2008))
Estimation results: posterior distributions

- Closed economy: results broadly in line with literature (Smets and Wouters (2005)), except for:
 - risk aversion: $\sigma_X = 0.64$, $\sigma_X^* = 1.06$
 - habit: $h = 0.58$, $h^* = 0.83$, $h_B = 0.31$, $h_B^* = 0.28$

- Open economy: in line with literature (Adjemian et al. (2008))
 - high home bias (0.98)
Estimation results: posterior distributions

- Closed economy: results broadly in line with literature (Smets and Wouters (2005)), except for:
 - risk aversion: $\sigma_X = 0.64$, $\sigma^*_X = 1.06$
 - habit: $h = 0.58$, $h^* = 0.83$, $h_B = 0.31$, $h^*_B = 0.28$

- Open economy: in line with literature (Adjemian et al. (2008))
 - high home bias (0.98)
 - low pricing-to-market ($\eta = 0.98$, $\eta^* = 0.86$)
Estimation results: posterior distributions

- Closed economy: results broadly in line with literature (Smets and Wouters (2005)), except for:
 - risk aversion: $\sigma_X = 0.64$, $\sigma^*_X = 1.06$
 - habit: $h = 0.58$, $h^* = 0.83$, $h_B = 0.31$, $h^*_B = 0.28$

- Open economy: in line with literature (Adjemian et al. (2008))
 - high home bias (0.98)
 - low pricing-to-market ($\eta = 0.98$, $\eta^* = 0.86$)

- Housing-related parameters:
Estimation results: posterior distributions

- Closed economy: results broadly in line with literature (Smets and Wouters (2005)), except for:
 - risk aversion: $\sigma_X = 0.64$, $\sigma_X^* = 1.06$
 - habit: $h = 0.58$, $h^* = 0.83$, $h_B = 0.31$, $h_B^* = 0.28$

- Open economy: in line with literature (Adjemian et al. (2008))
 - high home bias (0.98)
 - low pricing-to-market ($\eta = 0.98$, $\eta^* = 0.86$)

- Housing-related parameters:
 - share of borrowers (ω, ω^*) posterior modes: 0.24, 0.19, lower than prior mean (0.35)
Estimation results: posterior distributions

- Closed economy: results broadly in line with literature (Smets and Wouters (2005)), except for:
 - risk aversion: $\sigma_X = 0.64$, $\sigma^*_X = 1.06$
 - habit: $h = 0.58$, $h^* = 0.83$, $h_B = 0.31$, $h^*_B = 0.28$

- Open economy: in line with literature (Adjemian et al. (2008))
 - high home bias (0.98)
 - low pricing-to-market ($\eta = 0.98$, $\eta^* = 0.86$)

- Housing-related parameters:
 - share of borrowers (ω, ω^*) posterior modes: 0.24, 0.19, lower than prior mean (0.35)
 - low nominal rigidity in housing sector
Estimation results: posterior distributions

- Closed economy: results broadly in line with literature (Smets and Wouters (2005)), except for:

 . risk aversion: $\sigma_X = 0.64$, $\sigma_X^* = 1.06$
 . habit: $h = 0.58$, $h^* = 0.83$, $h_B = 0.31$, $h_B^* = 0.28$

- Open economy: in line with literature (Adjemian et al. (2008))

 . high home bias (0.98)
 . low pricing-to-market ($\eta = 0.98$, $\eta^* = 0.86$)

- Housing-related parameters:

 . share of borrowers (ω, ω^*) posterior modes: 0.24, 0.19, lower than prior mean (0.35)
 . low nominal rigidity in housing sector
 . high persistence of housing shocks
Matching moments

> Cross-country correlations

<table>
<thead>
<tr>
<th></th>
<th>data</th>
<th>baseline</th>
<th>high</th>
<th>borr</th>
<th>augm.TR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z_t, C_t</td>
<td>0.80</td>
<td>0.68</td>
<td>0.70</td>
<td>0.70</td>
<td>0.70</td>
</tr>
<tr>
<td>Z_t, I_t</td>
<td>0.64</td>
<td>0.72</td>
<td>0.67</td>
<td>0.74</td>
<td>0.74</td>
</tr>
<tr>
<td>Z_t, Z_{Dt}</td>
<td>0.52</td>
<td>0.17</td>
<td>0.15</td>
<td>0.12</td>
<td>0.12</td>
</tr>
<tr>
<td>T_{Dt}, C_t</td>
<td>0.12</td>
<td>0.30</td>
<td>0.31</td>
<td>0.10</td>
<td>0.10</td>
</tr>
<tr>
<td>Z_{Dt}, T_{Dt}</td>
<td>0.25</td>
<td>0.40</td>
<td>0.41</td>
<td>0.38</td>
<td>0.38</td>
</tr>
<tr>
<td>Z_{Dt}, C_t</td>
<td>0.74</td>
<td>0.12</td>
<td>0.12</td>
<td>0.05</td>
<td>0.05</td>
</tr>
<tr>
<td>$Z^_t, C^_t$</td>
<td>0.93</td>
<td>0.65</td>
<td>0.77</td>
<td>0.84</td>
<td>0.84</td>
</tr>
<tr>
<td>$Z^_t, I^_t$</td>
<td>0.92</td>
<td>0.65</td>
<td>0.72</td>
<td>0.87</td>
<td>0.87</td>
</tr>
<tr>
<td>$Z^_t, Z^_{Dt}$</td>
<td>0.24</td>
<td>0.04</td>
<td>0.04</td>
<td>0.05</td>
<td>0.05</td>
</tr>
<tr>
<td>$T^_{Dt}, C^_t$</td>
<td>0.52</td>
<td>0.11</td>
<td>0.16</td>
<td>0.16</td>
<td>0.16</td>
</tr>
<tr>
<td>$Z^_{Dt}, T^_{Dt}$</td>
<td>0.41</td>
<td>0.42</td>
<td>0.39</td>
<td>0.34</td>
<td>0.34</td>
</tr>
<tr>
<td>$Z^_{Dt}, C^_t$</td>
<td>0.34</td>
<td>-0.07</td>
<td>-0.06</td>
<td>-0.07</td>
<td>-0.07</td>
</tr>
<tr>
<td>Z_t, Z^*_t</td>
<td>0.22</td>
<td>0.09</td>
<td>0.14</td>
<td>0.14</td>
<td>0.14</td>
</tr>
<tr>
<td>C_t, C^*_t</td>
<td>-0.03</td>
<td>-0.17</td>
<td>-0.03</td>
<td>-0.06</td>
<td>-0.06</td>
</tr>
<tr>
<td>Z_{Dt}, Z^*_{Dt}</td>
<td>-0.47</td>
<td>0.00</td>
<td>0.01</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>T_{Dt}, T^*_{Dt}</td>
<td>0.15</td>
<td>-0.03</td>
<td>0.00</td>
<td>-0.01</td>
<td>-0.01</td>
</tr>
<tr>
<td>$\Delta s_t, C_{At}$</td>
<td>-0.23</td>
<td>-0.34</td>
<td>-0.24</td>
<td>-0.28</td>
<td>-0.28</td>
</tr>
<tr>
<td>C^*_{rel}, RER_t</td>
<td>-0.29</td>
<td>-0.21</td>
<td>-0.34</td>
<td>-0.25</td>
<td>-0.25</td>
</tr>
</tbody>
</table>
Housing shocks and economic fluctuations

- **Variance decomposition**

<table>
<thead>
<tr>
<th></th>
<th>Domestic Housing</th>
<th>Other Domestic</th>
<th>Non Domestic</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ϵ_t^{AD}</td>
<td>ϵ_t^{LTV}</td>
<td>ϵ_t^D</td>
</tr>
<tr>
<td>US</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Z_t</td>
<td>0.34</td>
<td>0.39</td>
<td>2.45</td>
</tr>
<tr>
<td>C_t</td>
<td>1.32</td>
<td>1.30</td>
<td>2.99</td>
</tr>
<tr>
<td>Z_{Dt}</td>
<td>57.65</td>
<td>0.04</td>
<td>31.93</td>
</tr>
<tr>
<td>T_{Dt}</td>
<td>7.87</td>
<td>0.08</td>
<td>80.11</td>
</tr>
<tr>
<td>Π_t</td>
<td>0.15</td>
<td>0.01</td>
<td>0.02</td>
</tr>
<tr>
<td>R_t</td>
<td>0.09</td>
<td>0.48</td>
<td>2.11</td>
</tr>
<tr>
<td>B_t</td>
<td>2.94</td>
<td>36.16</td>
<td>49.26</td>
</tr>
<tr>
<td>Euro Area</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Z_{t}^*</td>
<td>0.09</td>
<td>0.25</td>
<td>4.79</td>
</tr>
<tr>
<td>C_{t}^*</td>
<td>0.68</td>
<td>0.92</td>
<td>4.54</td>
</tr>
<tr>
<td>Z_{Dt}^*</td>
<td>59.51</td>
<td>0.04</td>
<td>34.36</td>
</tr>
<tr>
<td>T_{Dt}^*</td>
<td>5.62</td>
<td>0.08</td>
<td>85.36</td>
</tr>
<tr>
<td>Π_t^*</td>
<td>0.03</td>
<td>0.01</td>
<td>3.42</td>
</tr>
<tr>
<td>R_{t}^*</td>
<td>0.05</td>
<td>0.14</td>
<td>8.97</td>
</tr>
<tr>
<td>B_{t}^*</td>
<td>1.97</td>
<td>31.16</td>
<td>42.92</td>
</tr>
<tr>
<td>ΔS_t</td>
<td>0.01</td>
<td>0.00</td>
<td>0.57</td>
</tr>
<tr>
<td>CA_t</td>
<td>0.00</td>
<td>0.01</td>
<td>0.84</td>
</tr>
</tbody>
</table>

- **Sensitivity to ω**
The propagation of EA monetary policy shocks

- Benchmark (plain and shaded area), high ω (dotted, blue), $\omega = 0$ (cross, red)
The propagation of EA housing demand shocks

- **Housing preference** Def: Benchmark (plain and shaded area), high ω (dotted, blue), $\omega = 0$ (cross, red)
Summary of results on internal propagation mechanism

- Housing-specific shocks generate sizeable effects on non-residential consumption (*collateral channel*)
Summary of results on internal propagation mechanism

- Housing-specific shocks generate sizeable effects on non-residential consumption (*collateral channel*)
- Open economy: *small* international spillovers (housing sector is flex-price, nontraded)
Summary of results on internal propagation mechanism

- Housing-specific shocks generate sizeable effects on non-residential consumption (*collateral channel*)
- Open economy: *small* international spillovers (housing sector is flex-price, nontraded)
- However, housing shocks help capturing observed cross-correlations in residential investment and housing prices
Summary of results on internal propagation mechanism

- Housing-specific shocks generate sizeable effects on non-residential consumption (*collateral channel*)
- Open economy: *small* international spillovers (housing sector is flex-price, nontraded)
- However, housing shocks help capturing observed cross-correlations in residential investment and housing prices
- Credit frictions alter the relative responses of aggregate consumption and output to exogenous shocks (e.g. G shocks)
Monetary policy and housing prices

- Monetary policy implications of housing-related disturbances
Monetary policy and housing prices

- Monetary policy implications of housing-related disturbances
- *Positive* perspective: estimate model under *augmented* Taylor rules (allow for *systematic* response to house price fluctuations)
Monetary policy and housing prices

- Monetary policy implications of housing-related disturbances
- *Positive* perspective: estimate model under *augmented* Taylor rules (allow for *systematic* response to house price fluctuations)
- *Normative* perspective: compare response to housing demand shock under (i) estimated rules and (ii) optimal monetary policy cooperation
Positive perspective: estimate model under augmented Taylor rules

\[r_t = \rho r_{t-1} + r_{\Delta \pi} (\pi_t - \pi_{t-1}) + (1 - \rho) (r_{\pi \pi} \pi_{t-1} + r_y y_{t-1}) + r_{\Delta y} \Delta y_t + r_{\Delta T_D} \Delta t_{D,t} + \log(\varepsilon^R_t) \]
Positive perspective: estimate model under augmented Taylor rules

\[r_t = \rho r_{t-1} + r_{\Delta \pi} (\pi_t - \pi_{t-1}) + (1 - \rho)(r_{\pi \pi} \pi_{t-1} + r_y y_{t-1}) + r_{\Delta y} \Delta y_t + r_{\Delta T_D} \Delta t_{D,t} + \log(\varepsilon_t^R) \]

Prior distributions for \(r_{\Delta T_D}, r_{\Delta T_D}^* : N(0,0.5) \)
Historical conduct of monetary policy (I)

- **Positive** perspective: estimate model under *augmented* Taylor rules

\[
 r_t = \rho r_{t-1} + r_{\Delta \pi} (\pi_t - \pi_{t-1}) + (1 - \rho) (r_{\pi} \pi_{t-1} + r_y y_{t-1}) \\
 + r_{\Delta y} \Delta y_t + r_{\Delta T_D} \Delta t_{D,t} + \log(\varepsilon_t^R)
\]

- Prior distributions for $r_{\Delta T_D}, r^{*}_{\Delta T_D}: N(0,0.5)$
- Estimated posterior modes: $r_{\Delta T_D} = 0.10$, $r^{*}_{\Delta T_D} = 0.17$ (other parameters robust)
Historical conduct of monetary policy (I)

- **Positive perspective:** estimate model under *augmented* Taylor rules

\[r_t = \rho r_{t-1} + r_{\Delta \pi} (\pi_t - \pi_{t-1}) + (1 - \rho) (r_{\pi} \pi_{t-1} + r_y y_{t-1}) + r_{\Delta y} \Delta y_t + r_{\Delta T_D} \Delta t_{D,t} + \log(\epsilon_t^R) \]

- Prior distributions for \(r_{\Delta T_D}, r^*_T \): \(N(0, 0.5) \)

- Estimated posterior modes: \(r_{\Delta T_D} = 0.10, \ r^*_T = 0.17 \) (other parameters robust)

- Large improvement in fit: log marginal density = -2450.12 (benchmark: -2485.19)
Historical conduct of monetary policy (II)

- Analyze historical role of housing preference shocks (not reported)

Housing pref. shocks capture larger share of volatility, smaller of residential investment and house prices

Intuition: "housing demand (t)" "cost of borrowing" counteract initial "housing demand"

Thus: larger fluctuations in r, smaller response of housing quantities and prices
Historical conduct of monetary policy (II)

- Analyze historical role of housing preference shocks (not reported)
- Housing pref. shocks capture larger share of r volatility, smaller of residential investment and house prices
Historical conduct of monetary policy (II)

- Analyze historical role of housing preference shocks (not reported)
- Housing pref. shocks capture larger share of r volatility, smaller of residential investment and house prices
- Intuition: \uparrow housing demand \Rightarrow $\uparrow t_D$ \Rightarrow $\uparrow r$ \Rightarrow \uparrow cost of borrowing \Rightarrow counteract initial \uparrow housing demand
Historical conduct of monetary policy (II)

- Analyze historical role of housing preference shocks (not reported)
- Housing pref. shocks capture larger share of r volatility, smaller of residential investment and house prices
- Intuition: \uparrow housing demand \Rightarrow $\uparrow t_D \Rightarrow \uparrow r \Rightarrow \uparrow$ cost of borrowing \Rightarrow counteract initial \uparrow housing demand
- Thus: larger fluctuations in r, smaller response of housing quantities and prices
Optimal monetary policy cooperation

- Optimal policy cooperation (Ramsey): max conditional expected welfare

\[
\mathcal{W}_{\text{world},0} = \mathcal{W}_{\text{H},0} + \mathcal{W}_{\text{F},0}
\]

Definitions
Optimal monetary policy cooperation

- Optimal policy cooperation (Ramsey): max conditional expected welfare

\[\mathcal{W}_{\text{world},0} = \mathcal{W}_{H,0} + \mathcal{W}_{F,0} \]

Definitions:

\[\mathcal{W}_{H,t} \equiv \omega \mathcal{W}^B_{H,t} + (1 - \omega) \mathcal{W}^S_{H,t} + \lambda_R \mathbb{E}_t \sum_{j=0}^{\infty} \beta^j (R_{t+j} - R^*)^2 \]

\[\mathcal{W}_{F,t} \equiv \omega \mathcal{W}^B_{F,t} + (1 - \omega) \mathcal{W}^S_{F,t} + \lambda^* \mathbb{E}_t \sum_{j=0}^{\infty} \beta^j (R^*_{t+j} - R^*)^2 \]

- Restrict attention to optimal response to housing demand shocks (not large fluctuations in housing prices)
- Do not provide systematic analysis of all factors that affect optimal cooperation (future research)
Optimal monetary policy cooperation

- Optimal policy cooperation (Ramsey): max conditional expected welfare
 \[W_{\text{world},0} = W_{H,0} + W_{F,0} \]

Definitions:

- \[W_{H,t} \equiv \omega W_{H,t}^B + (1 - \omega) W_{H,t}^S + \lambda R_{\text{t}} \mathbb{E}_t \sum_{j=0}^{\infty} \beta^j (R_{t+j} - R^*)^2 \]

- \[W_{F,t} \equiv \omega W_{F,t}^B + (1 - \omega) W_{F,t}^S + \lambda^* R_{\text{t}} \mathbb{E}_t \sum_{j=0}^{\infty} \beta^j (R_{t+j}^* - R^*)^2 \]

- Restrict attention to optimal response to housing demand shocks (large fluctuations in housing prices)

Do not provide systematic analysis of all factors that affect optimal cooperation (future research)
Optimal monetary policy cooperation

- Optimal policy cooperation (Ramsey): max conditional expected welfare

\[\mathcal{W}_{world,0} = \mathcal{W}_{H,0} + \mathcal{W}_{F,0} \]

Definitions:

\[\mathcal{W}_{H,t} \equiv \omega \mathcal{W}_{H,t}^{B} + (1 - \omega) \mathcal{W}_{H,t}^{S} + \lambda_{R} \mathbb{E}_{t} \sum_{j=0}^{\infty} \beta^{j} (R_{t+j} - R^{*})^{2} \]

\[\mathcal{W}_{F,t} \equiv \omega \mathcal{W}_{F,t}^{B} + (1 - \omega) \mathcal{W}_{F,t}^{S} + \lambda_{R}^{*} \mathbb{E}_{t} \sum_{j=0}^{\infty} \beta^{j} (R_{t+j}^{*} - R^{*})^{2} \]

- Restrict attention to optimal response to housing demand shocks (large fluctuations in housing prices)

- Do not provide systematic analysis of all factors that affect optimal cooperation (future research)
Optimal response to housing preference shock

- Optimal response (plain) with benchmark (dotted) and augmented estimated Taylor rule (cross, blue)

- Optimal and augmented Taylor rule quite similar in US (less so in EA)
Optimal response to housing preference shock

- No borrowing ($\omega = 0$)

- Still optimal to control for housing price fluctuations
Optimal simple rules

- Additional exercise: compute optimal (welfare-max) simple rules: $r_{\Delta T_{D,t}} = 0.04$, $r_{\Delta T_{D,t}}^* = 0.02$
Optimal simple rules

- Additional exercise: compute optimal (welfare-max) simple rules: \(r_{\Delta T_{D,t}} = 0.04, r^*_{\Delta T_{D,t}} = 0.02 \)
- Estimated augmented Taylor rules yield higher aggregate welfare than benchmark ones under housing shocks
Optimal simple rules

- Additional exercise: compute optimal (welfare-max) simple rules: \(r_{\Delta T_{D,t}} = 0.04, r_{\Delta T_{D,t}}^* = 0.02 \)
- Estimated augmented Taylor rules yield higher aggregate welfare than benchmark ones under housing shocks
- Results are \textbf{conditional} on type of structural disturbances considered
Conclusions

- Explore role of housing markets and credit frictions for monetary policy conduct in open economy.
Conclusions

- Explore role of housing markets and credit frictions for monetary policy conduct in open economy
- Estimated model reproduces selected international business cycle facts
Conclusions

- Explore role of housing markets and credit frictions for monetary policy conduct in open economy
- Estimated model reproduces selected international business cycle facts
- Collateral channel: significant effect on domestic consumption; small international spillovers
Conclusions

- Explore role of housing markets and credit frictions for monetary policy conduct in open economy
- Estimated model reproduces selected international business cycle facts
- *Collateral channel*: significant effect on domestic consumption; *small* international spillovers
- Monetary policy: responding to housing price fluctuations (demand) improves welfare
Conclusions

- Explore role of housing markets and credit frictions for monetary policy conduct in open economy
- Estimated model reproduces selected international business cycle facts
 - *Collateral channel*: significant effect on domestic consumption; *small* international spillovers
- Monetary policy: responding to housing price fluctuations (demand) improves welfare
- Optimal policy counteracts heterogeneous responses across households even at the cost of short-term inflation volatility
Conclusions

- Explore role of housing markets and credit frictions for monetary policy conduct in open economy
- Estimated model reproduces selected international business cycle facts
- **Collateral channel**: significant effect on domestic consumption; *small* international spillovers
- Monetary policy: responding to housing price fluctuations (demand) improves welfare
- Optimal policy counteracts heterogeneous responses across households even at the cost of short-term inflation volatility
- Optimal cooperation: not enough to focus on price stability, household heterogeneity and nominal debt add new trade-offs
Conclusions

- Explore role of housing markets and credit frictions for monetary policy conduct in open economy
- Estimated model reproduces selected international business cycle facts
- **Collateral channel**: significant effect on domestic consumption; *small* international spillovers
- Monetary policy: responding to housing price fluctuations (demand) improves welfare
- Optimal policy counteracts heterogeneous responses across households even at the cost of short-term inflation volatility
- Optimal cooperation: not enough to focus on price stability, household heterogeneity and nominal debt add new trade-offs
- Directions of future research:
Conclusions

- Explore role of housing markets and credit frictions for monetary policy conduct in open economy
- Estimated model reproduces selected international business cycle facts
- *Collateral channel*: significant effect on domestic consumption; *small* international spillovers
- Monetary policy: responding to housing price fluctuations (demand) improves welfare
- Optimal policy counteracts heterogeneous responses across households even at the cost of short-term inflation volatility
- Optimal cooperation: not enough to focus on price stability, household heterogeneity and nominal debt add new trade-offs
- Directions of future research:
 1. Better characterization of credit frictions to account for cross-country transmission of shocks
Conclusions

- Explore role of housing markets and credit frictions for monetary policy conduct in open economy
- Estimated model reproduces selected international business cycle facts
- **Collateral channel**: significant effect on domestic consumption; small international spillovers
- Monetary policy: responding to housing price fluctuations (demand) improves welfare
- Optimal policy counteracts heterogeneous responses across households even at the cost of short-term inflation volatility
- Optimal cooperation: not enough to focus on price stability, household heterogeneity and nominal debt add new trade-offs
- Directions of future research:
 1. Better characterization of credit frictions to account for cross-country transmission of shocks
 2. Deeper analysis of optimal monetary policy cooperation
THE END
Housing sector data

- US: Census index (quality-adjusted, price of new one-family houses sold including value of lot); alternatives: OFHEO (Conventional Mortgage House Price Index): repeat sales, upward biased; Case-Shiller-Weiss: repeat sales, shorter period

- Euro Area: interpolate original (annual) data to obtain quarterly series
Housing preference shock

\[
\tilde{X}_t^b \equiv \left[\left(1 - \epsilon_t^D \omega_D \right)^{\frac{1}{\eta_D}} \left(\tilde{C}_t^b - h_b \tilde{C}_{t-1}^b \right)^{\frac{\eta_D-1}{\eta_D}} + \left(\epsilon_t^D \omega_D \right)^{\frac{1}{\eta_D}} \left(\tilde{D}_t^b \right)^{\frac{\eta_D-1}{\eta_D}} \right]^{\eta_D \over \eta_D-1}
\]

\[
X_t^s \equiv \left[\left(1 - \epsilon_t^D \omega_D \right)^{\frac{1}{\eta_D}} \left(C_t^s - h_s C_{t-1}^s \right)^{\frac{\eta_D-1}{\eta_D}} + \left(\epsilon_t^D \omega_D \right)^{\frac{1}{\eta_D}} \left(D_t^s \right)^{\frac{\eta_D-1}{\eta_D}} \right]^{\eta_D \over \eta_D-1}
\]

\[
\epsilon_t^D = \rho_D \epsilon_{t-1}^D + u_t^D
\]
Loan-to-value ratio shock

\[
\tilde{b}_{H,t} \leq \varepsilon_t^{LTV} (1 - \chi) \mathbb{E}_t \left\{ T_{D,t+1} \tilde{D}_t \frac{\pi_{t+1}}{R_t} \right\}
\]

\[
\varepsilon_t^{LTV} = \rho_{LTV} \varepsilon_{t-1}^{LTV} + u_t^{LTV}
\]
Optimal monetary policy response to housing demand shocks

▶ Euro Area
Housing market and collateral constraints

- Two household types in each country:

 ▶ Different intertemporal discount factor shares: $(1 - \omega)$ patient, ω impatient.

 Credit frictions: collateral constraint faced by impatient agent $(\epsilon b_H, t) (1 - \chi) E_t T D_t, t + 1 e^{-D_t / \pi_t} + 1 R_t$.

 Residential goods sector: dual role. Housing (durable good) can be consumed and pledged as collateral. Housing good cannot be internationally traded.
Housing market and collateral constraints

- Two household types in each country:
 - different intertemporal discount factor

- Credit frictions: collateral constraint faced by impatient agent (borrower)

- Residential goods sector: dual role. Housing (durable good) can be consumed and pledged as collateral. Housing good cannot be internationally traded.
Housing market and collateral constraints

- Two household types in each country:
 - different intertemporal discount factor
 - shares: \((1 - \omega)\) patient, \(\omega\) impatient
Housing market and collateral constraints

- Two household types in each country:
 - different intertemporal discount factor
 - shares: \((1 - \omega)\) patient, \(\omega\) impatient

- Credit frictions: collateral constraint faced by impatient agent (borrower)

\[
\tilde{b}_{H,t} \leq (1 - \chi) \mathbb{E}_t \left\{ T_{D,t+1} \tilde{D}_t \frac{\pi_{t+1}}{R_t} \right\}
\]
Housing market and collateral constraints

- Two household types in each country:
 - different intertemporal discount factor
 - shares: \((1 - \omega)\) patient, \(\omega\) impatient

- Credit frictions: collateral constraint faced by impatient agent (borrower)

\[
\tilde{b}_{H,t} \leq (1 - \chi) \mathbb{E}_t \left\{ T_{D,t+1} \tilde{D}_t \frac{\pi_{t+1}}{R_t} \right\}
\]

- Residential goods sector: dual role
Housing market and collateral constraints

- Two household types in each country:
 - different intertemporal discount factor
 - shares: \((1 - \omega)\) patient, \(\omega\) impatient

- Credit frictions: collateral constraint faced by impatient agent (borrower)

\[
\tilde{b}_{H,t} \leq (1 - \chi) \mathbb{E}_t \left\{ T_{D,t+1} \tilde{D}_t \frac{\pi_{t+1}}{R_t} \right\}
\]

- Residential goods sector: dual role
 - housing (durable good) can be consumed and pledged as collateral
Housing market and collateral constraints

- Two household types in each country:
 - different intertemporal discount factor
 - shares: \((1 - \omega)\) patient, \(\omega\) impatient

- Credit frictions: collateral constraint faced by impatient agent (borrower)
 \[
 \tilde{b}_{H,t} \leq (1 - \chi) \mathbb{E}_t \left\{ T_{D,t+1} \tilde{D}_t \frac{\pi_{t+1}}{R_t} \right\}
 \]

- Residential goods sector: dual role
 - housing (durable good) can be consumed and pledged as collateral
 - housing good *cannot* be internationally *traded*
Borrower’s problem

\[
\max E_t \left\{ \sum_{j \geq 0} \beta^j \left[\frac{1}{1-\sigma_X} \left(\tilde{X}^b_{t+j} \right) \frac{1}{1-\sigma_X} - \frac{\varepsilon^L_{t+j} \tilde{L}_C}{1+\sigma_L} \left(L^b_{C,t+j} \right) \frac{1}{1+\sigma_L} \right] \right\}
\]

consumption index:

\[
\tilde{X}^b_t \equiv \left[(1 - \varepsilon^D_t \omega_D) \right]^{\frac{1}{\eta_D}} \left(\tilde{C}^b_t - h_B \tilde{C}_{t-1} \right)^{\frac{\eta_D-1}{\eta_D}} + \left(\varepsilon^D_t \omega_D \right)^{\frac{1}{\eta_D}} \left(\tilde{D}^b_t \right)^{\frac{\eta_D-1}{\eta_D}}\right]^{\frac{\eta_D}{\eta_D-1}}
\]

s.t.

\[
\tilde{C}^b_t + T_{D,t} \left(\tilde{D}^b_t - (1 - \delta) \tilde{D}^b_{t-1} \right) + \frac{R_{t-1} \tilde{B}^b_{H,t-1}}{\pi_t P_{t-1}}
\]

\[
= \frac{\tilde{B}^b_{H,t}}{P_t} + \frac{\tilde{A}^b_t}{P_t} + \frac{W^b_{C,t} L^b_{C,t} + W^b_{D,t} L^b_{D,t}}{P_t}
\]

and

\[
\tilde{b}_{H,t} \leq \varepsilon^{LTV}_t (1 - \chi) \mathbb{E}_t \left\{ T_{D,t} + \frac{\tilde{D}_t}{R_t} \right\}
\]
Saver’s problem

$$\max \mathbb{E}_t \left\{ \sum_{j \geq 0} \gamma^j \left[\frac{1}{1-\sigma_X} \left(X^s_{t+j} \right)^{1-\sigma_X} - \frac{\varepsilon^L_{t+j} L^C}{1+\sigma_{LC}} \left(L^s_{C,t+j} \right)^{1+\sigma_{LC}} \right] \right\}$$

consumption index:

$$X^s_t \equiv \left[\left(1 - \varepsilon^D_t \omega_D \right)^{\frac{1}{\eta_D}} \left(C^s_t - h C^s_{t-1} \right)^{\frac{\eta_D-1}{\eta_D}} + \varepsilon^D_t \omega^\frac{1}{\eta_D} D^s_t \right]^{\frac{\eta_D}{\eta_D-1}}$$

s.t.

$$C^s_t + T_{D,t} \left(D^s_t - (1 - \delta) D^s_{t-1} \right) + I^s_t + \frac{B^s_{H,t}}{P_t} + \frac{S_t B^s_{F,t}}{P_t} = \frac{R_{t-1} B^s_{H,t-1}}{\pi_t P_{t-1}} + \frac{S_t R^*_t B^s_{F,t-1}}{\pi_t P_{t-1}} + \sum_{j=C,D} \left[R^k_{t-1} u^j_t K^j_t - \Phi \left(u^j_t \right) K^j_t \right]$$

$$+ \frac{(W^s_{C,t} L^s_{C,t} + W^s_{D,t} L^s_{D,t})}{P_t} + A^s_t + \Pi^s_t$$
Structural shocks

- efficient: technology ($\varepsilon^A_t, \varepsilon^A_{t*}, \varepsilon^A_{tD}, \varepsilon^A_{tD*}$), investment ($\varepsilon^I_t, \varepsilon^I_{t*}$), labor supply ($\varepsilon^L_t, \varepsilon^L_{t*}$), public expenditure ($\varepsilon^G_t, \varepsilon^G_{t*}$), taste ($\varepsilon^B_t, \varepsilon^B_{t*}$), housing preference ($\varepsilon^D_t, \varepsilon^D_{t*}$), loan-to-value ratio ($\varepsilon^{LTV}_t, \varepsilon^{LTV*}_t$), relative home bias ($\varepsilon^{\Delta n}_t$)
Structural shocks

- efficient: technology (ε^A_t, $\varepsilon^A_t^*$, ε^D_t, $\varepsilon^D_t^*$), investment (ε^I_t, $\varepsilon^I_t^*$), labor supply (ε^L_t, $\varepsilon^L_t^*$), public expenditure (ε^G_t, $\varepsilon^G_t^*$), taste (ε^B_t, $\varepsilon^B_t^*$), housing preference (ε^D_t, $\varepsilon^D_t^*$), loan-to-value ratio (ε^{LTV}_t, $\varepsilon^{LTV}_t^*$), relative home bias ($\varepsilon^{\Delta n}_t$)

- inefficient: PPI markups (ε^P_t, $\varepsilon^P_t^*$), CPI markups (ε^{CPI}_t, $\varepsilon^{CPI}_t^*$), external finance risk premium (ε^Q_t, $\varepsilon^Q_t^*$), UIP ($\varepsilon^{\Delta S}_t$)
Structural shocks

- efficient: technology ($\varepsilon_t^A, \varepsilon_t^{A*}, \varepsilon_t^{AD}, \varepsilon_t^{AD*}$), investment ($\varepsilon_t^I, \varepsilon_t^{I*}$), labor supply ($\varepsilon_t^L, \varepsilon_t^{L*}$), public expenditure ($\varepsilon_t^G, \varepsilon_t^{G*}$), taste ($\varepsilon_t^B, \varepsilon_t^{B*}$), housing preference ($\varepsilon_t^D, \varepsilon_t^{D*}$), loan-to-value ratio ($\varepsilon_t^{LTV}, \varepsilon_t^{LTV*}$), relative home bias ($\varepsilon_t^{\Delta n}$)
- inefficient: PPI markups ($\varepsilon_t^P, \varepsilon_t^{P*}$), CPI markups ($\varepsilon_t^{CPI}, \varepsilon_t^{CPI*}$), external finance risk premium ($\varepsilon_t^Q, \varepsilon_t^{Q*}$), UIP ($\varepsilon_t^{\Delta S}$)
- monetary policy ($\varepsilon_t^R, \varepsilon_t^{R*}$)
Structural shocks

- efficient: technology ($\varepsilon^A_t, \varepsilon^A_t^*, \varepsilon^A_D, \varepsilon^A_D^*$), investment ($\varepsilon^I_t, \varepsilon^I_t^*$), labor supply ($\varepsilon^L_t, \varepsilon^L_t^*$), public expenditure ($\varepsilon^G_t, \varepsilon^G_t^*$), taste ($\varepsilon^B_t, \varepsilon^B_t^*$), housing preference ($\varepsilon^D_t, \varepsilon^D_t^*$), loan-to-value ratio ($\varepsilon^{LTV}_t, \varepsilon^{LTV}_t^*$), relative home bias ($\varepsilon^{\Delta n}_t$)

- inefficient: PPI markups ($\varepsilon^P_t, \varepsilon^P_t^*$), CPI markups ($\varepsilon^{CPI}_t, \varepsilon^{CPI}_t^*$), external finance risk premium ($\varepsilon^Q_t, \varepsilon^Q_t^*$), UIP ($\varepsilon^{\Delta S}_t$)

- monetary policy ($\varepsilon^R_t, \varepsilon^R_t^*$)

- common: f^A_t, f^{CPI}_t, f^R_t
Structural shocks

- efficient: technology (ε_A^t, ε_A^t, ε_D^t, ε_D^t), investment (ε_I^t, ε_I^t), labor supply (ε_L^t, ε_L^t), public expenditure (ε_G^t, ε_G^t), taste (ε_B^t, ε_B^t), housing preference (ε_D^t, ε_D^t), loan-to-value ratio (ε_{LTV}^t, ε_{LTV}^t), relative home bias ($\varepsilon_{\Delta n}^t$)

- inefficient: PPI markups (ε_P^t, ε_P^{t*}), CPI markups (ε_{CPI}^t, ε_{CPI}^{t*}), external finance risk premium (ε_Q^t, ε_Q^{t*}), UIP ($\varepsilon_{\Delta S}^t$)

- monetary policy (ε_R^t, ε_R^{t*})

- common: f_A^t, f_{CPI}^t, f_R^t

- allow for some covariance between shocks, to capture rest-of-the-world dynamics
Calibrated parameters:

- Preferences: $\beta = 0.96$, $\gamma = 0.99$
- Technology: $\delta_K = 0.1$, $\alpha_C = 0.3$, $\alpha_D = 0.2$, $\alpha_L = 0.1$ (to keep constant share of labor)
- Housing-specific: $\delta = 0.01$, $\omega_D = 0.1$; flexible prices
- Loan-to-value ratio: $\chi = 0.8$. Data not informative, high heterogeneity in EA.

Prior specification: symmetric distributions across countries.
Calibrated parameters:
- Preferences: $\beta = 0.96, \gamma = 0.99$
Calibrated parameters:

- Preferences: $\beta = 0.96$, $\gamma = 0.99$
- Technology: $\delta_K = 0.1$, $\alpha_C = 0.3$, $\alpha_D = 0.2$, $\alpha_L = 0.1$ (to keep constant share of labor)
Calibrated parameters:

- Preferences: $\beta = 0.96$, $\gamma = 0.99$
- Technology: $\delta_K = 0.1$, $\alpha_C = 0.3$, $\alpha_D = 0.2$, $\alpha_L = 0.1$ (to keep constant share of labor)
- Housing-specific: $\delta = 0.01$, $\omega_D = 0.1$; flexible prices
Calibrated parameters:

- Preferences: $\beta = 0.96$, $\gamma = 0.99$
- Technology: $\delta_K = 0.1$, $\alpha_C = 0.3$, $\alpha_D = 0.2$, $\alpha_L = 0.1$ (to keep constant share of labor)
- Housing-specific: $\delta = 0.01$, $\omega_D = 0.1$; flexible prices
- Loan-to-value ratio: $(1 - \chi) = (1 - \chi^*) = 0.8$. Data not informative, high heterogeneity in EA
Calibrated parameters:

- Preferences: $\beta = 0.96$, $\gamma = 0.99$
- Technology: $\delta_K = 0.1$, $\alpha_C = 0.3$, $\alpha_D = 0.2$, $\alpha_L = 0.1$ (to keep constant share of labor)
- Housing-specific: $\delta = 0.01$, $\omega_D = 0.1$; flexible prices
- Loan-to-value ratio: $(1 - \chi) = (1 - \chi^*) = 0.8$. Data not informative, high heterogeneity in EA
- Prior specification: symmetric distributions across countries
Housing shocks and economic fluctuations

- variance decomposition: sensitivity to ω

<table>
<thead>
<tr>
<th></th>
<th>No Borrowers</th>
<th></th>
<th></th>
<th>High Borrowers' share</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Domestic</td>
<td>Other</td>
<td>Non Domestic</td>
<td>Domestic</td>
<td>Other</td>
</tr>
<tr>
<td>US</td>
<td></td>
<td>1.35</td>
<td>89.85</td>
<td>8.80</td>
<td>9.76</td>
<td>80.90</td>
</tr>
<tr>
<td>Z_t</td>
<td></td>
<td>0.94</td>
<td>78.62</td>
<td>20.44</td>
<td>22.65</td>
<td>61.25</td>
</tr>
<tr>
<td>C_t</td>
<td></td>
<td>89.74</td>
<td>9.83</td>
<td>0.43</td>
<td>89.47</td>
<td>10.13</td>
</tr>
<tr>
<td>Z_{Dt}</td>
<td></td>
<td>87.42</td>
<td>9.68</td>
<td>2.90</td>
<td>88.70</td>
<td>9.07</td>
</tr>
<tr>
<td>T_{Dt}</td>
<td></td>
<td>0.20</td>
<td>65.22</td>
<td>34.58</td>
<td>0.26</td>
<td>67.38</td>
</tr>
<tr>
<td>I_t</td>
<td></td>
<td>0.59</td>
<td>89.16</td>
<td>10.25</td>
<td>10.21</td>
<td>80.92</td>
</tr>
<tr>
<td>B_t</td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>89.10</td>
<td>9.92</td>
</tr>
</tbody>
</table>

Euro Area

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>Domestic</th>
<th>Other</th>
<th>Non Domestic</th>
<th>Domestic</th>
<th>Other</th>
<th>Non Domestic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z_t^*</td>
<td></td>
<td>4.37</td>
<td>84.61</td>
<td>11.02</td>
<td>9.44</td>
<td>82.41</td>
<td>8.15</td>
</tr>
<tr>
<td>C_t^*</td>
<td></td>
<td>0.63</td>
<td>73.95</td>
<td>25.42</td>
<td>16.91</td>
<td>69.90</td>
<td>13.19</td>
</tr>
<tr>
<td>Z_{Dt}^*</td>
<td></td>
<td>94.04</td>
<td>5.54</td>
<td>0.42</td>
<td>93.54</td>
<td>5.95</td>
<td>0.51</td>
</tr>
<tr>
<td>T_{Dt}^*</td>
<td></td>
<td>91.01</td>
<td>5.50</td>
<td>3.49</td>
<td>91.16</td>
<td>5.31</td>
<td>3.53</td>
</tr>
<tr>
<td>I_t^*</td>
<td></td>
<td>5.40</td>
<td>54.02</td>
<td>40.58</td>
<td>2.52</td>
<td>60.61</td>
<td>36.87</td>
</tr>
<tr>
<td>R_t^*</td>
<td></td>
<td>13.77</td>
<td>68.58</td>
<td>17.65</td>
<td>8.38</td>
<td>79.64</td>
<td>11.98</td>
</tr>
<tr>
<td>B_t^*</td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>76.95</td>
<td>22.25</td>
<td>0.80</td>
</tr>
<tr>
<td>ΔS_t</td>
<td></td>
<td>0.72</td>
<td>17.35</td>
<td>81.93</td>
<td>0.65</td>
<td>18.33</td>
<td>81.02</td>
</tr>
<tr>
<td>CA_t</td>
<td></td>
<td>1.23</td>
<td>10.23</td>
<td>88.54</td>
<td>0.80</td>
<td>13.19</td>
<td>86.01</td>
</tr>
</tbody>
</table>
Welfare criteria: definitions

\[\mathcal{W}_t^b \equiv E_t \left\{ \sum_{j \geq 0} \beta^j \left[\frac{1}{1-\sigma_X} \left(\tilde{X}_{t+j}^b \right)^{\frac{1}{1-\sigma_X}} - \frac{\varepsilon_{t+j}^L \tilde{L}_C}{1+\sigma_{LC}} \left(L_{C,t+j}^b \right)^{\frac{1}{1+\sigma_{LC}}} \right] \right\} \]

\[\mathcal{W}_t^s \equiv E_t \left\{ \sum_{j \geq 0} \gamma^j \left[\frac{1}{1-\sigma_X} \left(X_{t+j}^s \right)^{\frac{1}{1-\sigma_X}} - \frac{\varepsilon_{t+j}^L \tilde{L}_C}{1+\sigma_{LC}} \left(L_{C,t+j}^s \right)^{\frac{1}{1+\sigma_{LC}}} \right] \right\} \]
Inference on ω

- Sensitivity analysis on (ω, ω^*):

<table>
<thead>
<tr>
<th>Prior</th>
<th>B(0.35,0.05)</th>
<th>B(0.5,0.035)</th>
<th>U[0,1]</th>
</tr>
</thead>
<tbody>
<tr>
<td>ω</td>
<td>0.24</td>
<td>0.46</td>
<td>0.05</td>
</tr>
<tr>
<td>ω^*</td>
<td>0.19</td>
<td>0.42</td>
<td>0.05</td>
</tr>
<tr>
<td>Marginal Loglik.</td>
<td>-2485.19</td>
<td>-2509.12</td>
<td>-2478.30</td>
</tr>
</tbody>
</table>
Inference on ω

- Sensitivity analysis on (ω, ω^*):

<table>
<thead>
<tr>
<th>Prior</th>
<th>$B(0.35, 0.05)$</th>
<th>$B(0.5, 0.035)$</th>
<th>$U[0, 1]$</th>
</tr>
</thead>
<tbody>
<tr>
<td>ω</td>
<td>0.24</td>
<td>0.46</td>
<td>0.05</td>
</tr>
<tr>
<td>ω^*</td>
<td>0.19</td>
<td>0.42</td>
<td>0.05</td>
</tr>
<tr>
<td>Marginal Loglik.</td>
<td>-2485.19</td>
<td>-2509.12</td>
<td>-2478.30</td>
</tr>
</tbody>
</table>

- Model comparison: lower shares of borrowers improve fit
Inference on ω

- Sensitivity analysis on (ω, ω^*):

<table>
<thead>
<tr>
<th>Prior</th>
<th>$B(0.35, 0.05)$</th>
<th>$B(0.5, 0.035)$</th>
<th>$U[0,1]$</th>
</tr>
</thead>
<tbody>
<tr>
<td>ω</td>
<td>0.24</td>
<td>0.46</td>
<td>0.05</td>
</tr>
<tr>
<td>ω^*</td>
<td>0.19</td>
<td>0.42</td>
<td>0.05</td>
</tr>
</tbody>
</table>

| Marginal Loglik. | -2485.19 | -2509.12 | -2478.30 |

- Model comparison: lower shares of borrowers improve fit
- However: ω, ω^* never set to 0
Inference on ω

- **Sensitivity analysis on (ω, ω^*):**

<table>
<thead>
<tr>
<th>Prior</th>
<th>$B(0.35, 0.05)$</th>
<th>$B(0.5, 0.035)$</th>
<th>$U[0, 1]$</th>
</tr>
</thead>
<tbody>
<tr>
<td>ω</td>
<td>0.24</td>
<td>0.46</td>
<td>0.05</td>
</tr>
<tr>
<td>ω^*</td>
<td>0.19</td>
<td>0.42</td>
<td>0.05</td>
</tr>
<tr>
<td>Marginal Loglik.</td>
<td>-2485.19</td>
<td>-2509.12</td>
<td>-2478.30</td>
</tr>
</tbody>
</table>

- **Model comparison:** lower shares of borrowers improve fit
- **However:** ω, ω^* never set to 0
- **Posterior modes strongly dependent on priors:** weak identification

[Back]
Inference on ω

- Sensitivity analysis on (ω, ω^*):

<table>
<thead>
<tr>
<th>Prior</th>
<th>B(0.35,0.05)</th>
<th>B(0.5,0.035)</th>
<th>U[0,1]</th>
</tr>
</thead>
<tbody>
<tr>
<td>ω</td>
<td>0.24</td>
<td>0.46</td>
<td>0.05</td>
</tr>
<tr>
<td>ω^*</td>
<td>0.19</td>
<td>0.42</td>
<td>0.05</td>
</tr>
</tbody>
</table>

Marginal Loglik. -2485.19 -2509.12 -2478.30

- Model comparison: lower shares of borrowers improve fit
- However: ω, ω^* never set to 0
- Posterior modes strongly dependent on priors: weak identification

Distributions

- Aggregate observables vs. type-specific model-generated series

Back
Estimation results: Priors and posteriors

- borrowers’ shares: benchmark priors
Estimation results: Priors and posteriors

- borrowers’ shares: benchmark priors

- borrowers’ shares: high priors
Optimal response to a LTV ratio shock

- Optimal response (plain) with benchmark (dotted, red) and augmented estimated Taylor rule (cross, blue)
The propagation of US monetary policy shocks

- Benchmark (plain and shaded area), high ω (dotted, blue), $\omega = 0$ (cross, black)
The propagation of US housing demand shocks

- Housing preference: Benchmark (plain and shaded area), high ω (dotted, blue), $\omega = 0$ (cross, black)