A New Comparative Approach to Macroeconomic Modeling and Policy Analysis

MTM Conference

Volker Wieland

Goethe University Frankfurt

September, 2009

Our Objective

- This paper provides a new comparative approach to model-based research and policy analysis enabling individual researchers to conduct model comparisons easily, frequently, at low cost and on a large scale.
- Using this approach a model archive is built that includes many well-known empirically estimated models that may be used for quantitative analysis of monetary and fiscal stabilization policies.

Introduction

- Today many models are available that aim to explain the behavior of the main aggregates of the world's economies.
- However, those models differ in terms of economic structure, estimation methodology and parameter estimates.
- Hence, a given policy is likely to have different effects depending on which particular model is used for its evaluation.
- → McCallum (1999) recommends: to search for a policy rule that possesses robustness in the sense of yielding reasonably desirable outcomes in policy simulation experiments in a wide variety of models.

Introduction c'td

- Yet, systematic comparisons of the empirical implications of a large variety of available models and evaluations of the performance of different policies across many models have been infrequent and costly.
- The 6 comparison projects reported in
 - Bryant, Henderson, Holtham, Hooper, Symansky (1988); Bryant, Currie, Frenkel, Masson and Portes (1989); Klein (1991); Bryant, Hooper, Mann (1993); Taylor (1999) and Hughes, Hallett, Wallis (2004)

have involved multiple teams of researchers, each team working only with one or a small subset of available models.

Outline

- 1. A Formal exposition of the approach to model comparison
- 2. The Model Archive
- 3. Example: Monetary and fiscal impulse responses and serial correlations of U.S. output and inflation

1. A Formal Approach to Model Comparison

- Consider a particular model $m \in M$
- Model output is usually not directly comparable
 - Different variables
 - Different structural assumptions
 - Different notation and definitions
- Therefore it is necessary to augment models with a set of common, comparable variables, parameters, equations and shocks.

Notation

Table: Model-Specific Variables, Parameters, Shocks and Equations

Notation	Description
x_t^m	endogenous variables in model <i>m</i>
$x_t^{m,g}$	policy variables in model \emph{m} (also incl. in x_t^m)
η_t^m	policy shocks in model m
ϵ_t^m	other economic shocks in model m
$g_m(.)$	policy rules in model m
$f_m(.)$	other model equations in model m
γ^m	policy rule parameters in model m
eta^m	other economic parameters in model m
Σ^m	covariance matrix of shocks in model m

A General Nonlinear Model

Define a particular model m as follows:

$$E_t[g_m(x_t^m, x_{t+1}^m, x_{t-1}^m, \eta_t^m, \gamma^m)] = 0$$
 (1)

$$E_t[f_m(x_t^m, x_{t+1}^m, x_{t-1}^m, \epsilon_t^m, \beta^m)] = 0,$$
 (2)

where

$$E([(\eta_t^m)'(\epsilon_t^m)']') = 0 (3)$$

$$E([(\eta_t^m)'(\epsilon_t^m)']'[(\eta_t^m)'(\epsilon_t^m)']) = \Sigma^m = \begin{pmatrix} \Sigma_{\eta}^m & \Sigma_{\eta\epsilon}^m \\ \Sigma_{\eta\epsilon}^m & \Sigma_{\epsilon}^m \end{pmatrix}$$
(4)

Augmented with ...

Table: Comparable Common Variables, Parameters, Shocks and Equations

Notation	Description
z_t	common variables in all models
z_t^g	common policy variables in all models (also incl. in \boldsymbol{z}_t)
η_t	common policy shocks in all models
g(.)	common policy rules
γ	common policy rule parameters

The Augmented Model

The augmented model consists of three components:

- The common policy rules g(.) expressed in terms of common variables z_t , policy shocks η_t and policy rule parameters γ .
- A set of new model-specific equations that define the common variables in terms of original model-specific endogenous variables, $h_m(.)$ with parameters θ^m .
- The original set of model equations $f_m(.)$ determining endogenous variables, excluding the model-specific policy rule $g_m(.)$.

$$E_t[g(z_t, z_{t+1}, z_{t-1}, \eta_t, \gamma)] = 0$$
 (5)

$$E_t[h_m(z_t, x_t^m, x_{t+1}^m, x_{t-1}^m, \theta^m)] = 0$$
 (6)

$$E_t[f_m(x_t^m, x_{t+1}^m, x_{t-1}^m, \epsilon_t^m, \beta^m)] = 0 (7)$$

Model Solution

General model solution:

$$z_t = k_z(z_{t-1}, x_{t-1}^m, \eta_t, \epsilon_t^m, \kappa_z)$$
 (8)

$$x_t^m = k_x(z_{t-1}, x_{t-1}^m, \eta_t, \epsilon_t^m, \kappa_x)$$
 (9)

where (κ_z, κ_x) denote the reduced-form parameters that are in turn complex functions of the structural parameters, β^m , the policy parameters, γ , and the covariance matrix Σ^m .

Model Solution c'td

Linear approximation:

$$\begin{pmatrix} z_t \\ x_t^m \end{pmatrix} = K_m(\gamma) \begin{pmatrix} z_{t-1} \\ x_{t-1}^m \end{pmatrix} + D_m(\gamma) \begin{pmatrix} \eta_t \\ \epsilon_t^m \end{pmatrix}$$
 (10)

where $K_m(\gamma)$ and $D_m(\gamma)$ are matrices of reduced-form and depend on the policy parameters γ . We denote the dependence of the solution parameters on the other (model specific) parameters β^m with the subcript m.

Objects for Comparison

For instance impulse responses and metric for comparison:

$$IR_{t+j}^{m}(\gamma;\eta^{i}) = \begin{pmatrix} E[z_{t+j}|z_{t-1},x_{t-1}^{m},I_{t}] - E[z_{t+j}|z_{t-1},x_{t-1}^{m}] \\ E[x_{t+j}^{m}|z_{t-1},x_{t-1}^{m},I_{t}] - E[x_{t+j}^{m}|z_{t-1},x_{t-1}^{m}] \end{pmatrix} = K_{m}(\gamma)^{j}D_{m}(\gamma)I_{t}$$

$$(11)$$

where I_t is a vector of zeros that is augmented with a single entry equal to the size of the common policy shock, for which the impulse response is computed.

Consider two models m = 1, 2, then:

$$s(\gamma, z) = \sum_{i=0}^{\infty} (IR_{t+j}^{1}(\gamma; \eta^{i}; z) - IR_{t+j}^{2}(\gamma; \eta^{i}; z)).$$
 (12)

Objects for Comparison c'td

Unconditional variances and serial correlation:

$$V_0^m = \sum_{j=0}^{\infty} K_m{}^j D_m \Sigma^m D_m{}' K_m{}^{j\prime}$$
 (13)

$$V_j^m = K_m{}^j V_0^m \tag{14}$$

Metric:

$$\omega = |V_0^1(z) - V_0^2(z)| \tag{15}$$

Example: How to augment a model

Common variables:

$$z_{t} = \begin{bmatrix} i_{t}^{z} & g_{t}^{z} & \pi_{t}^{z} & p_{t}^{z} & y_{t}^{z} & q_{t}^{z} \end{bmatrix}'$$
 (16)

Table: Comparable Common Variables

Notation	Description
i_t^z	annualized quarterly money market rate
g_t^z	discretionary government spending (share in GDP)
π^z_t	year-on-year rate of inflation
p_t^z	annualized quarter-to-quarter rate of inflation
y_t^z	quarterly real GDP
q_t^z	quarterly output gap (dev. from flex-price level)

Common Rules, Shocks, Parameters

$$i_t^z = \gamma_i i_{t-1}^z + \gamma_p p_t^z + \gamma_q q_t^z + \eta_t^i \tag{17}$$

$$g_t^z = \gamma_g \eta_t^g \tag{18}$$

$$\eta_t = [\eta_t^i \quad \eta_t^g] \tag{19}$$

$$\gamma = [\gamma_i \quad \gamma_p \quad \gamma_q \quad \gamma_q]$$
 (20)

NK_CGG99: The original model

Description	Equations and Definitions
Original Model	
variables	$x_t^1 = [\begin{array}{ccc} i_t & x_t & \pi_t \end{array}], x_t^{1,g} = [i_t]$
shocks	$\epsilon_t^1 = [\begin{array}{cc} g_t & u_t \end{array}]$
parameters	$eta_1 = [egin{array}{cccc} arphi & heta & \phi \end{array}]$, $egin{array}{cccc} \gamma_1 & = [egin{array}{cccc} lpha & \gamma_\pi & \gamma_x \end{array}]$
model equations	
$g_1(.)$	$i_t = \alpha + \gamma_\pi (\pi_t - \bar{\pi}) + \gamma_x x_t$
$f_1(.)$	$x_{t} = -\varphi(i_{t} - E_{t}\pi_{t+1}) + \theta x_{t-1} + (1 - \theta)E_{t}x_{t+1} + g_{t}$
	$\pi_t = \lambda x_t + \phi \pi_{t-1} + (1 - \phi)\beta E_t \pi_{t+1} + u_t$

NK_CGG99: The augmented model

Description	Equations and Definitions	
Augmented Model		
$z_t, \eta_t, \gamma, g(.)$	as defined by equations (16-20).	
$f_1(.)$	as defined above in original model.	
$h_1(z_t, x_t^1, E_t x_{t+1}^1, x_{t-1}^1, \theta^1)$	$i_t^z = 4i_t$	
	$\pi_t^z = \pi_t + \pi_{t-1} + \pi_{t-2} + \pi_{t-3}$	
	$p_t^z = 4\pi_t$	
	$q_t^z = x_t$	

2. Model Archive

We have created a platform, written in MATLAB, that allows straightforward comparisons of models' implications. The building blocks of this platform are:

- A set of dynamic stochastic macroeconomic models translated into the DYNARE software package.
 - Original variables, parameters, shocks and equations.
 - Common variables, parameters, shocks and equations.
- A set of objects for model comparison.

Models currently available in the data base

1. SMALL CALIBRATED MODELS

1.1	NK ₋ RW97	Rotemberg and Woodford (1997)
1.2	NK_LWW03	Levin et al. (2003)
1.3	NK_CGG99	Clarida et al. (1999)
1.4	NK_CGG02	Clarida et al. (2002)
1.5	NK_MCN99cr	McCallum and Nelson (1999), (Calvo-Rotemberg model)
1.6	NK_MCN99pb	McCallum and Nelson (1999), (P-bar model)

Models currently available in the data base c'td

2. ESTIMATED US MODELS

2.1	US₋FM95	Fuhrer and Moore (1995a)
2.2	US_OW98	Orphanides and Wieland (1998)
2.3	US ₋ FRB03	Federal Reserve Board model lin. as in Levin et al. (2003)
2.4	US_SW07	Smets and Wouters (2007)
2.5	US_ACELm	Altig et al. (2005), (monetary policy shock)
	US_ACELt	Altig et al. (2005), (technology shocks)
	US_ACELswm	no cost channel as in Taylor and Wieland (2009) (m.p. shock)
	US_ACELswt	no cost channel as in Taylor and Wieland (2009) (tech. shocks)
2.6	US₋RS99	Rudebusch and Svensson (1999)
2.7	US₋OR03	Orphanides (2003)

Models currently available in the data base c'td

3. ESTIMATED EURO AREA MODELS

3.1	EA_CW05ta	Coenen and Wieland (2005), (Taylor-staggered contracts)
3.2	EA_CW05fm	Coenen and Wieland (2005), (Fuhrer-Moore-staggered contracts
3.3	EA_AWM05	ECB's area-wide model linearized as in Dieppe et al. (2005)
3.4	EA_SW03	Smets and Wouters (2003)
3.5	EA_SR07	Sveriges Riksbank euro area model of Adolfson et al. (2007)
3.6	EA_QUEST3	Ratto et al. (2009)

Models currently available in the data base c'td

4. ESTIMATED/CALIBRATED MULTI-COUNTRY MODELS

4.1	G7₋TAY93	Taylor (1993a) model of G7 economies
4.2	G3_CW03	Coenen and Wieland (2002) model of U.S.A, euro area
		and Japan
4.3	EACZ_GEM03	Laxton and Pesenti (2003) model calibrated to euro area
		and Czech republic
4.4	G2_SIGMA08	The Federal Reserve's SIGMA model from Erceg et al. (2008)
		calibrated to the U.S. economy and a symmetric twin.

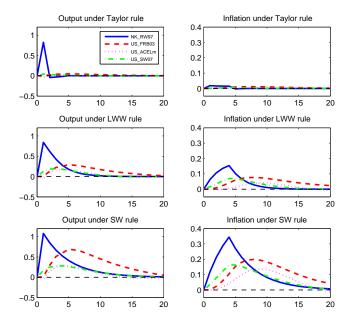
3. Example: Monetary and fiscal impulse responses and serial correlations of U.S. output and inflation

Four models: NK_RW97, US_FRB03, US_ACEL, US_SW07 Three monetary policy rules:

```
Taylor (1993b): i_t^z = \sum_{j=0}^3 0.38 p_{t-j}^z + 0.50 q_t^z + \eta_t^i Levin et al. (2003): i_t^z = 0.76 i_{t-1}^z + \sum_{j=0}^3 0.15 p_{t-j}^z + 1.18 q_t^z - 0.97 q_{t-1}^z + \eta_t^i Smets and Wouters (2007): i_t^z = 0.81 i_{t-1}^z + 0.39 p_t^z + 0.97 q_t^z - 0.90 q_{t-1}^z + \eta_t^i
```

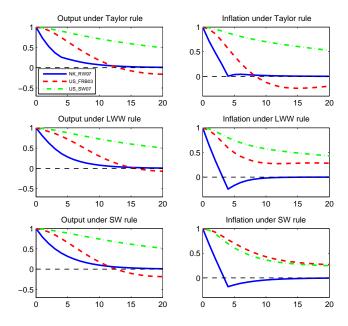
We look at:

- Impulse responses to a one time unexpected reduction of the nominal interest rate of 1 percentage point.
- Autocorrelation functions
- Impulse responses to a one time unexpected increase of government spending of 1 percent of GDP.



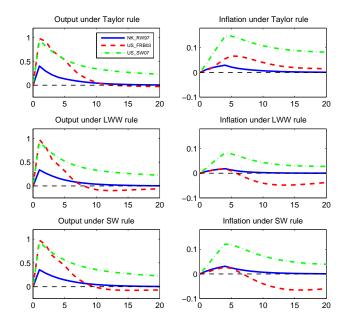
A negative monetary policy shock: Observations

- The monetary shock affects real output, since all four models exhibit nominal rigidities.
- Under the Taylor rule the output effect is short-lived.
- Under the LWW and SW rules the output response is both larger and longer-lasting.
- Only in the US_FRB03 model we observe the peak response of output in the second year after the shock. The other models exhibit no long policy lags of more than one year.
- The impulse response functions of inflation are more drawn out with the peak effect occurring later than the peak in output.



Autocorrelation functions: Observations

- The small calibrated NK_RW97 model exhibits the lowest degree of output and inflation persistence.
- The US_FRB03 model comprises a larger set of dynamics and adjustment costs, translating into a larger degree of output and inflation persistence.
- Somewhat surprisingly, the strictly microfounded US_SW07 model exhibits the highest degree of output persistence under all three policy rules.



A positive fiscal policy shock: Observations

- Initially, output increases in response to the shock under all three models, followed by a drawn-out decline over subsequent periods.
- However, the exact profile of the responses differs across models.
- The smallest impact is observed for the NK_RW97 model of around 0.4 percent of output, reflecting an immediate crowding out of private consumption.
- In the other two models the initial effect is about 1 percent of output and the subsequent decline evolves more slowly.

Conclusion

- We introduce a new comparative approach to model-based research and policy analysis that enables individual researchers to conduct model comparisons easily and on a large scale.
- For this purpose a model archive based on a common computational platform has been built that includes many well-known empirically estimated models.
- New models may easily be introduced and compared to established benchmarks.
- This approach should improve replicability of quantitative macroeconomic analysis and strengthen the robustness of policy recommendations.