
Kerstin Bernoth
and
Juergen von Hagen

Discussion by
Ken Kuttner
Federal Reserve Bank of New York

Monetary Policy and the Money Market
ECB/FRBNY Workshop, 5-6 June 2002
Disclaimer

“The views expressed here are solely those of the author, and are not necessarily those of the Federal Reserve Bank of New York, or the Federal Reserve System.”
Overview

• Do Euribor futures “efficiently” forecast future interest rates?
 – In general, yes.

• What is the impact of ECB policy decisions on expectations of future interest rates, as measured by Euribor futures?
 – Not much, usually; but sometimes a lot.
 – Interesting implications for “transparency.”
Efficient Markets Tests with Overlapping Data, “Small T” and “Large N”
Conventional efficient markets tests

- $r_{t+1} = \text{spot rate}, \quad f^1_t = 1\text{-period-ahead futures rate}$
- Efficient markets $\Rightarrow f^1_t = E_t r_{t+1}$
- Long time series on r and f are available
- Regress: $r_{t+1} = \alpha + \beta f^1_t + \gamma x_t + \varepsilon_{t+1}$
- Test $\alpha = 0, \beta = 1, \gamma = 0$
- Example: Krueger & Kuttner (1996), Fed funds futures.
Challenges for Euroland data

• Short time series: March 1999 to March 2002.
 – Scope for updating dataset, increasing sample size by 33%.

• Contracts settle 4 times a year.
 – FF futures settle every month, easier to work with.

• Sophisticated econometrics required to maximize utilization of the data.
The panel data setup

- Let \(t \) index contract (March 2000, June 2000, etc)
- Let \(i \) index days until contract settlement (1-183)
- Choose horizon \(N = 31, 61, 91, 122, 153, 183 \)
- \(r_t = \alpha_i + \beta f_{i,t} + \gamma x_{i,t} + \varepsilon_{i,t} \)
- 13 “cross sections” of up to 131 “individuals” each (depending on horizon)
- Overlapping data \(\Rightarrow \) correlation across “individuals” for a given \(t \)
Econometric complications

- Stack model by unit, let $\mathbf{y} = \text{vector of errors}$.
- $\mathbb{E}(\mathbf{y}\mathbf{y}^\prime) = \mathbf{\Omega} \otimes \mathbf{I}_T$
- For $N = 183$, $\mathbf{\Omega}$ is a 131×131 matrix with 8,646 unique elements!
- With $N > T$, sample estimate of $\mathbf{\Omega}$ will be singular (rank T). GLS not feasible.
- Solution: OLS, with standard errors based on estimated $\mathbf{\Omega}$.
Main result

• Efficiency is only rejected for:
 – 4, 5, and 6 month horizons,
 – with $x_{i,t}$ = change in futures rate from previous day.

• Estimated βs are very close to 1.
Comments (1)

• Why is the horizon defined to include all forecast intervals from 1 to N days?
 – For example: 6-month horizon ($N = 183$) includes 2-day-ahead up to 183-day-ahead forecasts.
 – Motivation for looking at different horizons: forecasting performance diminishes as time to expiration increases.
 – Suggests analyzing non-overlapping horizons (e.g., up to 1 month, 1-2 months, 3-4 months, etc.)
Comments (2)

• The correlation across “individuals” (i.e., adjacent days’ forecast errors) is very high.
 – How much additional information does daily data add?
 – The econometric approach used imposes no structure on the pattern of contemporaneous correlations.
 – Possible to parameterize contemporaneous correlations, e.g. as a function of the number of days of overlap?
The use of daily data limits the data that can be used to test “semi-strong” form efficiency.

Even so, there are many more variables that could be included in $x_{i,t}$: any financial market data available at a daily frequency.

- Interest rate spreads are obvious candidates.
The surprise element of ECB actions (and inactions)
Alternative approaches

• One way to gauge the predictability of monetary policy: see how well financial market data can forecast changes in the policy rate.

• This paper’s approach: look at the response of interest rate futures to monetary policy actions (and inactions).
Defining “surprises”

• In US, Fed funds futures allow precise calculation of surprise element of policy actions.

• Not possible with 3-month Euribor futures.

• Revision in interest rate expectation as a measure of volatility: \(|f_{i,t} - f_{i-1,t}| \)

• Ex post change in forecast error as a measure of information: \(|r_t - f_{i,t}| - |r_t - f_{i-1,t}| \). Negative ⇒ announcements improve forecasts.
Main results

• Most ECB announcements are “not too surprising.”
 – On average, higher volatility on days of Governing Council meetings (controlling for day of week).
 – Most meetings exhibit normal volatility.
 – A number moved expectations considerably.

• Policy announcements do nothing to improve interest rate forecasts.

• Monthly bulletin contains no information!
The pattern of volatility

- The *pattern* of volatility contains information.
- A large “surprise” in one month is often followed by another “surprise” in the next.
 - May 2000 “no change” → +50 bp in June
 - April 2001 “no change” → −25 bp in May
- Impact on expected Euribor rate months in the future ⇒ not merely a “timing” surprise.
- Does the effect vary across contracts?
- More work to be done.
Interpretation of results

• Volatility measures are hard to interpret on their own. Comparisons with other countries would be useful.

• Are surprises always to be avoided?
 – Asymmetric information versus transparency?
 – Policymakers may want to “get the market’s attention.”
 – The answer may depend on the impact of the surprise on expectations, and whether future policy is consistent with those revised expectations.
Conclusions

• Nicely done paper.
• Uses a novel adaptation of panel data methods to the analysis of futures data.
• Shows that futures data can provide a useful way to gauge the impact of monetary policy on interest rate expectations.