Constructing quality adjusted price indexes: a comparison of hedonic and discrete choice methods^a

Nicole Jonker De Nederlandsche bank, Econometric Research and Special Studies Department

October 25, 2001

1 Introduction

In 1996 the Boskin report (1996) discussed several types of measurement errors in the consumer price index (CPI). The CPI measures the cost of purchasing a ...xed market basket of goods and services. All the goods and services in this basket can be divided over classi...cation levels beginning with major groups like food and beverages, housing, transportation, etc. The CPI calculates the monthly changes (monthly in‡ation) in the total cost of this basket by aggregating the price indexes of its sub levels. Changes in the CPI are caused by changes in the prices of the products in this particular basket. The products and services in the basket and their expenditure share in the CPI are based on household surveys held in a certain base year t₀: The CPI is not a true cost-of-living index (COLI). A true COLI compares the minimum expenditure required to achieve a same level of welfare (or utility) across two points in time. The Boskin committee concluded that the CPI overestimated the true in‡ation in the US by 1.1 percentage point. The conclusions of the

[&]quot;This paper is very preliminary. I would like to thank Carsten Folkertsma and Peter van Els for their helpful comments.

Boskin committee renewed the interest in the exect of measurement errors on the reliability of the CPI.

Central banks are highly interested in these issues because price stability, de...ned in terms of the CPI or the HICP, is their primary goal (e.g. ECB) or one of their primary goals (e.g. FED). At a national level an accurate measurement of in‡ation is very important because the CPI has a great impact on several topics like indexation in legal contracts, wages and bene...ts from governments and de‡ation of national accounts, wages and retail sales. With respect to the government budget, an upward bias in the CPI will result in a real increase of indexed government/social bene...ts. For the US for instance, correctly measuring the CPI is likely to result in lower future budget de...cits and lower national debt. In the Boskin report it was shown how serious the consequences of overestimating the CPI may be. For the US an overestimation of the cost of living index by one percent point would after a dozen of years result in a \$ 1 trillion higher national debt.

There are several measurement errors causing the overestimation of in‡ation in the CPI. The Boskin report mentions the product substitution bias, the outlet substitution bias, the new product bias and the quality change bias. This paper deals with quality change bias in price indexes.

Statistical agencies use di¤erent techniques to adjust price indexes for changes in product quality. Changes in products can be characterized as being marginal or as non; marginal: Marginal changes refer to small changes in product characteristics which have a continuous character whereas nonmarginal changes in product characteristics refer to large changes in continuous product characteristics but can also refer to the inclusion of discrete product characteristics. In case of computers characteristics like the speed of the computer or the capacity of the hard disk are examples of continuous product characteristics and characteristics like having a DVD player or a CDwriter are examples of discrete product characteristics. Non marginal changes occur in products which have a standard variant product which can be extended by extra features, like cars or computers but also by houses. Products which are largely composed of a combination of continuous characteristics (strength, thickness, size, durability, ecciency) are e.g. food products and electronic household articles with little possibilites to have extra features like fridges, washing machines, etc.

One possibility to adjust price indexes for changes in product quality is to use the 'matched model' approach. With this method the price index is constructed only using the prices of products which are available in two

adjacent periods. In this index the sample is con...ned to the products which do not change from one period to the next. However, this technique is not suitable for constructing price indices of product types involving rapid technical progress, like cars or computers, unless one uses chained price indexes. Another possibility is to use the overlapping method. This method is based on observing two dixerent models of a particular good in a time span and use the ratio of the prices as a measure of quality adjustment. Yet another possibility focuses on price changes for a basic product speci...cation. It adjusts these price changes for changes in the con...guration of the basic model. For example if a DVD player becomes part of the standard speci...cation of a certain PC model while it was not in the previous period the current price of this PC can be adjusted for the change in con...guration by subtracting the price associated with buying the DVD player in the previous period (the associated price of the DVD player can be retrieved from the previous period accessories' price list of the basic PC or can be retrieved by asking manufacturer about the additional manufacturer's costs associated with installing the DVD player standard) from the current PC price.

Nowadays, statistical agencies start using hedonic price indexes for products which undergo rapid technological changes. Hedonic methods refers to regression models in which product prices are related to product characteristics. They can be used to construct a quality adjusted price index of a good or a service. Berndt (1991) provides a very interesting 'historical' overview on hedonic price equations. Waugh (1928) was the ...rst to incorporate quality measures when explaining prices of vegetables. Court (1939) was the ...rst to estimate a simple hedonic price equation for cars sold in 1925-1927. He included product characteristics as regressors in order to correct for product changes and he included year dummies retecting price changes due to the passage of time. This type of regression is the basic hedonic price equation. This estimation technique became more popular in the seventies and the eighties through the work of Griliches (1961) on car prices and Chow (1967) on computer prices. These early studies showed that quality adjusted price indexes of cars and computers decreased over time. For the Netherlands, Cramer (1966) estimated the ...rst quality corrected price indexes of new passenger cars sold between 1950-1966. In his study, Cramer showed among others that the quality corrected price index for new cars was about 30% lower than the uncorrected price index. More recent studies on quality adjusted price indexes for cars are e.g. Rax and Trajtenberg (1995) and Blow and Crawford (1998).

Mid seventies also another branch of econometrics, started to develop, namely that of discrete choice modelling. McFadden (1974) showed that the conditional logit model (see e.g. Maddala, 1983) could be derived from random utility theory. In a conditional logit model the exect of choice characteristics on choice probabilities is estimated through the estimation of the so-called vector $\bar{\ }$. The elements of $\bar{\ }$ characterize the utility function and are not directly tied to the marginal exects of changes in variables on choice probabilities. However, the monetary valuation of product characteristics can be based on this vector (see e.g. Chattopadhyay, 2000, Croppper et. al., 1993). This can be done for both continuous variables and discrete variables. In that sense the conditional logit model analyzes a problem similar to the hedonic price index problem, although it has never been used as such.

Discrete choice models have been used, albeit not often, to value housing characteristics. Mason and Quigley (1990) have compared the, as they call it, bene...t estimates from the conditional logit and hedonic models using Monte Carlo simulation. They ...nd that the hedonic method yields estimates of marginal changes in characteristics which are as good as those based on the conditional logit model. This has also been found in a simulation study of Cropper et al. (1993). However, they also ...nd that the conditional logit model yields superior estimates of non-marginal changes compared to the estimates obtained using hedonic methods. These results suggest that there is a large group of articles which may bene...t from the use of discrete choice models when deriving quality adjusted prices. Chattopadhyay (2000) models residential choice as a nested hierarchical choice process which may be more in line with the real choice behavior of buyers. He uses the nested logit model for estimating preferences for housing attributes. He compares the nested logit estimates of the bene...ts of amenity changes with the estimates derived from the standard hedonic model. He ...nds that the nested logit bene...t estimates are consistently lower.

This paper proceeds as follows: section 2 gives a description of the theoretical models underlying hedonic methods and discrete choice models. Section 3 elaborates on the empirical implementation of these two approaches and how to derive a quality adjusted price index. Section 4 summarizes and concludes.

2 Theoretical models

In this section the hedonic method and the discrete choice method on explaining consumer choices will be brie‡y described. Mason and Quigley (1990) describe the di¤erences between the two models in more detail. The models have the same aim: estimating consumers' utility functions and retrieving the consumers' monetary valuation for particular goods or particular attributes of a speci…ed good. However, the two models di¤er in the underlying assumptions, in the empirical implementation of the models and in the data requirements.

Let's concentrate on the composite good case. In both approaches there is a set of consumers who have preferences over the n measurable characteristics of a composite good x and over m other goods $z_1; \ldots; z_m$. These preferences can be represented by a utility function U:

$$u = U(x_1; x_2; ...; x_n; z_1; z_2; ...; z_m)$$
 (1)

It is assumed that the utility function U is concave with respect to the product characteristics of good x and of the other goods $z_1; z_2; ...; z_m$: If relative prices of the other goods remain constant over time one can apply Hicks' aggregation theorem yielding a utility function representing preferences de…ned over quantities of characteristics $(x_1; x_2; ..., x_n)$ and a composite commodity, the quantity of which is denoted by z_i , i.e.

$$U = U(x_1, x_2, \dots, x_n, z)$$
 (2)

There exist J variants of good x and the jth variant is denoted by x_j . This product variant x_j can be described by a vector of n measurable characteristics, $x_j = (x_{1j}; x_{2j}; ...; x_{nj})$: If consumer i chooses product variant x_j with price p_j ; if y_i is this consumer's income and if we assume a constant unity price of one for z than the utility he attaches to consuming x_j becomes

$$u = U(x_{1j}; x_{2j}; ...; x_{nj}; y_i j p_j)$$
 (3)

So for both methods the basic theoretical model is one of consumers maximizing their utility over the composite good x and the other goods subject to their budget constraint $y_i = p_i + z$:

2.1 Hedonic method

The hedonic price method is well described in e.g. Berndt (1991) and Triplett (2000). In hedonic price equations the observed price of a product is considered to be a function of its characteristics. Hedonic methods are based on the idea that a product is a bundle of characteristics and that consumers actually buy bundles of product characteristics instead of products itself. The implicit value of these characteristics the consumers attach to them can be estimated by means of hedonic price equations.

The theory behind the model is described by Rosen (1974). He analyzed hedonic prices using a spatial equilibrium framework. He assumes that producers of a certain good operate in a competitive environment so single producers take product prices as given and can not in‡uence them. The class of goods can be characterized by n measured characteristics and any location in the plane represents a vector $\mathbf{x} = (\mathbf{x}_1; \ \mathbf{x}_2; \ldots; \mathbf{x}_n)$ with \mathbf{x}_k equal to the level of the \mathbf{k}^{th} product characteristic. A price $\mathbf{p}(\mathbf{x}) = \mathbf{p}(\mathbf{x}_1; \ \mathbf{x}_2; \ldots; \ \mathbf{x}_n)$ is de…ned at each point in the plane. It is assumed that a large amount of product varieties exist to choose from. Both consumers and producers base their decisions with regard to consumption respectively production of packages of characteristics on maximizing behaviour. Consumers maximize utility and producers maximize pro…ts. The observed prices $\mathbf{p}(\mathbf{x})$ are the market clearing prices matching consumers' and producers' choices perfectly and leading to a market equilibrium.

It is assumed that consumers maximize their utility subject to the non-linear budget constraint. This requires that consumers choose z and $(x_1, x_2, ..., x_n)$ to satisfy their budget constraint and to meet the ...rst order conditions. If the price function is continuous and dimerentiable then the following holds for each consumer:

$$\frac{@p}{@x_k} = \frac{@U}{@x_k} = \frac{@U}{@z} = \frac{U_{x_k}}{U_z}; \text{ for } k=1; ...; n$$
(4)

Consumers buy the product variant which oxers the desired combination of product characteristics.

For simplicity it is assumed that producers have separate plants each producing one possible con...guration. The vector M denotes the number of units produced of all the ...rm's con...gurations. Within a ...rm there are no spill-over exects from plant to plant. The jth element of M denotes the number of units produced by a plant oxering con...guration j. The total costs

of a ...rm are given in the cost function $C(M;\,^\circ)$ where the vector $\,^\circ$ re‡ects the underlying variables in the cost minimization problem like factor prices and production function parameters. C is assumed to be convex in M. Each plant maximizes pro...t $\frac{1}{4} = M(j)p(j)_i C(M(j);x_{1j};x_{2j};...;x_{nj})$ by choosing M(j) and x optimally. The revenue of one product variant x_j is given by the implicit price function of product characteristics p(x). Optimality of the plant 's choice requires that the marginal revenue from additional attributes equals their marginal cost of production per unit sold. Furthermore, optimality requires that the number of quantities are such that the unit revenue p(x) equals marginal production cost evaluated at the optimum bundle of characteristics.:

$$\frac{@p}{@x_k} = \frac{@C}{@x_k} = M; \text{ for } k = 1; ...; n$$

$$p(x) = \frac{@C}{@M}$$
(5)

In the hedonic method it is assumed that the consumers can choose any conceivable con...guration a composite good. However, in practice the consumers are more limited in their choices of the good's con...guration, since not every conceivable con...guration is also available.

2.2 Conditional logit model

The discrete choice model which is used is known as McFadden's conditional logit model (McFadden, 1974). In short, the idea of his models is as follows. Suppose that an individual wants to buy a particular good X in period t and can choose among J di¤erent variants X_j . To each variant j individual i attaches a level of indirect utility $U_{ij\,t}$: The variant which he likes most, i.e. the car type he thinks will give him the highest level of indirect utility is bought by this individual. So it is assumed that consumers are rational decision makers and actually choose the type which optimizes their perceived utility subject to budgetary constraints. The utility individual i attaches to variant j in period t $U_{ij\,t}$ can be decomposed into a part originating from how individual i perceives characteristics of variant j $x_{ij\,t}$, the utility he gets from consuming y_i - p_j other goods and a residual " $i_{j\,t}$: This residual captures errors made in this maximization process which are due to imperfect perceptions about the product's utility as well as the inability of the researcher to measure

all the relevant variables. From the RUM assumption it follows that the residuals are independently and identically distributed with the Extreme Value (EV) distribution. The model is easy to estimate but has as a drawback that it assumes that the odds of choosing between any pair of alternatives is independent of the other possible choices. This property is also known as the IIA (Independence of Irrelevant Alternatives) property and is quite restrictive.

$$U_{ijt} = V_{ijt} + "_{ijt}$$
 (6)

$$U_{ijt} = V_{ijt} + "_{ijt}$$
 (6)
 $F("_{ijt}) = \exp(i e^{i "_{ijt}})$ (7)

Assume that

$$V_{ijt}(x_{ijt}; y_{ij} p_{j}) = e^{-0 x_{ijt} + \pm (y_{ij} p_{j})}$$
 (8)

where $\bar{}_t$ and \pm are unknown parameters which have to be estimated. The elements of the vector - t retect the relative valuation of attributes in period t. Under the assumption of independently and identically distributed residuals "iit; which is questionable in this case, having the EV distribution the probability P_{it} that individual i chooses type j at period t equals

$$P_{ijt} = P(U_{ijt}, U_{ij0t}) = \frac{e^{-0t_{t}} x_{ijt}}{e^{-0t_{t}} x_{ij}}; j^{0} \in j$$
 (9)

De...ne Iiit to be a dummy variable equal to one if individual i buys type j in period t. The loglikelihood function of period t which has to be estimated is then as follows:

$$\log L_t = \underset{i=1 \ j=1}{\overset{\times}{\bigvee}} I_{ijt} \log(P_{jt})$$
 (10)

3 Empirical implementation of the two methods

3.1 The hedonic method

There are various ways of estimating an hedonic price equation and consequently there are also a number of ways to construct price indexes. Three related methods are presented here. In the ...rst method equation 1 is estimated. This equation 11 shows the basic form of a hedonic price equation. The price of variant X_j at time t is assumed to depend on n product characteristics (both discrete and continuous) stored in the vector \mathbf{x}_{jt} , a constant term c and the random disturbance term " $_{jt}$. The function f describes the functional form of the price equation. Commonly used speci...cations for f are the log-log speci...cation, the log-linear speci...cation and the linear-linear speci...cation. Sometimes, economic theory oxers an indication which functional form should be used. However, the choice of the functional form is usually an empirical matter. Using Box-Cox transformations can help when making this choice.

$$p_{jt} = f(c; x_{jt}) + "_{jt}$$
 (11)

With the second method one assumes that the implicit values of product characteristics do not change over the estimation period t_0 ::: T then one can pool the data from di¤erent periods and estimate equation 12 using period dummies D_t . Here, the implicit values of the continuous and discrete product characteristics are stored in the vector $\bar{}$: The parameter $^{\circledR}$ is an intercept term and $^{\circledR}_t$ (t $^{\backsimeq}$ t_0) acts as an intercept shift in log prices for period t compared to period $^{\cth}$ t_0, once controlled for product characteristics.

$$In(p_{jt}) = ^{\circledR} + ^{\circledR}_{t_0+1}D_{t_0+1} + ^{\circledR}_{t_0+2}D_{t_0+2} + :: + ^{-}x_{jt} + "_{jt}$$
 (12)

Analogously, the exponent of $^{\circledR}_{t}$ is an intercept shift in prices for period t compared to period t_{0} , once controlled for product characteristics. Equation 8 de...nes the quality controlled price index I_{t} of prices at t relative to prices in the base period t_{0}

$$I_{t} = \exp(\mathbf{R}_{t}) \tag{13}$$

However, if one thinks that the assumption of constant implicit prices of product characteristics is not valid then one can estimate separate hedonic price equations for each period in the sample and construct a price index. The estimated intercept terms $@_t$ are now also period speci...c

$$ln(p_{jt}) = \mathbb{Q}_t + \bar{x_{jt}} + \bar{t_{jt}}$$
 (14)

There are dixerent product price indexes which can be used. Five common price indexes are the Laspeyres price index (LPI), the Laspeyres chain price index (LCPI), the Paasche price index (PPI), the Paasche chain price index (PCPI) and the Fisher ideal price index (FP). Their speci...cations are given below. With the LPI an index is calculated which indicates how much the product under investigation with the average base period characteristics would cost in period t relatively to what it cost in period t₀: The PPI does something similar, but uses the average period t characteristics instead of the average period t₀ characteristics. The LPI and the PPI are commonly used as approximations to the true cost-of-living indexes (COLI). COLI's indicate, roughly saying, how much money a consumer would need in period t relatively to the amount of money he needed in period to attain the same level of utility u in period t as in the base period t₀: It can be shown that under certain conditions the PPI_t underestimates the true increase of cost-of-living whereas the LPI overestimates it (see the discussion in Diewert, 1987). This is due to substitution exects in case of changes in the relative prices. This problem can be diminished by using chain indexes in which the period t_{0 i} T is divided into sub-periods and for each subperiod an index is estimated. This reduces the problem of substitution bias. The price index at time t is then calculated by multiplying the subperiod price indexes covering the period from t₀ tot t. Another possibility is to take the geometric mean of the PPI and the LPI, which is known as the Fisher ideal price index P_F: This index is a superlative index number. Superlative index numbers meet certain reasonable criteria (Diewert, 1976) and give, in the case of retrieving a cost of living index, an excellent approximation (they provide better approximations than the indexes based on ...xed weights which do not meet these criteria). Here it is just as a product price index.

$$LPI_{t} = \frac{\exp(\Re_{t} + \frac{\triangle_{t} x_{jt0}}{\log (\Re_{t0} + \frac{\triangle_{t} x_{jt0}}{\log x_{jt0}})}$$

$$LCPI_{t} = LCPI_{t_{i} 1} = \frac{\exp(\Re_{t} + \frac{\triangle_{t} x_{jt_{i} 1}}{\log x_{jt_{i} 1} + \frac{\triangle_{t_{i} 1} x_{jt_{i} 1}}{\log x_{jt_{i} 1}})}$$

$$PPI_{t} = \frac{\exp(\Re_{t} + \frac{\triangle_{t} x_{jt}}{\log x_{jt_{i} 1} + \frac{\triangle_{t_{i} 1} x_{jt_{i} 1}}{\log x_{jt_{i} 1}})}$$

$$PCPI_{t} = PCPI_{t_{i} 1} = \frac{\exp(\Re_{t} + \frac{\triangle_{t} x_{jt}}{\log x_{jt_{i} 1} + \frac{\triangle_{t_{i} 1} x_{jt_{i} 1}}{\log x_{jt_{i} 1}})}$$

$$FP_{t} = \frac{P}{LPI_{t}PPI_{t}}$$

$$(15)$$

third method to calculate price indexes which is more straightforward than the second method. Here the assumption of constant implicit values of product characteristics is somewhat relaxed by estimating two-years regressions in which the intercept is allowed to shift between two adjacent years by means of including a dummy D_t equal to one in year t and equal to zero in year t in the one assumes constant implicit values \tilde{t}_{i-1t} only between two adjacent years t_i 1 and t and not for the whole estimation period t_0 :::T.

$$In(p_{it}) = ^{\text{@}} + ^{\text{@}}_{t}D_{t} + ^{\tilde{z}}_{t_{i}} _{1t} x_{jt} + "_{it}$$
 (16)

An illustration of the use of hedonic methods is shown in table 1. There quality adjusted price indexes have been constructed for new passenger cars sold in the Netherlands between 1990-1999. The data-set has been extensively described in Bode and Van Dalen (2001). We restrict ourselves here to showing the resulting quality adjusted price indexes originating from different hedonic methods but we do not show the underlying regression results because this is not the scope of this empirical illustration. However, they are available on request for the interested reader.

Table 1
Price indexes for new cars using traditional and hedonic methods

	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999
type of index										
CBS index	1.000	1.030	1.090	1.120	1.130	1.130	1.107	1.107	1.107	1.112
Weighted av. sample	1.000	1.032	1.146	1.165	1.198	1.220	1.206	1.227	1.231	1.207
Pooled regression	1.000	1.020	1.067	1.086	1.090	1.070	1.036	1.017	1.011	1.008
Two-years regression	1.000	1.019	1.061	1.082	1.085	1.065	1.034	1.018	1.010	1.004
yearly regressions										
Laspeyresxed base	1.000	1.019	1.064	1.077	1.077	1.073	1.041	1.038	0.985	0.933
Laspeyres chain index	1.000	1.019	1.064	1.081	1.083	1.064	1.036	1.020	1.011	1.011
Paaschexed base	1.000	1.019	1.058	1.084	1.084	1.055	1.014	0.989	0.979	0.976
Paasche chain index	1.000	1.019	1.057	1.080	1.083	1.060	1.028	1.011	1.004	0.999
Fisher index	1.000	1.019	1.061	1.080	1.080	1.064	1.027	1.013	0.982	0.954

Table 1 shows that the o¢cial CBS index, which is used in the Dutch CPI, shows a rapid increase in car prices in 1991 and 1992 and a stabilization of the car prices in 1993-1999 at an about 11% higher level than in 1990. If the weighted average car prices of this sample are calculated a similar picture emerges but then the average car prices are in 1999 about 21% higher than in 1990.

The price indexes based on the hedonic price equations follow a di¤erent pattern than the conventional price index of the CBS. Just as the CBS index they rise sharply during the ...rst half of the 90's but unlike the CBS price index they decrease in the second half of the 90's to or even below the 1990 price level of new cars. This indicates that the CBS price index overestimates the price index for new cars, once controlled for quality changes, by at least 11%. The price index of new cars has a weight of 3.325% in the overall Dutch CPI. The overall Dutch CPI seems to be overestimated for the period 1990-1999 by 0:3 i 0:4 percentage points due to its overestimation of the price index of new cars.

The price indexes based on the pooled, the two-years and the yearly regressions are quite similar. They increase to about 1.085-1.090 in 1994 after which they decrease to slightly above the 1990 price level. Only the yearly ...xed base period price indexes show an actual decrease in prices relative to the 1990 price level. Comparing the CBS index with these price indexes

suggests that the major quality improvements of cars occurred during the second half of the 90's and in a lesser extent in the ...rst half of the 90's.

As already mentioned in the former section the Fisher price index and the chain price indexes based on the yearly hedonic price regressions are expected to produce the best estimates of the true quality corrected price index. These three indexes lie between the Paasche and the Laspeyres index and the di¤erences between them, especially between the two chain indexes are small. The Laspeyres chain index is equal or lies above the Paasche chain index. The di¤erence between the three indexes is largest in 1999 when the di¤erence between the Laspeyres chain price index and the Fisher price index amounts 5.5 percentage points. The Laspeyres chain index indicates that the car prices in 1999 are 1.1 percentage point above the 1990 price level of new cars whereas the Fisher price index indicates that 1998 prices are 4.5 percentage point lower than the 1990 price of new cars once controlled for the quality improvements. The Paasche chain price index denotes a 0.4 percentage point price increase for cars between 1990-1998.

3.2 The discrete choice method

A possible way to estimate a quality adjusted price index based on discrete choice models is to derive the expenditure function. The idea is that by specifying a certain utility, or alternatively speaking standard of living level, \tilde{u} one can derive the minimum amount of money needed to attain this utility level at di \tilde{u} erent points in time. The ratio of the amount of money needed at time t and some base period t_0 serves as the quality adjusted price index.

The expenditure function is obtained by minimizing the total expenditure necessary for the consumer to attain a speci…ed utility level of u: An issue here is the choice of the utility level u: A possibility is to choose a level based on the choices of the product characteristics of the average consumer in the base period t_0 or the end period T (in that sense it is similar to the Laspeyres and the Paasche price index). In this context the minimization problem is speci…ed as follows

$$\min_{x_1;:::X_{n;z}} p_k x_k + p(z)z$$
(17)

subject to

$$U(x_1; :::; x_n; z) > = u$$

 $x_k; z > = 0 (k = 1; ::; n)$
(18)

The optimal values of x^{x} and z^{x} depend on the prices and on the level of utility. The prices are derived by estimating the conditional logit model. H_{j} and H_{z} are known as Hicksian demand functions for the x_{k} and z.

$$x_k^{\pi} = H_k(p_1; ...; p_{nJ}; p(z), \tilde{u}) = H_j(p_x; p(z); u); (k = 1; ...; n)$$
 (19)
 $z^{\pi} = H_z(p_1; ...; p_n; p(z), \tilde{u}) = H_z(p_x; p(z); u)$

Substituting the optimal values of the x_k 's and z in P $p_k x_k + p(z)z$ gives the expenditure function.

A quality adjusted price index DCPI_t between two points in time t_0 and t is then achieved by deriving the expenditure functions m_{t_0} and m_t for t_0 respectively t and dividing m_t by m_{t_0} for a speci…ed utility level u; with the vectors storing the prices p_{tx} and p_{tz} now being time dependent:

DCPI_t =
$$\frac{m_t(p_{tx}; p_{tz}; u)}{m_{t_0}(p_{t_0x}; p_{t_0z}; u)}$$
 (21)

As you can see the price index of period t only depends on the speci...ed utility level and prices (from both the base period and period t), but not on the quantities of goods (or parts of goods) consumed. This indicates that price indexes based on the discrete choice model do not suxer from lower level substitution bias.

3.3 A comparison of the two methods

Both approaches are based on the same theoretical concept namely consumers maximizing their utility under a budget constraint. However, the two approaches dixer in the further elaboration of the theoretical model. The

14

hedonic approach is based on both consumers and producers utility maximizing behaviour whereas the discrete choice model concentrates on consumer utility maximizing behaviour. In the hedonic approach the resulting prices of product characteristics are market equilibrium prices in which each consumers marginal rate of substitution between product characteristics of the product and all other goods is equal to the marginal cost of producing this characteristic. In the discrete choice model only consumer's behaviour are taken into account. The valuation of a product characteristic can be retrieved by calculating the MRS between that good and the other goods. Another theoretical dixerence is that the hedonic method is based on the idea that a product is a bundle of product characteristics and that consumers actually buy these characteristics instead of the products itself. Hence, it more or less assumes that a consumer can choose any conceivable con...guration of a composite good. This is not the case with discrete choice models in which one can only choose existing product variants. A drawback of the discrete choice model is that, due to the assumption of extreme value distributed error terms, it has the Independence of Irrelevant Alternatives property. This drawback may be (partly) overcome by using nested logit models:

A more pragmatic di¤erence between these two methods lies in the data requirements for the empirical part. The hedonic method only requires aggregated market data like data from product prices, product characteristics and sales volume whereas the discrete choice method cross-section data is needed, in particular it requires consumer-speci...c data with respect to his income and probably also other consumer speci...c data determining consumers product choices. This is a major drawback of the discrete choice method since information on consumers is, at least in the Netherlands and probably also in most other countries, not available. Usually, data sets only contain detailed information on product or on consumer characteristics. The extra costs incurred with collecting both types of data may be considerable. A solution may be to combine information from two sources, i.e. one with detailed product information and one with detailed consumer expenditure information but incorporating information on consumer expenditure will probably be quite ad-hoc

The performance of the two approaches have been compared by among others Mason and Quigley (1990), Cropper et. al. (1993). Mason and Quigley performed Monte Carlo experiments using both techniques on the same data-set in order to compare their willingness to pay for commodity characteristics estimates. Their results indicate that the hedonic method

produces relatively good estimates when the size of the error term is small whereas the discrete choice model gives better estimates when the size of the error terms is medium or large. With respect to forecasting consumers' choices the hedonic model seems to perform relatively well when the size of the error terms is small whereas the discrete choice model does relatively well in case of medium and large sized error terms. Croppper et. al. compare, also by simulation, the performance of the multinomial logit model and the hedonic model in estimating consumer preferences for housing attributes. They ascribe preferences over the attributes of houses to a population of consumers and they calculate equilibrium prices by having them bid for a set of houses. With the resulting data set they estimate the two models. The estimation results show that marginal willingness to pay for an product attribute is estimated equally well by the two methods but that the logit model outperforms the hedonic method in valuing non marginal attribute changes.

4 Concluding remarks

After the publication of the Boskin (1996) report on cost of living indexes interest in the correctly estimating such indexes renewed. The main result of the report was that conventional cost-of living indexes overestimate the true cost-of-living index. One of the causes is that for certain products the product speci...c price index is overstated because quality improvements of the products have not been accounted for. An often used method in the academic world to construct quality adjusted price indexes is to use hedonic methods. However, discrete choice models may also be useful in this context.

The two methods di¤er both theoretically and empirically and they both have their pros and cons. The two approaches are based on the same theoretical concept namely consumers maximizing their utility under a budget constraint. However, they di¤er in the further elaboration of the theoretical model. The most important di¤erence is that the hedonic approach is based on both consumers and producers utility maximizing behaviour whereas the discrete choice model concentrates on consumer utility maximizing behaviour. A second main di¤erence is that in the hedonic approach it is assumed that a consumer can choose any conceivable con…guration of a composite good whereas discrete choice models only focus on existing product variants.

With respect to di¤erences in empirical work the ...rst thing which is noteworthy is that price index ...gures obtained using discrete choice models do not seem to su¤er from product substitution bias like the ones obtained through hedonic methods. Second, past empirical research has indicated that discrete choice models estimate the monetary value of non-marginal changes in product characteristics relatively well compared with the conventional hedonic estimation methods. This is also likely to result in a better quality of the price index ...gure. One of the main disadvantages of using discrete choice models is that the data requirements are much higher; you need data on both product and consumer characteristics instead of only product characteristics. Furthermore, calculating the price indexes once when has the data is also more complex in case of the discrete choice models.

References

- [1] Berndt, E.R. (1991), The practice of econometrics: classic and contemporary, Addison-Wesley Publishing Company, Mass.
- [2] Blow, L. and I. Crawford (1998), A quality constant price index for new cars in the UK, 1986-1995, Working paper series W98/12, The Institute for Fiscal Studies, London.
- [3] Bode, B. and J. van Dalen (2001), Quality-corrected price indexes of new passenger cars in the Netherlands, 1990-1999, working paper, Erasmus University, Rotterdam.
- [4] Boskin, M. J. et al.(1996), Towards a more accurate measure of cost of living, ...nal report to the Senate Finance Committee from the Advisory To Study The Consumer Price, December 4, Washington DC, Senate Finance Committee.
- [5] Chattopadhyay, S. (2000), The exectiveness of McFadden's nested logit model in valuing amenity improvement, Regional Science and Urban Economics, vol. 30(1), 23-43.
- [6] Chow, G. C. Technological Change and the Demand for Computers, American Economic Review, vol. 57(5), 1117-1130.

- [7] Court, A. T. (1939), Hedonic Price Indexes with Automotive Examples, The Dynamics of Automobile Demand, The General Motors Corporation, New York, 99-117.
- [8] Cramer, J.S. (1966), Een prijsindex van nieuwe personenauto's, 1950-1965, Statistica Neerlandica, vol. 20(2), 215-224.
- [9] Diewert, W.E. (1976), Exact and superlative index numbers, Journal of Econometrics, vol. 4, 115-145.
- [10] Diewert, W.E. (1987), Index numbers in The New Palgrave: A Dictionary of Economics, vol. 2, J. Eatwell, M. Milgate and P. Newman (eds.), The Macmillan Press, London, 767-780.
- [11] Cropper, M. L. et al. (1993), Valuing product attributes using single market data: a comparison of hedonic and discrete choice approaches, The Review of Economics and Statistics, vol. 75, 225-232.
- [12] Griliches, Z. (1961), Hedonic Price Indexes for Automobiles: An Econometric Analysis of Quality Change, The Price Statistics of the Federal Government, General Series no. 73, Columbia University Press for NBER, New York, 137-196.
- [13] Maddala, G.S. (1983), Limited-dependent and qualitative variables in econometrics, Cambridge University Press, Cambridge.
- [14] Mason, C. and J.M. Quigley (1990), Comparing the performance of discrete choice and hedonic models in: Fisher, M.M., P. Nijkamp and Y.Y. Papageorgiou (eds.), Spatial Choices and Processes, Elsevier North-Holland, Amsterdam, 219-246.
- [15] McFadden, D. (1974), Conditional logit analysis of qualitative choice behavior, in: P. Zarembka ed., Economic theory and mathematical economics, Academic Press, New York.
- [16] Ra¤, D.M.G. and M. Trajtenberg (1995), Quality adjusted prices for the American automobile industry:1906-1940, NBER working paper no. 5035, Cambridge.
- [17] Triplett, J.E. (2000), Draft copy Handbook on quality adjustment of price indexes for information and communication technology products, OECD, Paris.

[18] Waugh, F.V. (1928), Quality Factors In‡uencing Vegetable Prices, Journal of Farm Economics, vol. 10(2), 185-196.