

Comments on

**Optimal Fiscal and Monetary Policy
in a Medium-Scale Macroeconomic Model
by S. Schmitt-Grohé & M. Uribe**

**Andrew T. Levin
Federal Reserve Board**

May 2005

**The views expressed are solely the responsibility of the discussant, and
should not be interpreted as reflecting the views of the Board of Governors
of the Federal Reserve System or of any other person associated with the
Federal Reserve System.**

The Schmitt-Grohe & Uribe *Oeuvre*

- ⇒ “Optimal fiscal & monetary under sticky prices”
Journal of Economic Theory 2004
- ⇒ “Optimal fiscal & monetary under imperfect competition”
J. Macroeconomics 2004
- ⇒ “Optimal Simple & Implementable Monetary & Fiscal Rules”
NBER Working Paper 2003
- ⇒ “Optimized Operational Simple Rules in the CEE Model”
NBER Working Paper 2004
- ⇒ Add citations to Correia & Teles (1998), ACT (2001 ff.)

Perturbation Methodology

- ⇒ **Judd (1992 ff.)**
- ⇒ **Sims (2000 ff.)**
- ⇒ **Collard & Juillard (2001)**
- ⇒ **Schmitt-Grohe & Uribe (*JEDC* 2004) “Solving DGE models using a 2nd-order approximation to the policy function”**
- ⇒ **FRB project – Mathematica code to arbitrary order**
- ⇒ **Dynare – Matlab code to 2nd-order, C++ to arbitrary order**

We wish to write the wage-setting equation in recursive form. To this end, define

$$f_t^1 = \left(\frac{\tilde{\eta} - 1}{\tilde{\eta}} \right) \tilde{w}_t E_t \sum_{s=0}^{\infty} (\beta \tilde{\alpha})^s \lambda_{t+s} (1 - \tau_{t+s}^h) \left(\frac{w_{t+s}}{\tilde{w}_t} \right)^{\tilde{\eta}} h_{t+s}^d \prod_{k=1}^s \left(\frac{\pi_{t+k}}{\pi_{t+k-1}^{\tilde{\chi}}} \right)^{\tilde{\eta}-1}$$

and

$$f_t^2 = -\tilde{w}_t^{-\tilde{\eta}} E_t \sum_{s=0}^{\infty} (\beta \tilde{\alpha})^s w_{t+s}^{\tilde{\eta}} h_{t+s}^d U_{ht+s} \prod_{k=1}^s \left(\frac{\pi_{t+k}}{\pi_{t+k-1}^{\tilde{\chi}}} \right)^{\tilde{\eta}}.$$

One can express f_t^1 and f_t^2 recursively as

$$f_t^1 = \left(\frac{\tilde{\eta} - 1}{\tilde{\eta}} \right) \tilde{w}_t \lambda_t (1 - \tau_t^h) \left(\frac{w_t}{\tilde{w}_t} \right)^{\tilde{\eta}} h_t^d + \tilde{\alpha} \beta E_t \left(\frac{\pi_{t+1}}{\pi_t^{\tilde{\chi}}} \right)^{\tilde{\eta}-1} \left(\frac{\tilde{w}_{t+1}}{\tilde{w}_t} \right)^{\tilde{\eta}-1} f_{t+1}^1, \quad (17)$$

$$f_t^2 = -U_{ht} \left(\frac{w_t}{\tilde{w}_t} \right)^{\tilde{\eta}} h_t^d + \tilde{\alpha} \beta E_t \left(\frac{\pi_{t+1}}{\pi_t^{\tilde{\chi}}} \right)^{\tilde{\eta}} \left(\frac{\tilde{w}_{t+1}}{\tilde{w}_t} \right)^{\tilde{\eta}} f_{t+1}^2. \quad (18)$$

With these definitions at hand, the wage-setting equation becomes

$$f_t^1 = f_t^2. \quad (19)$$

Table 2: Ramsey Steady States

Environment				Steady-State Outcome				
τ_t^ϕ	χ	\bar{n}	γ_2	π	R	τ^h	τ^k	profit share
τ_t^k				0.2	4.2	35.4	-6.3	0.6
τ_t^k	1			4.6	8.8	34.7	-6.6	0.6
τ_t^k	1	0		-3.8	0	24.1	-5.3	2.3
τ_t^k		0		-0.2	3.8	23.3	-5.2	2.3
1				0.3	4.3	38.2	-44.3	0.8
1		6850		0.3	4.3	37.8	-84.9	1.4
τ_t^k, τ_t^h				0.5	4.5	30.0	30.0	0.3

Note: The inflation rate, π , and the nominal interest rate, R , are expressed in percent per year. The labor income tax rate, τ^h , and the capital income tax rate, τ^k , are expressed in percent. Unless indicated otherwise, parameters take their baseline values, given in table 1.

Table 3: Cyclical Implications of Optimal Policy Under Income Taxation

Variable	Steady state	Standard deviation	Serial correlation	Correlation with output
τ_t^y	30	1.1	0.62	-0.51
R_t	4.53	1.43	0.74	-0.11
π_t	0.51	1.1	0.55	0.11
y_t	0.3	1.96	0.97	1
c_t	0.21	1.16	0.98	0.89
i_t	0.04	7.87	0.98	0.95
h_t	0.19	1.34	0.75	0.59
w_t	1.17	0.94	0.93	0.80
a_t	0.72	4.44	0.99	0.31

Note: R_t and π_t are expressed in percent per year, and τ_t^y is expressed in percent. The steady-state values of y_t , c_t , i_t , w_t , and a_t are expressed in levels. The standard deviations, serial correlations, and correlations with output of these 5 variables correspond to percent deviations from their steady-state values.

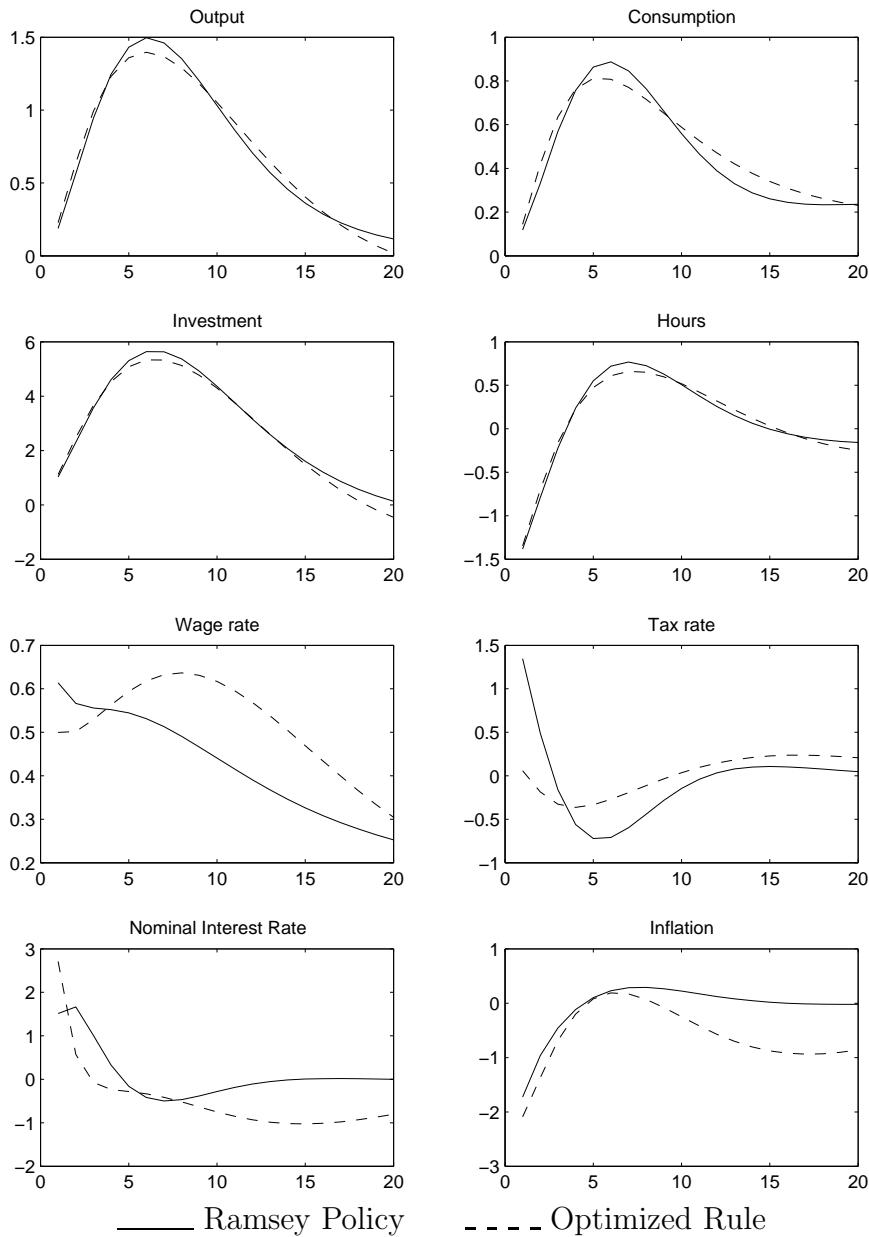
The optimized rule is given by

$$\ln(R_t/R^*) = -1.4 \ln(\pi_t/\pi^*) + 1.68 \ln(\pi_t^W/\pi^*) - 0.077 \ln(y_t/y^*) + 0.42 \ln(R_{t-1}/R^*)$$

and

$$\tau_t^y - \tau^{y*} = -0.26 \ln(a_t/a^*) + 0.18 \ln(y_t/y^*) + 0.29 \ln(\tau_{t-1}^y - \tau^{y*})$$

Figure 1: Impulse Response To A Productivity Shock



Welfare Costs of Fluctuations

Policy	Welfare
Ramsey policy	-1.4
Wage inflation rule	-1.5
Price inflation rule	-1.9

- Welfare costs of fluctuations are large. Driven by sticky wages.
- Best wage inflation rule: $r_t = r_{t-1} + 3.8$ (wage inflation)
- Best price inflation rule: $r_t = r_{t-1} + 2.1$ (price inflation)

Specification Uncertainty: Wage Setting

Experiment	Ramsey	Wage Inf*	Price Inf*
	Policy	Rule	Rule
Benchmark	-1.4	-1.5	-1.9
Wage-wage indexation	-1.2	-1.7	-1.5
Taylor wage contracts	-0.3	-0.6	-0.3
Taylor wage & price	-0.2	-0.6	-0.4
No wage dispersion	-0.1	-0.4	-0.3

*Optimized to benchmark specification.