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Abstract

The productivity slowdown in the 1970s and the speedup in the late 1990s presented

difficult challenges to monetary policymakers. The productivity slowdown has been

blamed for the 1970s stagflation episode—contemporaneous stagnant growth, high un-

employment, and high inflation—while the productivity acceleration has similarly been

credited with powering the disinflationary boom of the late 1990s. In both cases, mone-

tary policy is believed to have been important in determining the economy’s response to

the shift in long-run growth. Although there has been a great deal of study document-

ing these events, there has been surprisingly little formal analysis of the appropriate

monetary policy response to shifts in the growth rate of productivity. Intuitively, it is

clear that policy should somehow “accommodate” supply shocks such as these, but the

question is, what does that imply for the setting of interest rates? In particular, should

real interest rates—which will eventually move in the same direction as the change in

the rate of productivity growth—rise or fall in response to technology shocks and how

much does monetary policy matter for the evolution of real and nominal variables? A

further challenge for monetary policy makers arises from the difficulty in identifying in

real time shifts in the growth rate of productivity.

In this paper, we examine the effects of (and appropriate policy response to) shifts

in the growth rate of long-run multifactor productivity (MFP), where in doing so we

recognize the important practical consideration that the underlying growth rate in MFP

growth is unobservable in real time and must therefore be inferred from available data.

We conduct our monetary policy analysis using the two-sector DGE model developed

and estimated in Edge, Laubach, and Williams (2003), and modified here to allow

for persistent changes in trend productivity growth. The model incorporates habit

formation in consumption, investment adjustment costs, variable capacity utilization,

sticky wages and prices, and imperfect information regarding the permanence of shocks

to productivity growth. We find that shifts in the long-run productivity growth rate

have sizable and highly persistent effects on the real economy and inflation. In addition,

these responses, particularly those of employment and inflation, are sensitive to the

specification of monetary policy. This latter result contrasts with that found using

stylized New Keynesian models, in which the response to growth rate shocks is relatively

insensitive to the particular specification of policy.
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1 Introduction

The productivity slowdown in the 1970s and the speedup in the late 1990s presented difficult

challenges to monetary policymakers. The productivity slowdown has been blamed for

the 1970s stagflation episode—contemporaneous stagnant growth, high unemployment, and

high inflation—while the productivity acceleration has similarly been credited with powering

the disinflationary boom of the late 1990s. In both cases, monetary policy is believed to

have been important in determining the economy’s response to the shift in long-run growth.

Although there has been a great deal of study documenting these events, there has been

surprisingly little formal analysis of the appropriate monetary policy response to shifts

in the growth rate of productivity. Intuitively, it is clear that policy should somehow

“accommodate” supply shocks such as these, but the question is, what does that imply for

the setting of interest rates? In particular, should real interest rates—which will eventually

move in the same direction as the change in the rate of productivity growth—rise or fall in

response to technology shocks and how much does monetary policy matter for the evolution

of real and nominal variables? A further challenge for monetary policy makers arises from

the difficulty in identifying in real time shifts in the growth rate of productivity.

In this paper, we examine the effects of (and appropriate policy response to) shifts in

the growth rate of long-run multifactor productivity (MFP), where in doing so we recognize

the important practical consideration that the underlying growth rate in MFP growth is

unobservable in real time and must therefore be inferred from available data. We conduct

our monetary policy analysis using the two-sector DGE model developed and estimated in

Edge, Laubach, and Williams (2003), and modified here to allow for persistent changes in

trend productivity growth.1 We also consider the effects of different monetary policies on

the responses to shifts in the long-run growth rate.

This paper’s agenda ties in with recent work by Gaĺı, López-Salido, and Vallés (forth-

coming), which considers the optimal monetary policy response to transitory shifts in the

growth rate of MFP, and Gaĺı (2000), which extends the analysis to include permanent

shifts in the growth rate of trend MFP.2 Gaĺı et al. and Gaĺı assume that sticky prices
1The specification of this model is similar to those of Christiano, Eichenbaum and Evans (2001) and

Smets and Wouters (2002), so our results should apply to those models as well.
2Svensson and Woodford (2003)—as a specific example to illustrate their more general solution method

for determining the optimal weights for policymakers to place on different forward-looking and partially-

informative macroeconomic indicators—also consider how monetary policy should respond to shifts in MFP
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are the only source of nominal rigidity; consequently, their prescribed policy in response to

MFP growth rate movements—which exactly replicates the flex-price model’s response—

eliminates simultaneously both the output gap and inflation rate variances (upon which

utility based welfare depends).

In this paper, we consider the more general case of sticky wages and prices, as well a num-

ber of additional empirically-supported features in the model, including habit-persistence

in consumption, and adjustment-costs in investment spending, and find that these modifi-

cations to the model have profound effects on the effects of monetary policy on the model

economy and on the characteristics of optimal policy responses.3

The outline of the paper is as follows. Section 2 presents the technologies and preferences

for the model used in our monetary policy analysis; section 3 outlines the decentralization

of the model, including the signal extraction problem faced by agents in inferring changes

in long-run MFP growth from observed movements in MFP; and, section 4 describes the

estimation and calibration of the model’s parameters. We then turn to the policy analysis

component of the paper and examine in section 5 the responses to shifts in long-run growth

under alternative monetary policies. Section 6 concludes.

2 Technology and Preferences

In this section, we describe the technology and preferences describing our model, which was

developed and estimated in Edge, Laubach, and Williams (2003). This model shares many

features with those developed by Fuhrer (1997b), Christiano, Eichenbaum, and Evans (2003),

Smets and Wouters (2002), and Altig, Christiano, Eichenbaum, and Linde (2002). Impor-

tantly, the dynamics of nominal and real variables are determined by first-order conditions

of optimizing agents. In order for the model to fit the data reasonably well, we allow for

various frictions such as habit formation and investment adjustment costs that interfere

growth.
3The inclusion of many of these additional features to the model have been already studied in the

context of optimal monetary policy more broadly the consideration of the implications of endogenous capital

accumulation for optimal policy have remained largely untouched. See Erceg, Henderson, and Levin, 2000,

and Amato and Laubach, 2003, on the the implications of both sticky-prices and sticky-wages and Amato

and Laubach, 2004, on the implications of habit-persistence.
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with instantaneous full adjustment in response to shocks.4 As in Altig et al. (2002), ours

is a two-sector model in which the level and growth rates of technology are allowed to dif-

fer across the consumption and investment goods sectors. In the next section we turn to

the decentralization of this economy and derive the conditions describing the decentralized

equilibrium.

2.1 The Production Technology

Two distinct final goods are produced: consumption goods (denoted Yc,t) and investment

goods (denoted Yi,t). Given the current levels of technology in each final goods sector de-

noted by As,t for sector s, consumption and investment goods are produced by aggregating—

according to a Dixit-Stiglitz technology—an infinite number of differentiated intermediate

material goods. Specifically, final goods production in sector s in period t is represented by

the function

Ys,t = A1−α
s,t

(∫ 1

0
Ym,s,t(x)

θ−1
θ dx

) θ
θ−1

, s = c, i, (1)

where the variable Ym,s,t(x) denotes the quantity of the intermediate materials good in-

dexed by type x ∈ [0, 1] used to produce final output in sector s and θ is the elasticity of

substitution between the differentiated materials inputs used in the production, assumed to

be the same in both sectors.

The differentiated intermediate materials goods used as inputs in equation (1) are them-

selves produced by combining each variety of our economy’s differentiated labor inputs

{Lt(x)}, x ∈ [0, 1] with physical capital Kt. Capital can be utilized at varying intensities,

denoted by Ut ≥ 0. A Dixit-Stiglitz aggregator characterizes the way in which differenti-

ated labor inputs are used together in the production of the economy’s materials goods,

while a Cobb-Douglas production function then characterizes how the composite bundle of

labor, denoted Lt, is combined with utilized capital to produce, given the current level of

technology Am,t, output of intermediate materials goods. The production of materials good

z, for z ∈ [0, 1], is determined by:

Ym,t(z) = (Kt(z)Ut(z))α (Am,tLt(z))1−α −Kt(z)Ψ(Ut(z))(Ai,t)−(1−α) (2)

where Lt(z) =
(∫ 1

0 Lt(x, z)
ω−1

ω dx
) ω

ω−1 , (3)

4Estrella and Fuhrer (2002) document the shortcomings of optimization-based models that do not incor-

porate such sources inertia.
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where the function Ψ(Ut) = µ
ψ+1

(
Uψ+1

t − 1
)

has the properties that Ψ(1) = 0, Ψ′(1) =

µ(1)ψ = µ ≥ 0, and Ψ′′(1) = µψ(1)ψ−1 = µψ ≥ 0. The parameter α denotes the elasticity

of output with respect to capital, while ω denotes the elasticity of substitution between the

differentiated labor inputs.

2.2 The Capital Evolution Technology

The law of motion for the economy’s beginning of period t + 1 capital stock Kt+1 is given

by:

Kt+1 = (1− δ)Kt + It exp

[
−χi

2

(
It

It−1
−Γi

)2
]

, (4)

where It is gross investment, δ is the depreciation rate, and Γi is the steady-state growth

rate of investment. The final term multiplying It measures the fraction of investment that

contributes to the capital stock after adjustment costs. The fraction of investment lost to

adjustment costs is zero when investment growth, It/It−1, equals the trend rate of growth

of technology in the investment goods sector, but rises to above zero, at an increasing rate,

as investment growth moves further away from its trend. The parameter χi ≥ 0 governs

how quickly adjustment costs increase as investment growth moves away from Γi. The

economy’s resource constraint implies that It ≤ Yi,t.

2.3 Preferences

Households derive utility from their purchases of the consumption good Ct and from their

use of leisure time, equal to what remains of their time endowment L̄ after 0 ≤ Lt(i) ≤ L̄

hours of labor are supplied to market activities. The preferences of household i ∈ [0, 1]

over consumption and leisure are nonseparable, with household i’s consumption habit stock

(assumed to equal a fraction η ∈ [0, 1] of its consumption last period) influencing the utility

it derives from current consumption. Note that we assume that utility is nonseperable

between consumption and leisure, consistent with evidence of Basu and Kimball (2002).

Specifically, preferences of household i are given by

E0
1

1− σ

∞∑

t=0

βt
[
(Ct(i)− ηCt−1(i))(L̄− Lt(i))ζ

]1−σ
, (5)

where β is the household’s discount factor, and ζ is a measure of the utility of leisure. The

economy’s resource constraint implies that
∫ 1
0 Ct(x)dx ≤ Yc,t.
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2.4 Productivity Growth

The log-level of technology in each of the three sectors (s = c, i, m) is modeled as a random

walk with stochastic drift. Specifically,

ln As,t = ln Γa,s,t + ln As,t−1 + εs,t εs,t ∼ N(0, σ2
ε,s), (6)

ln Γa,s,t = (1− ρ) ln Γ̄a,s + ρ ln Γa,s,t−1 + νs,t νs,t ∼ N(0, σ2
ν,s), (7)

where εs,t and νs,t are assumed to be serially uncorrelated with Gaussian distribution and

zero contemporaneous correlation. The disturbance εs,t corresponds to a permanent shock

to the level of productivity (and a transitory shock to its growth rate), while νs,t is a shock

to the trend growth rate of productivity. The process specified above is similar to that used

in Edge, Laubach, and Williams (2004), the only difference being that in equation (7) the

growth process ln Γa,s,t follows an auto-regressive process, whereas in Edge et al. the growth

process ln Γa,s,t followed a random walk.

The paper considers two different informational structures regarding the economy’s tech-

nology evolution process. We first assume that agents can observe all of the components of

the economy’s productivity process, that is, the variables, {As,t,Γa,s,t}∞t=0, and the shocks

{εs,t, νs,t}∞t=0. Edge, Laubach, and Williams (2004), however, find that this is not a very

appealing set-up since under this informational assumption the model’s predictions of how

the economy responds to persistent shifts in the growth rate of technology conflict sharply

with the empirically observed responses of macroeconomic variables following episodes in

which productivity growth has increased or decreased.5 Consequently, we also consider the

possibility in which only {As,t}∞t=0 can be observed so that agents must infer (given their

knowledge of the underlying technology process, summarized by equations 6 and 7 and the

parameters σ2
ε,s, σ2

µ,s, and ρ), the transitory {εs,t}∞t=0 and permanent {Γa,s,t, νs,t}∞t=0 compo-

nents of productivity growth. This informational structure, which requires agents to solve a

signal extraction problem in addition to the usual profit- or utility-maximization problems

that they otherwise solve, implies responses to persistent MFP growth rate shocks that

conform more closely with those observed empirically.6

5If immediately recognized, an increase in the trend growth rate of productivity causes long-term interest

rates to rise and generates a sharp decline in employment and investment.
6Allowing for the gradual recognition of shifts in the trend growth rate of productivity can, following

a sustained rise in the rate of productivity growth, generate a more gradual increase in long-term interest

rates and consequently prolonged positive responses for hours and investment.
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3 The Decentralized Economy

We now discuss the agents of our economy and their respective optimization problems.

We assume the following decentralization. There is one representative, perfectly compet-

itive firm in each of the two final-goods producing sectors, which purchases intermediate

inputs from the continuum of materials goods producers. The materials goods producers,

in turn, rent capital from a perfectly competitive representative capitalist, and differenti-

ated types of labor from households. The capitalist purchases the investment good from

the investment-goods producing firm, and households purchase the consumption good from

the consumption-goods producing firm. Because both materials goods producers and house-

holds are monopolistic competitors, they also set prices at which they supply their respective

products or labor services.

An additional problem for agents arises when we assume the informational structure in

which only the level of productivity, As,t can be observed, while its components Γa,s,t, εs,t,

and νs,t must be inferred. The resulting additional signal extraction problem is outlined in

the following section.

3.1 Agents’ Signal Extraction of Technology Shocks

In the case in which only the level of technology As,t can be observed, we assume that

final and intermediate goods producers know the structure of the process underlying MFP

growth, that is the equations (6) and (7) and the parameters σ2
ε,s, σ2

ν,s, and ρ. Consequently,

agents are able to use the Kalman filter to estimate the separate components of technology,

that is Γa,s,t, εs,t, and νs,t.7

A key advantage of the Kalman filter is that under a particular set of assumptions

regarding the data generating processes for productivity growth, it reduces to a simple

linear updating formula for estimating the trend rate of productivity growth. Given a new

observation of zt, the prior estimate of the trend growth rate ĝz,t−1 is updated by applying

the steady-state Kalman filter:

ln Γ̂a,s,t = ln Γ̂a,s,t−1 + λ(lnAs,t − ln As,t−1 − ln Γ̂a,s,t−1), (8)

7See Stock and Watson 1998, Brainard and Perry 2000, Roberts 2001, Laubach and Williams 2003 for

examples of uses the Kalman filter in estimating the trend growth rate of productivity or output.
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where λ, the steady-state gain, is given by

λ =
1
2

{
φ− (1− ρ2) +

√
φ− (1− ρ2) + 4φ

}
, (9)

where φ = σ2
ν,s/σ2

ε,s, signal-to-noise ratio, is strictly positive. By implication

ε̂s,t = lnAs,t − ln As,t−1 − ln Γ̂a,s,t and ν̂s,t = ln Γ̂a,s,t − ρ ln Γ̂a,s,t−1 + (1− ρ) ln Γ̄a,s.

This filter is optimal under the assumptions of the model (see Harvey 1989 for a full treat-

ment) and, as shown in Edge, Laubach, and Williams (2004), the implied linear updating

rule can be parameterized so as to approximate well the real-time estimates of long-run

labor productivity growth.

3.2 Final Goods Producers

The competitive firm in the consumption good sector owns the production technology de-

scribed in equation (1) for s = c, while the competitive firm in the capital goods sector owns

the same technology for s = i. Each final-good producing firm, taking as given the prices

set by each intermediate-good producer for their differentiated output, that is {Pm,t(j)}1
j=0,

chooses intermediate inputs {Ym,s,t(j)}1
j=0 so as to minimize the cost of producing its fi-

nal output Ys,t, subject its production technology, given by equation (1). Specifically, the

competitive firm in each sector solves

min
{Ym,s,t(j)}1j=0

∫ 1

0
Pt(x)Ym,s,t(x)dx s.t. Ys,t≤A1−α

s,t

(∫ 1

0
Ym,s,t(x)

θ−1
θ dx

) θ
θ−1

, s = c, i. (10)

The cost-minimization problems solved by firms in the economy’s consumption and capital

goods producing sectors imply economy-wide demand functions for each intermediate good

that are given by

Ym,t(j) =

(
Pm,t(j)
Pm,t

)−θ ∑

s=c,i

Ys,t

A1−α
s,t

. (11)

The variable Pm,t denotes the aggregate price level in the intermediate goods sector and

is defined by Pm,t = (
∫ 1
0 (Pm,t(x))1−θdx)

1
1−θ . The cost-minimization problems solved in

each final-good producing sector imply that the competitive price for consumption and

investment goods, respectively, are given by Pc,t = Pm,tA
−(1−α)
c,t and Pi,t = Pm,tA

−(1−α)
i,t .
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3.3 Intermediate Goods Producers

Each intermediate (or materials) good producing firm j ∈ [0, 1] owns the production tech-

nology described in equations (2) and (3). In considering firm j’s problem—of choosing

the quantities of differentiated labor services {Lt(i, j)}1
i=0, capital Kt(j), and the degree of

utilization Ut(j) that it will use in production—it is convenient to split the decision into

two separate stages. In the first step of the problem firm j, taking as given the wages

{Wt(i)}1
i=0 set by each household for its variety of labor, chooses {Lt(i, j)}1

i=0 to mini-

mize the cost of attaining the aggregate labor bundle Lt(j) that it will ultimately need for

production. Specifically, the materials firm j solves:

min
{Lt(i,j)}1i=0

∫ 1

0
Wt(x)Lt(x, j)dx s.t. Lt(j)≤

(∫ 1

0
Lt(x, j)

ω−1
ω dx

) ω
ω−1

(12)

The cost-minimization problem undertaken by each materials producing firm implies that

the economy-wide demand for type i labor is

Lt(i) =
∫ 1

0
Lt(i, x)dx =

(
Wt(i)
Wt

)−ω ∫ 1

0
Lt(x)dx (13)

where Wt denotes the aggregate wage, defined by Wt = (
∫ 1
0 (Wt(x))1−ωdx)

1
1−ω . In the second

step of the problem firm j, taking as given the aggregate wage Wt and the rental rate on

capital Rk,t, chooses aggregate labor Lt(j), capital Kt(j), and utilization Ut(j) to minimize

the costs of attaining its desired level of output Ym,t(j). Specifically, the firm solves

min
Kt(j),Lt(j),Ut(j)

Rk,tKt(j)+WtLt(j)

s.t. Ym,t(j)≤(Kt(j)Ut(j))
α (Am,tLt(j))

1−α−Kt(j)Ψ(Ut(j))(Ai,t)−(1−α). (14)

Since each firm produces its own differentiated variety of materials output Ym,t(j), it

is able to set its price Pm,t(j), which it does taking into account the demand schedule for

its output that it faces from the consumption and capital goods sectors (equation 11). In-

termediate materials goods-producing firms are assumed to face non-negative adjustment

costs in altering both the level and the rate of change in their prices. For this purpose, we

apply the generalized adjustment cost model due to Tinsley (1993) and discussed in Kozicki

and Tinsley (1999). We prefer this approach over that of common alternatives because the

latter imply heterogeneity among agents. Partly for this reason, models utilizing staggered

price and wage setting typically assume that utility is separable between consumption and
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leisure, in which case perfect insurance among households against labor income risk elim-

inates heterogeneity of their spending decisions. By contrast, if wages are staggered and

household utility is nonseparable, differences across households in labor supply (which will

result due to differences in wages set) lead to differences across household in the marginal

utility of consumption (and hence consumption), even if perfect insurance is able to equalize

wealth across households. The quadratic adjustment cost model allows us to avoid hetero-

geneity across agents. In any case, the resulting price and wage inflation equations are very

similar to those derived from Calvo-based setups with inertia as in Christiano, Eichenbaum,

and Evans (2003) and Smets and Wouters (2002).

The price adjustment costs (denote by χp,1 and χp,2, respectively) appear as an ex-

pense against firms’ profits and are thus factored into their profit-maximization problem.

The intermediate-good producing firm j, taking as given the marginal cost MCm,t(j) for

producing Ym,t(j), the aggregate material price level Pm,t, and aggregate materials output

Ym,t, chooses its price Pm,t(j) to maximize the present discounted value of its profits sub-

ject to the demand curve it faces for its differentiated output (equation 11). The materials

producer’s profit-maximization problem is given by

max
{Pm,t(j)}∞t=0

E0

∞∑

t=0

βtΛc,t

Pc,t
{(1 + ςθ)Pm,t(j)Ym,t(j)−MCm,t(j)Ym,t(j)

−

χp,1

2
(
Πm,t(j)− Π̄m

)2 +
χp,2

2

(
Πm,t(j)

Πm,t−1(j)
− 1

)2

 Pm,tYm,t





s.t. Ym,t(j)=

(
Pm,t(j)
Pm,t

)−θ(
Yc,t

A1−α
c,t

+
Yi,t

A1−α
i,t

)
, (15)

where the discount factor that is relevant when comparing nominal revenues and costs in

period t with those in period t+j is Etβ
j Λc,t+j/Pc,t+j

Λc,t/Pc,t
, where Λc,t is the household’s marginal

utility of consumption in period t. The parameter Π̄m is the steady-state rate of aggregate

materials price inflation and ςθ = (θ − 1)−1 is a subsidy to production that is set to ensure

that the economy’s level of steady-state output is Pareto optimal.

3.4 Capital Owners

The capitalist possesses the technology described in equation (4) for transforming capital

goods, purchased from capital goods producers, into capital that can be rented and used

productively by materials firms. The competitive capitalist, taking as given the rental rate

9



on capital Rk,t, the price of investment goods Pi,t, and the stochastic discount factor chooses

investment to maximize the present discounted value of profits subject to the law of motion

governing the evolution of capital (equation 4).8 Specifically, the capitalist solves:

max
{It,Kt+1}∞t=0

E0

∞∑

t=0

βtΛc,t

Pc,t
[Rk,tKt−Pi,tIt] s.t. Kt+1≤(1−δ)Kt+It exp

[
−χi

2

(
It

It−1
−Γk

)2
]

. (16)

3.5 Households

The representative household’s utility, which is defined over consumption and leisure, is

described by equation (5). Since each household supplies its own differentiated variety of

labor Lt(i), it is able to set its wage Wt(i) subject to the labor demand schedule that it

faces from the materials producing sector (equation 13). Analogous to materials producers,

the household faces non-negative adjustment costs (denoted by χw,1 and χw,2) in terms of

altering both the level and growth rate of its nominal wage. These adjustment costs appear

as an expense against income in the household’s budget constraint and are thus factored

into the household’s utility-maximization problem. The household’s budget constraint with

costly wage adjustment is is given by

Et

[
β

Λc,t+1/Pc,t+1

Λc,t/Pc,t
Bt+1(i)

]
= Bt(i) + (1 + ςω)Wt(i)Lt(i) + Profitst(i)− Pc,tCt(i)

−

χw,1

2
(
Πw,t(i)−Π̄w

)2−χw,2

2

(
Πw,t(i)

Πw,t−1(i)
−1

)2

 WtLt, (17)

where the variable Bt(i) is the state-contingent value, in terms of the numeraire, of household

i’s asset holdings at the beginning of period t. We assume that there exists a risk-free one-

period bond, which pays one unit of the numeraire in each state, and denote its yield—that

is, the gross nominal interest rate between periods t and t+1—by Rt ≡
(
Etβ

Λc,t+1/Pc,t+1

Λc,t/Pc,t

)−1
.

Profits are those repatriated from capitalist and materials producing firms who, as already

noted, are ultimately owned by households. The parameter Π̄w is the steady-state rate of

aggregate nominal wage inflation and ςω = (ω − 1)−1 is a subsidy to production that is set

to ensure that the household’s level of steady-state labor supply (and hence the economy’s

level of steady-state output) is Pareto optimal.

The household takes as given the expected path of the gross nominal interest rate Rt,

the consumption good price level Pc,t, the aggregate wage rate Wt, profits income, and the
8The economy’s capital stock is also ultimately owned by the households, so that the relevant discount

factor in comparing nominal earnings and expenditures in period t with those in period t+j is βj Λc,t+j/Pc,t+j

Λc,t/Pc,t
.

10



initial bond stock Bi,0, and chooses its consumption Ct(i) and its wage Wt(i) to maximize

its utility subject to its budget constraint and the demand curve it faces for its differentiated

labor. Specifically, the household solves:

max
{Ct(i),Wt(i)}∞t=0

E0

∞∑

t=0

βt

[
(Ct(i)− ηCt−1(i))(L̄− Lt(i))ζ

]1−σ

1− σ

s.t. equation (17) and Lt(i)=
(
Wt(i)
Wt

)−ω∫ 1

0
Lt(j)dj. (18)

3.6 Monetary Authority

In the spirit of the literature on monetary policy feedback reaction functions, we assume

that the central bank uses the short-term interest rate as its instrument. This rate is

determined in accordance with an interest rate feedback equation by which the short-term

interest rate responds to deviations of inflation and economy-wide capacity utilization from

their respective steady-state levels.9 We also allow for policy inertia by including the lagged

short-term interest rate in the feedback equation. In particular, monetary policy is described

by

rt = φrrt−1 + φπ(Πm,t − 1) + φu ln Ut + εr,t, (19)

where rt denotes the short-term interest rate (equal to Rt − 1), Ut denotes economy-wide

capacity utilization (equal to
∫ 1
0 Ut(x)dx) and εr,t is an i.i.d. policy shock. Note that we

have suppressed the constant that incorporates the steady-state levels of the interest rate,

inflation rate, and capacity utilization rate.

3.7 Equilibrium

The decentralized (symmetric) equilibrium is an allocation:

{Ym,t, Yc,t, Yi,t, Ct, Lt, It, Kt+1, Ut}∞t=0

and sequences of prices:

{Πm,t, Πc,t, Πi,t, Πw,t, Pc,t, Pi,t, Qk,t, Rk,t, Wt,MCm,t, Rt}∞t=0

that satisfy the following conditions:
9Capacity utilization provides a convenient proxy for the output gap without requiring any estimate of

potential output.
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• final-good producing firms solve (10) for s = c and i;

• all materials producers solve (12), (14), and (15);

• the capitalist solves (16);

• all households solve (18);

• the monetary authority follows (19);

• all materials goods markets clear, that is equation (11) holds for all j ∈ [0, 1];

• the consumption and capital goods markets clear Yc,t = Ct and Yi,t = It; and,

• all factor markets clear.

Agents take as given the initial values of K0 and R−1, the sequence of values of the target

variables, and the sequence of exogenous variables

{Ac,t, Ai,t, Am,t}∞t=0 .

implied by the sequence of shocks

{εc,t, εi,t, εm,t, νc,t, νi,t, νm,t, εr,t}∞t=0 .

The model’s first-order conditions are fully described in the Appendix. In simulating the

model, we normalize the variables by their balanced growth path values. The normalization

is also described in the Appendix. We then log-linearize the normalized equations describ-

ing the decentralized equilibrium and solve this system using the Anderson-Moore (1985)

algorithm.

4 Estimation and Calibration

All but a few of the parameters in the model outlined in sections 2 and 3 were calibrated

or estimated, using minimum distance techniques, in the companion paper, Edge, Laubach,

and Williams (2003). The parameters that govern the pace at which agents update their esti-

mates of trend productivity growth were calibrated based on the findings in Edge, Laubach,

and Williams (2004).
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To estimate the model parameters we estimated a VAR on quarterly U.S. data using

empirical counterparts to the theoretical variables in our model and identified two structural

shocks using assumptions that were consistent with the theoretical model. We then chose

model parameters so as to match the impulse responses to these two shocks implied by the

model to those implied by the VAR.10 The solid lines in the panels of Figure 1 show the

impulse responses to our identified permanent technology shock, scaled such that the long-

run response of output, its components, and the real wage are equal to 1, while Figure 2

shows the impulse responses of the variables to a funds rate shock. The dashed-dotted

lines present one-standard deviation bands around the impulse responses, computed by

bootstrap methods.11 The specification of our VAR and the assumptions for identifying

structural shocks are in most respects the same as those of Altig, Christiano, Eichenbaum,

and Linde (2002) and our results resemble those that they obtained as well. As these authors

discuss at length, a controversial result from the VAR is that hours rise in response to a

positive technology shock. This finding contrasts to those of Gaĺı (1999) and Basu, Fernald,

and Kimball (1998), who find that a technology shock induces a decline in hours that lasts

for a few quarters. Altig et al. provide evidence that one explanation for the difference

between their findings and those of Gaĺı is that in their VAR log per capita hours enter in

levels, instead of in first differences. Because our model implies that per capita hours are

stationary, we prefer to specify the VAR with per capita hours in levels. The estimated

responses of output and its components, labor productivity, the real wage, and inflation to

a funds rate shock are consistent with many other studies on the effects of monetary policy,

and are very similar to those presented in Altig et al.

The decision as to which parameters to estimate and which ones to calibrate was (loosely)

based on how informative the impulse responses are for the parameters. We calibrated

those parameters, such as steady-state growth rates, that have little effect on the dynamic

responses to shocks and estimated the remaining parameters by minimizing the squared
10Recent applications of this estimation strategy are Rotemberg and Woodford (1997), Amato and

Laubach (2003), Christiano, Eichenbaum, and Evans (2003), and Altig, Christiano, Eichenbaum, and

Linde (2002). Details on our estimation procedure can be found in the appendix at the end of the paper,

which reproduces the VAR specification and identification section from Edge, Laubach, and Williams (2003).
11To prevent the standard error bands from diverging over time, we discard those draws for which the

implied reduced-form VAR was estimated to be unstable. Specifically, we discard those draws for which the

largest eigenvalue of the coefficient matrix in the reduced form, written in companion form, exceeds .995,

which is the case for about 15 percent of all draws.
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deviations of the responses from the model and the VAR of eight variables to two identified

shocks.

The calibrated model parameters are shown in the upper panel of Table 1. All growth,

depreciation, inflation, and interest rates along with the rate of time preference β are

expressed at annual rates. The endowment L̄ is normalized to 1. The value α = .3 is

consistent with an average labor share in the nonfarm business sector over 1952q1 to 2000q4

of .64 under the assumption of a 10 percent markup in intermediate goods markets (which is

a bit lower than our markup estimate, see below). The value of δ is compatible with our use

of a comprehensive measure of capital including residential and nonresidential structures.

The gross growth rate Γm in the intermediate goods sector is unobserved, and hence we

normalize it to 1. The growth rates Γc and Γi are based on the average growth rates of

our consumption and investment aggregates over the period 1960q1 to 2001q4, which are

3.1 percent and 5.7 percent respectively. The steady-state inflation rate in one sector has to

be calibrated; given our assumptions about growth rates in the various sectors, the inflation

rate in one sector determines the inflation rates in the others, as well as wage inflation. We

choose to calibrate inflation in the consumption sector to 2 percent at an annual rate.

The estimated parameters are shown in the middle panel of the table, with standard

errors in parentheses. Standard errors are computed using the Jacobian matrix from the

numerical optimization routine and the empirical estimate of the covariance matrix of the

impulse responses from the bootstrap. The coefficients of the model are generally estimated

with good precision.

One feature of both sets of impulse responses is that real investment, hours, and uti-

lization display prolonged hump-shaped responses to the shocks. Consumption follows a

similar pattern in the response to the monetary policy shock, but monotonically rises to its

new level in response to the technology shock. In the case of a permanent technology shock,

Rotemberg and Woodford (1996) demonstrated that DGE models without intrinsic inertia

will not display such hump-shaped patterns; instead, these variables jump on impact and

adjust monotonically to their new steady-state values.

Not surprisingly, in estimating the model, we find a significant role for inertia in con-

sumption (in the form of habit persistence) and in investment (in the form of adjustment

costs) is needed to match these moments. Our estimate of the habit parameter η is close to

the value estimated by Boldrin, Christiano, and Fisher (2001), Smets and Wouters (2002),
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Table 1: Structural Parameter Estimates

Preferences Technology Growth Prices Policy

Calibrated β .97 α .3 Γ̄m 1 Π̄c 1.02

L̄ 1 δ .10 Γ̄i 1.06

Γ̄c 1.03

Estimated σ 2.79 θ 5.41 χp,1 32.45 φr .78

(.49) (1.46) (13.69) (.01)

ζ 2.43 ω 4.00 χp,2 .002 φπ .49

(5.16) (1.83) (1.52) (.04)

η .64 ψ .77 χw,1 291 φu .005

(.02) (.07) (47.21) (.002)

χi 1.75 χw,2 262

(.30) (49.12)

and Christiano, Eichenbaum, and Evans (2003), but smaller than the estimate reported in

Fuhrer (2000). Our estimate of χi, the adjustment cost parameter in investment, is smaller

than the value of 3.60 reported in Christiano et al., or 6.77 reported in Smets and Wouters.

Still, this degree of inertia in investment is sufficient to deliver the distinctive hump-shaped

response of investment seen implied by the data.

A second noteworthy feature of the impulse responses is the difference of the impulse

responses of inflation to the two shocks. Interestingly, in response to the technology shock

inflation drops on impact and then returns to steady state relatively quickly. In contrast

the response of inflation to the monetary policy shock is gradual and persistent, suggesting

inflation inertia or some other deviation from standard price-setting models. For the price

equation, our estimates imply no intrinsic inflation inertia with the estimated value of

χp,2 being near zero, reflecting the response to the technology shock. In contrast, we find

evidence of intrinsic nominal wage inflation inertia, as evidenced by the estimated value of

χw,2 exceeding 100 with an estimated standard error of about 25.

Rounding out the remainder of the estimates, we find a value of σ well above unity.The

estimated aggregate labor supply elasticity, based on our estimate of ζ, is above 4, higher

than micro-based studies but consistent with other macro-based estimates. The values of θ

and ω imply steady-state markups in intermediate goods and labor markets of 23 percent

and 33 percent, respectively. Our estimate of the elasticity of the utilization cost function ψ
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implies greater costs from variations in capital utilization than the estimates of Christiano et

al. (2001), Altig et al. (2002), or Smets and Wouters (2002) do, although some of the differ-

ence between our estimate and others may be due to alternative formulations of utilization

costs used in those studies. Our estimates of the parameters of the monetary policy rule,

φr, φπ, and φu, are broadly consistent with the findings of many other studies that estimate

monetary policy reaction functions, such as that of Clarida, Gaĺı, and Gertler (2000).

The dashed lines in Figure 1 present the impulse responses implied by the model un-

der our parametrization to a permanent unanticipated increase in technology that raises

ym,t, ct, it, lt, and wt in the long run by one percent. Figure 2 shows the responses to a one

percentage point shock to the funds rate, computed under the assumption that no other

variable can respond contemporaneously to this shock. The model matches the responses to

the technology shock very well across the board. Compared to the VAR impulse responses,

the model impulse responses to a funds rate shock of ym,t, ct, it, lt, and πm,t are of approxi-

mately same magnitude, but appear to be front-loaded, in that the VAR impulse responses

reach their trough several quarters after the model responses.

The parameter that governs the pace at which agents update their estimates of trend

productivity growth, specifically the gain λ, is set equal to 0.025 per quarter in our model.

This was the value that in Edge, Laubach, and Williams (2004) was found to replicate

quite well real time estimates of long-run labor productivity growth given real time labor

productivity data. This calibration implies that if MFP growth increase in any period,

agents will interpret most—that is, 97.5 percent—of it as being transitory so that only

a small fraction—2.5 percent—will be reflected in higher underlying MFP growth. As a

result, a transitory shock to MFP growth will, for the most part, be recognized correctly.

In contrast a persistent MFP growth rate shock will for a long time be incorrectly interpreted

as transitory.

5 Monetary Policy and Technology Shocks

In this section, we analyze the impulse responses to four types of technology shocks under

different monetary policy assumptions. In the following, we make two small adjustments

to the model. First, we set Γc = 1. Second, we assume that the estimate monetary policy

rule responds to the difference between the utilization rate of capital and its natural rate

16



associated with the flexible wage and price equilibrium. The latter adjustment is needed for

simulations of persistent shocks to the growth rate which yield sustained movements in the

natural rate of utilization. Finally, we incorporate a time-varying neutral rate of interest in

the monetary policy rule that incorporates the long-run effects of a change in the growth

rate on the neutral real interest rate.12

5.1 Methodology

We compute the optimal Ramsey policy using the methods of Levin and Lopez-Salido (2004)

and the software package DYNARE.

5.2 Monetary Policy and Sector-neutral Technology Shocks

A permanent increase to the level of sector-neutral MFP: The first shock that we

consider is the same as was used to estimate the model, namely an unanticipated permanent

increase in the level of sector-neutral technology. The dashed lines in Figure 3 report the

economy’s response to this shock under the model’s estimated policy rule. These responses

are almost exactly the same as those shown in by the dashed lines in Figure 1, with the

small differences arise from the modified assumptions described above.

The allocation of resources under the optimal monetary policy is nearly the same as in

the flexible wage and price economy. The solid lines in Figure 3 represent the economy’s

response to an unanticipated permanent increase in the level of sector-neutral technology

under the optimal policy under commitment (that is, the solution to the Ramsey problem).

The dotted-dashed lines in Figure 3 show the response to an unanticipated permanent

increase in the level of sector-neutral technology in an economy that is identical to our

estimated model with the exception of having completely flexible prices and wages. Hours

briefly decline in response to the shock and then turn mildly positive. Capital utilization

rises in response to the shock and remains elevated for over a decade.

The optimal policy holds wage inflation near its steady-state value. The increase in

productivity eventually elicits an equal increase in the real wage. Owing to the larger costs

of adjustments to changing wages relative to prices, this rise in the real wage is almost

entirely accomplished through a decline in the price level, leaving nominal wages nearly
12We add a term (1−φr)σgt to the policy rule, where gt is the perceived trend growth rate of sector-neutral

MFP.
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constant.

Compared to the Ramsey policy, the estimated policy rule generates excessively large

increases in hours, utilization, consumption, and investment. Inflation initially falls, but

then overshoots the steady-state level after a few periods.

A persistent observable increase the growth-rate of sector-neutral MFP: We now

consider the economy’s response to technology growth rate shocks first under the assumption

that agents immediately recognize the increase in the level of technology as being the result

of a growth rate shock. The dashed lines in Figure 4 report the economy’s response to

a very persistent increase in the growth-rate of sector-neutral technology growth, with

autocorrelation coefficient of 0.95.

As noted by Campbell (1994) stochastic growth models with flexible wages and prices

predict a decline in investment, hours, and output following a highly persistent positive

shock to the growth rate of technology owing to the dominate wealth effects associated

with such a shock. This pattern is seen in the impulse responses of our model shown in

Figure 4. It is worth stressing, however, that in a sticky wage and price model, the initial

response to such a shock depends crucially on the monetary policy rule in place. Under

a different policy rule, the model can yield positive initial responses of hours, output, and

even inflation.

As in the case of the level shock to technology, the optimal policy achieves the increase

in real wages called forth by more rapid productivity growth primarily by suppressing the

rate of price inflation. It generates this through a very large increase in nominal (and

real) interest rates which restrains aggregate demand following the productivity growth

rate shock. As a result, the paths for hours and output are slightly below those resulting

from the flexible-wage and price economy.

A persistent unobservable persistent increase the growth-rate of sector-neutral

MFP: We now consider the economy’s response to technology growth rate shocks under

the assumption that agents can observe only the level of technology and must infer the

transitory and persistent components of the shock. All agents are assumed to know the

process underlying productivity growth and update their estimates using the Kalman filter,

that is, they follow the updating rule given by equation (8).

As in the previous cases, the optimal policy yields an allocation of resources close to

that resulting from the flexible wage and price economy and holds nominal wages close
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to the steady-state values. Hours move relatively little, while utilization rises gradually.

Investment growth rises for a short time, then is basically constant at its baseline value for

the remainder of the decade. The optimal inflation rate falls by about 0.7 percentage points

and remains below baseline for more than ten years. The optimal policy response is a large

initial decline in the in interest rate. The interest rate then rises very gradually.

The swings in hours, consumption, and investment under the estimated rule are much

larger than in under the optimal policy. The decline in inflation is smaller than under the

optimal policy, but just as persistent.

Finally, we consider a permanent increase in the growth rate of sector-neutral MFP. The

results are shown in Figure 5 and are very similar to those of a highly persistent shock to

the growth rate.

6 Conclusion

We find that the optimal policy response to technology shocks achieves a real allocation

close to that in the flexible wage and price equilibrium and forces resulting movements in the

real wage onto the movements in price inflation, leaving wage inflation nearly constant. As

a result, sustained shifts in the growth rate of productivity result in sustained movements

in price inflation in the opposite direction, consistent with the experience of the 1970s and

late 1990s. We find a similar pattern under the estimated policy rule, but in that case, the

real allocation responds excessively to technology shocks.

In this paper, we analyze a basic question for monetary policy: should the central bank

raise or lower interest rates, and by how much, in response to an increase in the productivity?

The answer, not surprisingly, is that, “It depends.” In particular, it depends crucially on

whether the shock to productivity growth is perceived to be permanent or temporary. In

the former case, the optimal response is to raise interest rates; in the latter, it is to lower

them.
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Figure 1: VAR and Model Impulse Responses to a Technology Shock
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Notes: The solid lines show the impulse responses implied by the VAR to an identified

technology shock that in the long-run raises output and its components by one percent.

The dashed lines show the impulse responses implied by the model to a permanent one-

percent shock to technology in sector m. The dashed-dotted lines are one standard error

confidence intervals around the VAR responses.
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Figure 2: VAR and Model Impulse Responses to a Funds Rate Shock
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Notes: The solid lines show the impulse responses implied by the VAR following a one

percent funds rate shock. The dashed lines show the impulse responses implied by the

model to the same shock under the assumption that the contemporaneous response of all

variables other than the funds rate is zero. The dashed-dotted lines are one standard error

confidence intervals around the VAR responses.
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Figure 3: Response to a sector-neutral MFP level shock
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Notes: The solid lines show the impulse responses assuming the monetary authority follows
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Figure 4: Response to a Persistent Increase in MFP Growth
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Figure 5: Response to a Persistent Increase in MFP Growth with Learning
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Figure 6: Response to a Permanent Increase in MFP Growth with Learning
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Model Appendix

In this appendix, we derive and log-linearize the first-order conditions and describe the

normalization of variables along the balanced growth path.

First-order Conditions

The consumption and capital goods producing firms’ cost minimization problems (equa-

tion 10 for s = c and i) yield demand functions from each final-good producing sector for

each of the intermediate goods:

Ym,c,t(j) =

(
Pm,t(j)
Pm,t

)−θ
Yc,t

A1−α
c,t

and Ym,i,t(j) =

(
Pm,t(j)
Pm,t

)−θ
Yi,t

A1−α
i,t

(20)

where the variable Pm,t, which has the interpretation of being the competitive price for the

cost-minimizing bundle of materials goods, is defined:

Pm,t =
(∫ 1

0
(Pm,t(j))

1−θ dj

) 1
1−θ

. (21)

The demand functions in equation (20) imply an economy-wide demand for each interme-

diate good of:

Ym,t(j) = Ym,c,t(j) + Ym,i,t(j) =

(
Pm,t(j)
Pm,t

)−θ (
Yc,t

A1−α
c,t

+
Yi,t

A1−α
i,t

)
. (22)

In the symmetric equilibria that we consider (that is, where Pm,t(j) = Pm,t for all j) this

demand function simplifies to:

Ym,t(j) =

(
Yc,t

A1−α
c,t

+
Yi,t

A1−α
i,t

)
. (23)

The competitive prices of consumption and capital goods are:

Pc,t = Pm,tA
−(1−α)
c,t and Pi,t = Pm,tA

−(1−α)
i,t . (24)

The capitalists profit-maximization problem (equation 16) yields the following first-order

conditions:

Pi,tIt = exp

[
−χi

2

(
It

It−1
−Γi

)2
] (

1−χi
It

It−1

(
It

It−1
−Γi

))
Qk,tIt

+ βEt

[
Λc,t+1/Pc,t+1

Λc,t/Pc,t
exp

[
−χi

2

(
It+1

It
−Γi

)2
]

χi
It+1

It

(
It+1

It
−Γi

)
Qk,t+1It+1

]
(25)

Qk,t = βEt

[
Λc,t+1/Pc,t+1

Λc,t/Pc,t
(((1− δ) Qk,t+1 + Rk,t+1))

]
(26)
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The household’s utility-maximization problem (equation 18) yields an Euler equation

and labor supply schedules. In a symmetric equilibrium, all households make the same

consumption and wage decisions. Hence the index i is dropped in the following. Letting

Λc,t denote the marginal utility of consumption we define

Λc,t =(Ct−ηCt−1)
−σ(

L̄−Lt
)ζ(1−σ)−Etβη

[
(Ct+1−ηCt)

−σ(
L̄−Lt+1

)ζ(1−σ)
]
. (27)

Letting Λl,t denote the marginal disutility of labor supply we define

Λl,t =ζ (Ct−ηCt−1)
(1−σ) (

L̄−Lt
)ζ(1−σ)−1

. (28)

This allows us to write the Euler equation as

Λc,t

Pc,t
= βRtEt

[
Λc,t+1

Pc,t+1

]
(29)

and the labor supply curve as:

Λl,t

Λc,t
Ltω = (ω−1) (1+ςω)

Wt

Pc,t
Lt+

(
χw,1 (Πw,t−Πw) Πw,t+χw,2

(
Πw,t

Πw,t−1
−1

)
Πw,t

Πw,t−1

)
Wt

Pc,t
Lt

− βEt

[
Λc,t+1

Λc,t

(
χw,1 (Πw,t+1−Πw)Πw,t+1+2χw,2

(
Πw,t+1

Πw,t
−1

)
Πw,t+1

Πw,t

)
Wt+1

Pc,t+1
Lt+1

]

+ β2Et

[
Λc,t+2

Λc,t+1

Λc,t+1

Λc,t

(
χw,2

(
Πw,t+2

Πw,t+1
−1

)
Πw,t+2

Πw,t+1

)
Wt+2

Pc,t+2
Lt+2

]
(30)

The first step of the intermediate-good producing firm’s cost-minimization problem

equation (12) implies an economy-wide demand schedule for type i labor of:

Lt(i) =
∫ 1

0
Lt(i, j)dj =

(
Wt(j)
Wt

)−ω ∫ 1

0
Lt(j)dj =

(
Wt(j)
Wt

)−ω

Lt. (31)

In the symmetric equilibrium this equation implies that Lt(i) = Lt for all i. The second step

of the intermediate-good producing firm’s cost-minimization problem equation (14) implies

the following first-order conditions:

α
(KtUt)

α (Am,tLt)
1−α

Kt
=

Rk,t

MCm,t
+ Ψ (Ut) (Ai,t)−(1−α) (32)

(1− α)
(KtUt)

α (Am,tLt)
1−α

Lt
=

Wt

MCm,t
(33)

α
(KtUt)

α (Am,tLt)
1−α

KtUt
= Ψ′ (Ut) (Ai,t)−(1−α) (34)

(KtUt)
α (Am,tLt)

1−α = Ym,t + KtΨ(Ut) (Ai,t)−(1−α). (35)

31



Together these equation imply capital and labor factor demand schedules, an expression for

optimal utilization and a marginal cost schedule. The intermediate-good producing firm’s

profit-maximization problem equation (15) implies a price Phillips curve of:

MCm,tYm,tθ

= (θ−1) (1+ςθ) Pm,tYm,t+

(
χp,1 (Πm,t−Πm)Πm,t+χp,2

(
Πm,t

Πm,t−1
−1

)
Πm,t

Πm,t−1

)
Pm,tYm,t

−βEt

[
Λc,t+1/Pc,t+1

Λc,t/Pc,t

×
(

χp,1 (Πm,t+1−Πm)Πm,t+1+2χp,2

(
Πm,t+1

Πm,t
−1

)
Πm,t+1

Πm,t

)
Pm,t+1Ym,t+1

]

+β2Et

[
Λc,t+2/Pc,t+2

Λc,t+1/Pc,t+1

Λc,t+1/Pc,t+1

Λc,t/Pc,t

(
χp,2

(
Πm,t+2

Πm,t+1
−1

)
Πm,t+2

Πm,t+1

)
Pm,t+2Ym,t+2

]
.

(36)

Balanced Growth

The first step required in specifying the first-order conditions in terms of stationary variables

only is to determine the rates of growth of the non-stationary variables. From equation (2)

we know that in the steady state:

ln Γm = (1− α) ln Γa,m + α ln Γi (37)

where Γ̄m is the steady-state growth rate of materials goods production, while Γ̄a,m is

the steady-state growth rate of technology in the materials production function. Γ̄i is the

steady-state growth rate of investment goods production, which is defined from equation (1)

for s = i as:

ln Γi = (1− α) ln Γa,i + ln Γa,m (38)

while Γ̄c is the steady-state growth rate of consumption goods production, which is defined

from equation (1) for s = c as:

ln Γc = (1− α) ln Γa,c + ln Γm. (39)

Equations (37) and (38), can be solved simultaneously to yield

ln Γm = ln Γa,m + α ln Γa,i and (40)

ln Γa,i = ln Γa,m + ln Γa,i, (41)
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which then allows us to re-write equation (39):

ln Γc = lnΓa,m + α ln Γa,i + (1− α) ln Γa,c. (42)

Equations (40) to (42) imply that the following renormalized product market quantity

variables are stationary:

Ỹm,t =
Ym,t

Am,tAα
i,t

, Ỹi,t =
Yi,t

Am,tAi,t
, Ỹc,t =

Yc,t

Am,tAα
i,tA

1−α
c,t

, Ĩt =
It

Am,tAi,t
, and C̃t =

Ct

Am,tAα
i,tA

1−α
c,t

.

(43)

In factor markets, labor input Lt is stationary without any renormalization. Capital is

rendered stationary by the following renormalization:

K̃t =
Kt

Am,tAi,t
. (44)

This normalization implies that while the unnormalized t + 1 capital stock Kt+1 is known

in period t, the normalized t + 1 capital stock K̃t+1 is not known until Am,t+1 and Ai,t+1

are realized in period t + 1. From the equations in (21) and (24) we know that in steady

state

lnΠm(j) = lnΠm, lnΠc = ln Πm− (1− α) ln Γa,c, and lnΠk = ln Πm− (1− α) ln Γa,i (45)

where Πm is the steady-state aggregate inflation rate in the materials good sector, Πm(j)

is the steady-state inflation rate for the jth materials goods, and Πc and Πi are the steady-

state inflation rates for consumption and capital goods prices. These conditions imply that

the following product price ratios are stationary:

P̃m,t(j) =
Pm,t(j)
Pm,t

, P̃c,t =
Pc,t

Pm,t
A1−α

c,t , P̃i,t =
Pi,t

Pm,t
A1−α

i,t , and Q̃t =
Qk,t

Pm,t
A1−α

i,t . (46)

The capitalists supply schedule, equation (26), implies that the steady-state nominal growth

rate of the rental rate on capital is equal to the steady-state capital price inflation rate (that

is, ln ΠRk
= lnΠi). The steady-state growth rate of nominal wages, can be inferred from

equation (30), which states that it is equal to

lnΠw(i) = ln Πw = lnΠm + ln Γa,m + α ln Γa,i. (47)

Consequently, the following real factor prices are also stationary:

W̃t(i) =
Wt(i)

Pm,tAm,tAα
i,t

, W̃t =
Wt

Pm,tAm,tAα
i,t

, and R̃k,t =
Rk,t

Pm,t
A1−α

i,t , (48)
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while stationary marginal cost is

M̃Cm,t(j) =
MCm,t

Pm,t
(49)

.

Finally it is worth noting from equation (27) that we can perform the following renor-

malization to make the marginal utility of consumption Λc,t stationary

Λ̃c,t =
Λc,t

A−σ
m,tA

−σα
i,t A

−σ(1−α)
c,t

. (50)

and while from equation (28) we can make the marginal utility of labor Λh,t stationary with:

Λ̃l,t =
Λh,t

A
(1−σ)
m,t A

(1−σ)α
i,t A

(1−σ)(1−α)
c,t

. (51)

First-Order Conditions (with Stationary Variables Only)

The consumption and capital goods producing firms’ cost minimization problems imply a

(stationary) economy-wide demand for each intermediate good of:

Ỹm,t(j) = Ỹc,t(j) + Ỹi,t(j) =
(
P̃m,t(j)

)−θ (
Ỹc,t + Ỹi,t

)
(52)

which in the symmetric equilibrium is:

Ỹm,t = Ỹm,t(j) = Ỹc,t(j) + Ỹi,t(j) = Ỹc,t + Ỹi,t. (53)

The stationary relative prices of the consumption and capital goods are:

P̃c,t = 1 and P̃i,t = 1. (54)

The capitalists profit-maximization problem (equation 16) yields the following (station-

ary) first-order conditions:

Ĩt = exp


−χi

2

(
Ĩt

Ĩt−1

Γi,t−Γi

)2



(
1−χi

Ĩt

Ĩt−1

Γi,t

(
Ĩt

Ĩt−1

Γi,t−Γi

))
Q̃k,t

P̃i,t

Ĩt

+ βEt


 Λ̃c,t+1

Λ̃c,t

Πi,t+1

Πc,t+1
(Γc,t+1)

−σ exp


−χi

2

(
Ĩt+1

Ĩt

Γi,t−Γi

)2



×χi
Ĩt+1

Ĩt

Γi,t+1

(
Ĩt+1

Ĩt

Γi,t+1−Γi

)
Q̃k,t+1

P̃i,t+1

Γi,t+1Ĩt+1

]
(55)

Q̃k,t

P̃i,t

= βEt

[
Λ̃c,t+1

Λ̃c,t

Πi,t+1

Πc,t+1
(Γc,t+1)

−σ

(
(1− δ)

Q̃k,t+1

P̃i,t+1

+
R̃k,t+1

P̃i,t+1

)]
(56)
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The stationary version of the capital evolution equation is:

Γi,t+1K̃t+1 = (1− δ) K̃t + Ĩt (57)

The Euler equation and labor supply schedule (equations 29 and 30) from the households

utility-maximization problem is:

Λ̃c,t = βEt

[(
Rt

Πc,t+1
(Γc,t+1)

−σ Λ̃c,t+1

)]
(58)

and the labor supply curve as:

Λ̃l,t

Λ̃c,t

Ltω=(ω−1) (1 + ςω)
W̃t

P̃c,t

Lt+

(
χw,1 (Πw,t −Πw) Πw,t+χw,2

(
Πw,t

Πw,t−1
−1

)
Πw,t

Πw,t−1

)
W̃t

P̃c,t

Lt

−βEt

[
Λ̃c,t+1

Λ̃c,t

(Γc,t+1)
−σ

×
(
χw,1 (Πw,t+1−Πw)Πw,t+1+2χw,2

(
Πw,t+1

Πw,t
−1

)
Πw,t+1

Πw,t

)
Γc,t+1

W̃t+1

P̃c,t+1

Lt+1

]

+β2Et

[
Λ̃c,t+2

Λ̃c,t+1

Λ̃c,t+1

Λ̃c,t

(Γc,t+2Γc,t+1)
−σ

×
(
χw,2

(
Πw,t+2

Πw,t+1
−1

)
Πw,t+2

Πw,t+1

)
Γc,t+2Γc,t+1

W̃t+2

P̃c,t+2

Lt+2

]
(59)

where the stationary marginal utility of consumption Λ̃c,t is:

Λ̃c,t =

(
C̃t−η

C̃t−1

Γc,t

)−σ(
L̄−Lt

)ζ(1−σ)−Etβη


Γ−σ

c,t+1

(
C̃t+1−η

C̃t

Γc,t+1

)−σ(
L̄−Lt+1

)ζ(1−σ)


 (60)

while the stationary marginal disutility of labor supply Λ̃l,t is:

Λ̃l,t =ζ

(
C̃t−η

C̃t−1

Γc,t

)(1−σ) (
L̄−Lt

)ζ(1−σ)−1
. (61)

The stationary first-order conditions from the second step of intermediate-good produc-

ing firm’s cost-minimization problem (equations 32 to 35) are

α

(
K̃tUt

)α
(Lt)

1−α

K̃t

=
R̃k,t

M̃Cm,t

+ Ψ (Ut) (62)

(1− α)

(
K̃tUt

)α
(Lt)

1−α

Lt
=

W̃t

M̃Cm,t

(63)

α

(
K̃tUt

)α
(Lt)

1−α

K̃tUt

= Ψ′ (Ut) (64)
(
K̃tUt

)α
(Lt)

1−α = M̃t + K̃tΨ(Ut) . (65)
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The stationary Phillips curve from the intermediate-good producing firm’s profit-maximization

problem :

M̃Cm,tỸm,tθ

=(θ−1)(1 + ςθ)Ỹm,t+

(
χp,1 (Πm,t−Πm)Πm,t+χp,2

(
Πm,t

Πm,t−1
−1

)
Πm,t

Πm,t−1

)
Ỹm,t

−βEt

[
Λ̃c,t+1

Λ̃c,t

Πm,t+1

Πc,t+1
(Γc,t+1)

−σ

×
(

χp,1 (Πm,t+1−Πm) Πm,t+1+2χp,2

(
Πm,t+1

Πm,t
−1

)
Πm,t+1

Πm,t

)
Γm,t+1Ỹm,t+1

]

+β2Et

[
Λ̃c,t+2

Λ̃c,t+1

Λ̃c,t+1

Λ̃c,t

Πm,t+1

Πc,t+1

Πm,t+2

Πc,t+2
(Γc,t+2Γc,t+1)

−σ

×
(

χp,2

(
Πm,t+2

Πm,t+1
−1

)
Πm,t+2

Πm,t+1

)
Γm,t+1Γm,t+1Ỹm,t+2

]
. (66)

Stationary and Symmetric Steady-state Equilibrium

The steady-state growth rates in the materials, capital, and consumption goods sectors are

given by

Γm = Γa,mΓα
a,i, Γi = Γa,mΓa,i, and Γc = Γa,mΓα

a,iΓ
1−α
a,c (67)

where the calibrated values of the growth rates Γa,m, Γa,i, and Γa,c are given in section 4.

The steady-state inflation rates of consumption and capital prices and of nominal wages are

given by:

Πc = ΠmΓ−(1−α)
a,c , Πi = ΠmΓ−(1−α)

a,i , and Πw = ΠmΓa,mΓα
a,i. (68)

The nominal interest rate is given by:

R =
1
β

Γσ
c Πc (69)

while the real interest rates relevant to consumers, capitalists, and material good producers

respectively are:

R

Πc
=

1
β

Γσ
c ,

R

Πi
=

1
β

Γσ
c

Πc

Πi
, and

R

Πm
=

1
β

Γσ
c

Πc

Πm
(70)

The steady-state values of the relative prices of consumption, and uninstalled and installed

capital goods (that is, P̃c,t, P̃i,t, and Q̃t) are unity. The steady-state values of real marginal

36



cost, the real rental rate, and the real wage are:

M̃Cm =
θ − 1

θ
(1 + ζθ) = 1 (71)

R̃k =
1
β

Γσ
c

Πc

Πi
− (1− δ)=

R

Πi
− (1− δ) (72)

W̃ = (1− α)
(

θ − 1
θ

) 1
1−α

(1 + ζθ)
1

1−α

(
α

R
Πi
− (1− δ)

) α
1−α

(73)

The steady-state ratios L

Ỹm
, K̃

Ỹm
, Ĩ

Ỹm
= Ỹi

Ỹm
, and C̃

Ỹm
= Ỹc

Ỹm
:

L

Ỹm

=
(

1− α

α

)α
(

R̃k

W̃

)α

(74)

K̃

Ỹm

=
(

α

1− α

)1−α
(

W̃

R̃k

)1−α

(75)

Ĩ

Ỹm

=
Ỹk

Ỹm

=(Γi − (1− δ))
(

α

1− α

)1−α
(

W̃

R̃k

)1−α

(76)

C̃

Ỹm

=
Ỹc

Ỹm

=1− (Γi − (1− δ))
(

α

1− α

)1−α
(

W̃

R̃k

)1−α

(77)

The steady-state solution for materials output is:

Ỹm = L̄

(
L

Ỹm

+
ζ

1− ηΠc/R
· C̃

Ỹm

· 1− η
Γc

W̃
· ω

ω − 1
· 1
1 + ςω

)−1

(78)

Log-Linearized First-order Conditions

The log-linearized versions of the final-good producing firms’ first-order conditions are:

pc,t = 0 and pk,t = 0. (79)

The demand function from the symmetric equilibrium is

ym,t =
Ỹc

Ỹc + Ỹi

yc,t +
Ỹi

Ỹc + Ỹi

yi,t (80)

where it can be shown that Ỹc

Ỹc+Ỹi
and Ỹi

Ỹc+Ỹi
are equal to the steady-state nominal shares

of consumption and capital goods output in total final goods output respectively. Market

clearing in the final goods markets imply that yc,t = ct and yi,t = it, together with the

equations in (79), allows us to write equation (80) more as a market clearing condition for

the materials sector, that is,

ym,t =
Ỹc

Ỹc + Ỹi

ct +
Ỹi

Ỹc + Ỹi

it (81)
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The log-linearized versions of the capitalists first-order conditions (55) and (56) are:

(it + γi,t) +
ΓiΠi

R
it = it−1 +

ΓiΠi

R
(Etit+1 + Etγi,t+1) +

1
χiΓi

(qk,t − pi,t) (82)

Etrk,t+1−Etpi,t+1 =
R/Πi

R/Πi−(1−δ)
(rt−Etπi,t+1+qk,t−pi,t)− (1− δ)

R/Πi−(1−δ)
(Etqk,t+1−Etpi,t+1)

(83)

The log-linearized version of the capital evolution equation is:

kt =
(

1− δ

Γi

)
kt−1 +

(
Γi − 1 + δ

Γi

)
it−1 − γi,t (84)

The log-linearized versions of the household’s Euler equation (equation 58) and labor supply

curve (equation 59) are:

λc,t = rt − Etπc,t+1 − σEtγc,t+1 + Etλc,t+1 (85)

and
(
χw,1Πw

2+χw,2

(
1+2

ΓcΠc

R

))
πw,t = χw,2πw,t−1+

(
ΓcΠc

R

)(
χw,1Πw

2+χw,2

(
2+

ΓcΠc

R

))
Etπw,t+1

−
(
ΓcΠc

R

)2

χw,2Etπw,t+2+(1+ςω)(ω−1)(λl,t−λc,t−(wt−pc,t))

(86)

where:

λc,t =
1

1−ηΠc/R

( −σ

1−η/Γc

(
ct− η

Γc
ct−1+

η

Γc
γc,t

)
−ζ(1−σ)

L

L̄−L
lt

)

− ηΠc/R

1−ηΠc/R

( −σ

1−η/Γc

(
Etct+1− η

Γc
ct+

η

Γc
Etγc,t+1

)
−ζ(1−σ)

L

L̄−L
Etlt+1−σEtγc,t+1

)

(87)

and

λl,t =
1− σ

1− η/Γc

(
ct − η

Γc
ct−1+

η

Γc
γc,t

)
+ (1− ζ (1− σ))

(
L

L̄− L

)
lt. (88)

The material producing firms’ first-order conditions (equations to 62 to 66) can be log-

linearized and rearranged to yield labor and capital demand functions, as well as an equation

for the degree of utilization and an expression for marginal cost:

lt = ym,t − α

(
1 +

1− α

Ψ′′(1)/Ψ′(1)

)
(wt − rk,t) , (89)

kt = ym,t + (1− α)
(

1 +
1− α

Ψ′′(1)/Ψ′(1)

)
(wt − rk,t) , (90)

ut =
1− α

Ψ′′(1)/Ψ′(1)
(wt − rk,t) , (91)

mcm,t = (1− α)wt + αrk,t (92)
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and
(
χp,1Πm

2+χp,2

(
1+2

ΓmΠm

R

))
πm,t = χp,2πm,t−1+

ΓmΠm

R

(
χp,1Πm

2+χp,2

(
2+

ΓmΠm

R

))
Etπm,t+1

−
(

ΓmΠm

R

)2

χp,2Etπm,t+2 + (1+ςθ) (θ − 1)mcm,t (93)

The log-linearized first-order conditions for the inflation rates of wages and materials

prices imply the following evolution for real wages:

Etwt+1 − wt + Etγa,m,t+1 + Etαγa,i,t+1 = Etπw,t+1 − Etπm,t+1 (94)

while the expected inflation rates for the consumption and capital good prices are given by:

Etπc,t+1 = Etπm,t+1 − (1− α)Etγc,t+1 (95)

Etπi,t+1 = Etπm,t+1 − (1− α)Etγi,t+1. (96)

It is worth emphasizing, to avoid confusion, that πc,t and πi,t represent the change in the

level of consumption and capital goods prices and not the change in the relative prices of

consumption and capital goods. Specifically, πc,t 6= pc,t − pc,t−1 and πi,t 6= pi,t − pi,t−1. In

the flexible wage and price version of our model equations (94), (95), and (96) are given by

Etπw,t+1 = Etwt+1 − wt + Etγa,m,t+1 + Etαγa,i,t+1 (97)

Etπc,t+1 = −(1− α)Etγc,t+1 (98)

Etπi,t+1 = −(1− α)Etγi,t+1 (99)

Finally, the deviations from steady-state of the growth rates of Ac,t and Ai,t,

γc,t = γa,m,t + αγa,i,t + (1− α)γa,c,t

γi,t = γa,m,t + γa,i,t

For almost all variables in the model the title assigned to them it very similar to that

variable’s empirical concept. One exception is the variable Qk,t in the model, which is the

installed price of capital, rather than the ratio of the price of installed to uninstalled capital.

For this we introduce a variable Qtobin
t defined at Qk,t

Pi,t
so that in our log-linearized equations

it is the term qk,t − pi,t = qtobin
t that is the log-deviation of Tobin’s q from its steady-state

value of unity.
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Estimation Appendix

In this appendix, we reproduce the VAR specification and identification section from Edge,

Laubach, and Williams (2003).

VAR Specification and Identification

The specification of our VAR and the assumptions for identifying structural shocks are

in most respects the same as those of Altig, Christiano, Eichenbaum, and Linde (2002),

and the reader is referred to that paper. Nine variables are included in the VAR: the first

difference of log labor productivity, inflation, log manufacturing capacity utilization, the

log labor share, log hours per person, the log nominal consumption-to-output ratio, the

log nominal investment-to-output ratio, the nominal funds rate, and (linearly detrended)

log M2 velocity. Labor productivity, the labor share, and hours are the BLS measures for

the nonfarm business sector, where the labor share is computed as output per hour times

the deflator for nonfarm business output divided by compensation per hour.13 Inflation is

computed using the GDP deflator. Population is the civilian population age 16 and over.

The consumption-to-output ratio is computed as the share of nominal personal consumption

of nondurables and services plus nominal government consumption expenditures in nominal

GDP. Similarly, the investment-to-output ratio is computed as the share of nominal personal

durable goods expenditures plus gross nominal private investment plus nominal government

investment expenditures in nominal GDP.14

Letting Yt denote the vector of variables in the VAR, and vt log M2 velocity, we view

the data in the VAR as corresponding, up to constants, to the model variables

Yt = [∆(ym,t − lt), πm,t, ut, ym,t − lt − wt, lt, ct + pc,t − ym,t, it + pi,t − ym,t, rt, vt]′,

where lower case letters denote logs of the model variables. We estimate the VAR over the
13By contrast, Altig et al. (2002) and Gaĺı, López-Salido, and Vallés (2003) compute labor productivity

by dividing real GDP by total hours in the nonfarm business sector, which is problematic because of the

trending share of real nonfarm business output in real GDP.
14We compute these ratios as shares of GDP, instead of as shares of nonfarm business output because

some consumption of goods and services are not produced by the nonfarm business sector. However, this

introduces a minor inconsistency in the VAR impulse responses of output, consumption, and investment

presented in Figures 1 and 2. The latter two are constructed by adding the responses of the respective log

ratios to the response of nonfarm business output.
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sample 1960q1 to 2001q4, including four lags of each variable.

Following a number of other recent studies, we are interested in identifying two struc-

tural shocks, a permanent shock to the level of technology (in terms of our model, in the

intermediate goods sector), and a transitory shock to the funds rate. To identify these

shocks, we use one long-run and two short-run identifying restrictions. The short-run iden-

tifying restrictions are the usual ones, that the second-to-last and the last variable in the

VAR (the funds rate and velocity) are Wold-causal for the preceding variables. Writing the

structural form of the VAR as

A0Yt = constant + A(L)Yt−1 + εt, (100)

the short-run assumptions imply that the last two columns of the contemporaneous mul-

tiplier matrix A0 have all zeros above the main diagonal. The eighth element of εt is

identified as the funds rate shock. The long-run identifying restriction is the one proposed

by Gaĺı (1999) and further explored in Francis and Ramey (2002) and Altig et al. (2002),

that permanent shocks to technology are the only shocks to have a permanent effect on

labor productivity. Using this assumption, we identify the first element of εt as the technol-

ogy shock.15 This implies that the first row of the matrix of long-run (cumulative) effects

of εt on Yt, (I −A(1))−1A−1
0 , consists of zeros except for the first element.

In order to estimate the VAR in structural form, we need a further set of assumptions to

just-identify the elements of A0. We follow Altig et al. (2002) in assuming that the submatrix

consisting of columns 2-7 and rows 2-7 of A0 is lower triangular. This assumption is without

loss of generality as we do not attach any structural interpretation to elements 2 through

7 of εt. With these assumptions, we estimate the first equation of the structural VAR

imposing the long-run restrictions in the manner of Shapiro and Watson (1988) by including

contemporaneous and lagged variables of elements 2 through 7 of Yt in first-differenced

form. To control for simultaneity, we estimate the equation by 2SLS, using a constant and

Yt−1, . . . , Yt−4 as first-stage regressors for elements 2 through 7 of Yt. We then sequentially

estimate equations 2 through 7 by IV, using the residuals from the previous regressions as

instruments for contemporaneous variables. Equations 8 and 9 can be estimated by OLS

by virtue of our short-run identifying assumptions.
15Other shocks, including those to investment goods sector productivity and the tax rate on capital income,

can affect the level labor productivity in the long run. See, for example, Fisher (2002).
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Given the VAR impulse responses to our identified technology shock and identified funds

rate shock (Figures 1 and 2), we estimated the parameters of the model that influence the

model’s dynamic (rather than steady-state) properties. Our method of estimation was to

minimize the squared deviations of the response of eight variables (ym,t, ct, it, lt, ut, wt, πm,t, rt)

to the two identified shocks implies by the model and from those implied by the VAR. For

the technology shock we use the responses in quarters 0 through 20 following the shock; for

the funds rate shock, we use the responses in quarters 1 trhough 20, since the responses

in the quarter of the shock are determined by the identifying assumption. (The impulse

responses for the eight variables following the two identified shocks, received equal weights

in our estimation.)
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