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Abstract

This paper empirically assesses the performance of forward-looking monetary rules

for interdependent economies characterized by model uncertainty. We set out a

two-bloc dynamic stochastic general equilibrium model with habit persistence (that

generates output persistence), Calvo pricing and wage-setting with indexing of non-

optimized prices and wages (generating inflation persistence), and the incomplete pass-

through of exchange rate changes. We estimate a linearized form of the model by

Bayesian methods using US and Euro-zone data. From the estimates of uncertainty

we then examine monetary policy conducted both independently and cooperatively

by the Fed and the ECB in the form Inflation-Forecast-Based interest rate rules. As

in Batini et al. (2004b) which examined a closed economy only, the two central banks

of this model use the estimated posterior probabilities to design rules to be robust

with respect to the utility outcomes across all possible parameter combinations from

a large sample of draws. The utility outcome in a closed-loop Nash equilibrium is then

compared with the outcome from a coordinated design of policy rules. We find that

current inflation rules perform better than forward-looking rules; there are modest

gains from coordination, but only in a hypothetical US-Euro model where there is full

goods market integration, and that for forward-looking rules robust policy design is

essential to offer protection against the problem of indeterminacy.

JEL Classification: E52, E37, E58

Keywords: monetary policy coordination, robustness, inflation-forecast-

based rules.



Contents

1 Introduction 1

2 The Model 2

2.1 Households . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.2 Domestic Producers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3 Retail Firms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.4 Staggered Wage-Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.5 The Equilibrium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.6 The Steady State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.6.1 Conditions for a Symmetric Steady State . . . . . . . . . . . . . . . 11

2.6.2 The Inefficiency of a Symmetric Steady State . . . . . . . . . . . . . 13

2.7 Linearization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.8 State Space Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3 Estimation 18

3.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2 Normalizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.3 Priors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.4 Estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4 Analysis of Special Case 27

4.1 Monetary Policy Spillovers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.1.1 The Sum System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.1.2 The Difference System . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.1.3 Positive or Negative Spillovers? . . . . . . . . . . . . . . . . . . . . . 33

4.2 Stability and Determinacy of IFB Rules . . . . . . . . . . . . . . . . . . . . 36

4.2.1 The Sum System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.2.2 The Difference System . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5 Optimized IFB Rules without Model Uncertainty 42

5.1 Monetary Spillovers in the Estimated Model . . . . . . . . . . . . . . . . . . 43

5.2 Optimized IFB Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

6 Optimized IFB Rules with Model Uncertainty 47

6.1 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

6.2 P-Robust IFB Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50



7 Conclusions 54

A Derivation of Characteristic Equations 59

B The Policy Rules 59

B.1 The Optimal Policy: Cooperation with Commitment . . . . . . . . . . . . . 60

B.2 Optimized Simple Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

B.3 The Stochastic Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

0



1 Introduction

The emergence of the new micro-founded open-economy macroeconomics has led naturally

for the literature to revisit the economics of monetary policy interdependence. Following

the seminal contribution of Obstfeld and Rogoff (1996), a number of papers have stud-

ied spillover effects and the resulting gains from policy coordination for interdependent

economies (e.g., Betts and Devereux (2000b), Corsetti and Pesenti (2001), Obstfeld and

Rogoff (2002), Clarida et al. (2002), Benigno and Benigno (2003)). We contribute to this

literature by providing, in a rather more general setting than before, analytical results on

spillover effects in a two-bloc set-up where there is incomplete exchange rate pass-through.

The main contribution of the paper however is empirical. The paper develops a two-

bloc dynamic stochastic general equilibrium stochastic model to include habit persistence

(that generates output persistence in the model), Calvo pricing with indexing of non-

optimized prices (generating inflation persistence), and the incomplete pass-through of

exchange rate changes. Wage stickiness is introduced using an analogous form of staggered

wage setting. We estimate a linearized form of the model using Bayesian methods using

US and Euro-zone data.

Throughout we focus on Taylor-type rules, and in particular on inflation-forecast-based

(IFB) rules. These are ‘simple’ rules as in Taylor (1993), but where the policy instrument

responds to deviations of expected, rather than current inflation from target. In most

applications, the inflation forecasts underlying IFB rules are taken to be the endogenous

rational-expectations forecasts conditional on an intertemporal equilibrium of the model.

These rules are of interest because, as shown in Clarida et al. (2000) and Castelnuovo

(2003), estimates of IFB-type rules appear to be a good fit to the actual monetary policy

in the US and Europe of recent years. They are also of specific interest because similar

reaction functions are used in the forecasting models of the Bank of Canada and the

Reserve Bank of New Zealand, two prominent inflation-targeting central banks. In these

countries and elsewhere, central bankers extol the virtues of IFB rules on the grounds that

they “pre-empt inflation” and “enhance low-inflation credibility”.

Using our estimated model probabilities and posterior densities of parameters, we

then proceed to design IFB rules that are robust with respect to our estimated measures

of model uncertainty in the sense that they guarantee stable and unique equilibria (thus
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avoiding indeterminacy1 and, in addition, use the posterior parameter density functions to

minimize an expected loss function of the central bank subject to this model uncertainty.

Both cooperative and non-cooperative optimized IFB rules are computed. Comparisons

between the outcomes under these two sets of rules provide an empirical assessment of

the gains from coordination. Comparisons with an IFB rule with minimal feedback on

expected inflation provides estimates of stabilization gains and finally a benchmark optimal

rule that assesses both coordination and commitment enables us to evaluate the costs of

restricting policy to IFB-type rules.

The rest of the paper is set out as follows: section 2 describes our model, the steady

state and the linearization about the latter. Section 3 describes the estimation method-

ology and results. Section 4 provides a better understanding of the numerical results by

analyzing a special case of our model involving the imposition of symmetry and other re-

strictions on parameters. Section 5 provides results for optimized IFB rules where model

parameters are known with certainty. Section 6 tackles the case where there is parameter

uncertainty and provides results for robust IFB rules. Section 7 summarizes our main

results and suggests an agenda for further research.

2 The Model

There are two asymmetric unequally-sized blocs with the different household preferences

and technologies. We assume complete asset markets. The exchange rate is perfectly

flexible. The consumption index in each bloc is of Dixit-Stiglitz nested CES form with

domestic and foreign components consisting of a basket of differentiated goods produced

in each bloc. Goods producers and household suppliers of labour have monopolistic power.

Wages and nominal domestic prices of both domestically produced and imported goods

are sticky. Retail firms import foreign differentiated goods for which the law of one price

holds at the docks. However in setting the domestic price of these goods, as with domestic

producers, retail firms have monopolistic power which leads to a departure from the law

of one price in both the long run and the short run.

1See Bernanke and Woodford (1997); Batini and Pearlman (2002); Giannoni and Woodford (2002);

Carlstrom and Fuerst (1999), Benhabib et al. (2001), Woodford (2003), Batini et al. (2004a), BLP hereafter.
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2.1 Households

There are νH households in the ‘home’ bloc and νF households in the ‘foreign’ bloc. A

representative household r in the home bloc maximizes

E0

∞
∑

t=0

βtUC,t







(Ct(r) − HC,t)
1−σ

1 − σ
+ UM,t

(

Mt(r)
Pt

)1−ϕ

1 − ϕ
− UN,t

(Nt(r) − HN,t)
1+φ

1 + φ






(1)

where Et is the expectations operator indicating expectations formed at time t, β is the

household’s discount factor, UC,t, UM,t and UN,t are preference shocks, Ct(r) is a Dixit-

Stiglitz index of consumption defined below in (4), Nt(r) are hours worked, HC,t and

HN,t represents the habit, or desire not to differ too much from other households, and

we choose HC,t = hCCt−1, where Ct = 1
νH

∑νH

r=1 Ct(r) is the average consumption in-

dex, HN,t = hN
Nt−1

νH
, where Nt is aggregate labour supply defined after (3) below and

hC , hN ∈ [0, 1). When hC = 0, σ > 1 is the risk aversion parameter (or the inverse

of the intertemporal elasticity of substitution)2. Mt(r) are end-of-period nominal money

balances. An analogous symmetric intertemporal utility is defined for the ‘foreign’ repre-

sentative household and the corresponding variables (such as consumption) are denoted

by C∗

t (r), etc.

The representative household r must obey a budget constraint:

PtCt(r) + Et(Qt+1Dt+1(r)) + Mt(r) = (1− Tt)Wt(r)Nt(r) + Dt(r) + Mt−1(r) + Γt(r) (2)

where Pt is a Dixit-Stiglitz price index defined in (11) below, Dt+1(r) is a random variable

denoting the payoff of the portfolio Dt(r), purchased at time t, and Qt+1 is the period-t

price of an asset that pays one unit of domestic currency in a particular state of period

t + 1 divided by the probability of an occurrence of that state given information available

in period t. Wt(r) is the wage rate, Tt the income tax rate and Γt(r) are dividends from

ownership of firms. We first consider the case of flexible wages.

Assume the existence of nominal one-period riskless bonds denominated in domestic

currency with nominal interest rate Rt over the interval [t, t + 1]. Then arbitrage con-

siderations imply that EtQt+1 = 1
1+Rt

. In addition, if we assume that households’ labour

supply is differentiated with elasticity of supply η, then (as we shall see below) the demand

2When hC 6= 0, σ is merely an index of the curvature of the utility function.
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for each consumer’s labour supplied by νH identical households is given by

Nt(r) =

(

Wt(r)

Wt

)

−η Nt

νH
(3)

where Wt =
[

1
νH

∑νH

r=1 Wt(r)
1−η

]
1

1−η
and Nt =

[

(

1
νH

)
1
η ∑νH

r=1 Nt(r)
η−1

η

]

η
η−1

are the aver-

age wage index and aggregate employment respectively.

Let the number of differentiated goods produced in the home and foreign blocs be nH

and nF respectively. We assume that the the ratio of households to firms are the same

in each bloc, so nH and nF (or νH and νF ) are measures of size. Then the per capita

Dixit-Stiglitz consumption index in the home bloc is given by

Ct(r) =

[

w
1
µ

HCH,t(r)
µ−1

µ + (1 − wH)
1
µ CF,t(r)

µ−1
µ

]
µ

µ−1

(4)

where

CH,t(r) =





(

1

nH

)
1
ζ

nH
∑

f=1

CH,t(f, r)(ζ−1)/ζ





ζ/(ζ−1)

(5)

CF,t(r) =





(

1

nF

)
1
ζ

nF
∑

f=1

CF,t(f, r)(ζ−1)/ζ





ζ/(ζ−1)

(6)

and

wH =
nHωH

nHωH + nF (1 − ωH)
(7)

In (7) ωH ∈ [12 , 1] is a parameter that captures the degree of ‘bias’ in the home bloc.

If ωH = 1 we have autarky, while the lower extreme of ωH = 1
2 gives us the case of

perfect integration. If blocs are of equal size (as in BLP) then nH = nF , wH = ωH

and consumption only favours home consumption if there is home bias.3 In the absence

of home bias wH = nH

nH+nF
and domestic/foreign consumption decisions depend only on

relative size. As µ → 1 we approach a Cobb-Douglas utility function Ct(r) = w−wH

H (1 −

wH)−(1−wH)CH,t(r)
wH CF,t(r)

1−wH as in BLP and Clarida et al. (2002).

If PH,t(f), PF,t(f) are the domestic prices of the two types of good produced by firm

f in the relevant bloc, then the optimal intra-temporal decisions are given by standard

results:

CH,t(r, f) =

(

PH,t(f)

PH,t

)

−ζ

CH,t(r) ; CF,t(r, f) =

(

PF,t(f)

PF,t

)

−ζ

CF,t(r) (8)

3The effect of home bias in open economies is also studied in Corsetti et al. (2002) and De Fiore and

Liu (2002).
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CH,t(r) = wH

(

PH,t

Pt

)

−µ

Ct(r) ; CF,t(r) = (1 − wH)

(

PF,t

Pt

)

−µ

Ct(r) (9)

where aggregate price indices for domestic and foreign consumption bundles are given by

PH,t =





1

nH

nH
∑

f=1

PH,t(f)1−ζ





1
1−ζ

; PF,t =





1

nF

nF
∑

f=1

PF,t(f)1−ζ





1
1−ζ

(10)

and the domestic consumer price index Pt given by

Pt =
[

wH(PH,t)
1−µ + (1 − wH)(PF,t)

1−µ
]

1
1−µ (11)

The model considers departures from the law of one price i.e. prices in home and

foreign blocs are linked by ΨH,t =
StP ∗

H,t

PH,t
6= 1 and ΨF,t =

StP ∗

F,t

PF,t
6= 1 necessarily, where

P ∗

H,t and P ∗

F,t are the foreign currency prices of the home and foreign-produced goods and

St is the nominal exchange rate. Let

P ∗

t =
[

wF (P ∗

F,t)
1−µ∗

+ (1 − wF )(P ∗

H,t)
1−µ∗

]
1

1−µ∗

(12)

be the foreign consumer price index corresponding to (11). Then it follows that the real

exchange rate Et =
StP ∗

t

Pt
and the terms of trade, defined as the domestic currency relative

price of exports to imports, Tt =
PH,t

PF,t
, are related by the relationship

Et ≡
StP

∗

t

Pt
=

[

wF Ψ1−µ∗

F,t + (1 − wF )(ΨH,tTt)
1−µ∗

]
1

1−µ∗

[

1 − wH + wHT 1−µ
t

]
1

1−µ

(13)

Thus if the law of one price holds for differentiated goods; i.e., ΨH,t = ΨF,t = 1, and

µ = µ∗, then Et = 1 and the law of one price applies to the aggregate price indices iff

wF = 1 − wH . The latter condition holds if there is no home bias. if there is home bias,

the real exchange rate appreciates (Et falls) as the terms of trade improves.

Maximizing (1) subject to (2) and (3), treating habit as exogenous, and imposing

symmetry on households (so that Ct(r) = Ct, etc) yields standard results:

Qt+1 = β
MUC

t+1

MUC
t

Pt

Pt+1
= β

UC,t+1(Ct+1 − hCCt)
−σ

UC,t(Ct − hCCt−1)−σ

Pt

Pt+1
(14)

UM,t

(

Mt

Pt

)

−ϕ

=
(Ct − hCCt−1)

−σ

Pt

[

Rt

1 + Rt

]

(15)

Wt(1 − Tt)

Pt
= − η

(η−1)

MUL
t

MUC
t

=
ηUN,t

(η − 1)

(

Nt

νH
− hN

Nt−1

νH

)φ

(Ct − hCCt−1)
σ (16)
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where MUC
t and MUL

t are the marginal utility of consumption and the marginal disutil-

ity of work respectively. Taking expectations of (14) we arrive at the following familiar

Keynes-Ramsey rule adapted to take into account of the consumption habit:

1 = β(1 + Rt)Et

(

UC,t+1(Ct+1 − hCCt)
−σ

UC,t(Ct − hCCt−1)−σ

Pt

Pt+1

)

(17)

In (15), the demand for money balances depends positively on consumption relative to

habit and negatively on the nominal interest rate. Given the central bank’s setting of the

latter and ignoring seignorage in the government budget constraint, (15) is completely

recursive to the rest of the system describing our macro-model and will be ignored in

the rest of the paper. (16) reflects the market power of households arising from their

monopolistic supply of a differentiated factor input with elasticity η.

2.2 Domestic Producers

In the domestic goods sector each good differentiated good f is produced by a single firm

f using only differentiated labour with another constant returns CES technology:

Yt(f) = At

[

(

1

νH

)
1
η

νH
∑

r=1

Nt(f, r)(η−1)/η

]η/(η−1)

≡ AtNt(f) (18)

where Nt(f, r) is the labour input of type r by firm f and At is an exogenous shock captur-

ing shifts to trend total factor productivity in this sector. Minimizing costs
∑νH

f=1 Wt(r)Nt(f, r)

gives the demand for each household’s labour by firm f as

Nt(f, r) =

(

Wt(r)

Wt

)

−η Nt(f)

νH
(19)

and aggregating over firms leads to the demand for labour as shown in (3)4. Total output

in the home bloc is given by

Yt =

nH
∑

f=1

Yt(f) = At

[

(

1

νH

)
1
η

νH
∑

r=1

Nt(r)
η−1

η

]

η
η−1

= AtNt (20)

4Note that Nt =
∑nH

f=1 Nf (f) =

[

(

1
νH

) 1

η ∑νH
r=1 Nt(r)

η−1

η

]

η
η−1

so in a symmetric equilibrium of iden-

tical firms and households nHNt(f) = νHNt(r). Such a symmetric equilibrium applies to the flexi-price

case of our model, but not to the sticky-price case where some firms and locked into contracts but others

are revising their prices.
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In a equilibrium of equal households, all wages adjust to the same level Wt. For later

analysis it is useful to define the real marginal cost (MC) as the wage cost per unit of

output relative to domestic producer price. Using (16) and (20) this can be written as

MCt ≡
Wt

AtPH,t

=
UN,tη

(1 − Tt)(η − 1)At

(

Yt

νNAt
− hN

Yt−1

νHAt−1

)φ

(Ct − hCCt−1)
σ

(

Pt

PH,t

)

(21)

Turning to price-setting, we assume that there is a probability of 1−ξH at each period

that the price of each good f is set optimally to P 0
H,t(f). If the price is not re-optimized,

then it is indexed to last period’s aggregate producer price inflation.5 With indexation

parameter γH ≥ 0, this implies that successive prices with no re-optimization are given by

P 0
H,t(f), P 0

H,t(f)
(

PH,t

PH,t−1

)γH

, P 0
H,t(f)

(

PH,t+1

PH,t−1

)γH

, ... . For each producer f the objective

is at time t to choose P 0
H,t(f) to maximize discounted profits

Et

∞
∑

k=0

ξk
HQt+kYt+k(f)

[

P 0
Ht(f)

(

PH,t+k−1

PH,t−1

)γH

− PH,t+kMCt+k

]

(22)

where Qt+k is the discount factor over the interval [t, t+k], subject to a common6 downward

sloping demand from domestic consumers and foreign importers of elasticity ζ as in (8).

The solution to this is

Et

∞
∑

k=0

ξk
HQt+kYt+k(f)

[

P 0
Ht(f)

(

PH,t+k−1

PH,t−1

)γH

−
ζ

(ζ − 1)
PH,t+kMCt+k

]

= 0 (23)

and by the law of large numbers the evolution of the price index is given by

P 1−ζ
H,t+1 = ξH

(

PH,t

(

PH,t

PH,t−1

)γH
)1−ζ

+ (1 − ξH)(P 0
H,t+1(f))1−ζ (24)

2.3 Retail Firms

Following Monacelli (2003), retail firms import foreign differentiated goods for which the

law of one price holds at the docks. The real marginal cost relative to the price PF,t set

by retailers is therefore
StP ∗

F,t

PF,t
= ΨF,t. As for domestic producers, there is a probability of

5Thus we can interpret 1
1−ξH

as the average duration for which prices are left unchanged.
6Note that we impose a symmetry condition ζ = ζ∗ at this point; i.e., the elasticity of substitution

between differentiated goods produced in any one bloc is the same for consumers in both blocs.
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1−ξF at each period that the price of each good f is set optimally to P 0
F,t(f). If the price

is not re-optimized, then it is indexed to last period’s aggregate producer price inflation

with indexation parameter γF ≥ 0. Following the same reasoning as before we arrive at

the following counterparts to (23) and (24)

Et

∞
∑

k=0

ξk
F Qt+kCF,t+k(f)

[

P 0
Ft(f)

(

PF,t+k−1

PF,t−1

)γF

−
ζ

(ζ − 1)
PF,t+kΦF,t+k

]

= 0 (25)

P 1−ζ
F,t+1 = ξF

(

PF,t

(

PF,t

PF,t−1

)γF
)1−ζ

+ (1 − ξF )(P 0
F,t+1(f))1−ζ (26)

2.4 Staggered Wage-Setting

We introduce wage stickiness in an analogous way. There is a probability 1− ξW that the

wage rate of a household of type r is set optimally at W 0
t (r). If the wage is not re-optimized

then it is indexed to last period’s CPI inflation. With a wage indexation parameter γW

the wage rate trajectory with no re-optimization is given by W 0
t (r), W 0

t (r)
(

Pt

Pt−1

)γW

,

W 0
t (r)

(

Pt+1

Pt−1

)γW

, · · ·. The household of type r at time t then chooses W 0
t (r) to maximize

Et

∞
∑

k=0

(ξW β)k






W 0

t (r)(1 − Tt)

(

Pt+k−1

Pt−1

)γW

Nt+k(r)Λt+k(r) −

(

Nt+k(r)
νH

−
Nt+k−1

νH

)1+φ

1 + φ







(27)

where Λt(r) =
MUC

t (r)
Pt

is the marginal utility of nominal income and Nt(r) is given by (3).

The first-order condition for this problem is

Et

∞
∑

k=0

(ξW β)k W η
t+kNt+kΛt+k(r)

[

W 0
t (r)(1 − Tt)

(

Pt+k−1

Pt−1

)γW

−
η

(η − 1)

(

Nt+k

νH
− hN

Nt+k−1

νH

)φ

Λt+k(r)

]

= 0 (28)

We can now use βkΛt+k(r) = Qt+k, obtained from (14), and Λt(r) =
MUC

t (r)
Pt

to write (28)

as

Et

∞
∑

k=0

ξk
W Qt+k W η

t+kNt+k

[

W 0
t (r)(1 − Tt)

(

Pt+k−1

Pt−1

)γW

−
η

(η − 1)
Pt+kMRSt+k

]

= 0

(29)

where MRSt(r) = −
MUL

t (r)

MUC
t (r)

is the marginal rate of substitution between work and con-

sumption for household r. Note that as ξW → 0 and wages become perfectly flexible, only

8



the first term in the summation in (29) counts and we then have the result (16) obtained

previously. By analogy with (24) and (26), by the law of large numbers the evolution of

the wage index is given by

W 1−η
t+1 = ξW

(

Wt

(

Pt

Pt−1

)γW
)1−η

+ (1 − ξW )(W 0
t+1(r))

1−η (30)

2.5 The Equilibrium

In equilibrium, goods markets, money markets and the bond market all clear. Equating the

supply and demand of the home consumer good and assuming that exogenous government,

Gt, expenditure goes exclusively on home goods we obtain

Yt = νHCH,t+νF C∗

H,t+Gt = ν(CH,t+CF,t)+νF C∗

H,t−νHCF,t+Gt = νHCt+TBt+Gt (31)

where TBt is the trade balance. A balanced government budget constraint7

PH,tGt = TtNtWt = PH,tTtYtMCt (32)

that assumes all taxes are raised from wage income completes the model.

Given nominal interest rates Rt, R
∗

t the money supply is fixed by the central banks to

accommodate money demand. By Walras’ Law we can dispense with the bond market

equilibrium condition. Then the equilibrium is defined at t = 0 as stochastic sequences

Ct, CHt, CFt, PHt, PFt, Pt, Mt, Wt, Yt, Nt, P 0
Ht, 11 foreign counterparts C∗

t , etc, Et, and

St, given past price indices and exogenous processes UC,t, UM,t, UN,t, At, Gt and foreign

counterparts.

From (14) and its foreign counterpart we have

Qt+1 = β

(

UC,t+1(Ct+1 − hCCt)
−σ

UC,t(Ct − hCCt−1)−σ

)

Pt

Pt+1
= β

(

U∗

C,t+1(C
∗

t+1 − h∗

CC∗

t )−σ∗

U∗

C,t(C
∗

t − h∗

CC∗

t−1)
−σ∗

)

P ∗

t St

P ∗

t+1St+1

(33)

Let zt =
UC,tStP ∗

t

U∗

C,t
Pt

(Ct−hCCt−1)−σ

(C∗

t −h∗

C
C∗

t−1)
−σ∗ . Then assuming identical holdings of initial wealth in

the two blocs, (33) implies that zt+1 = zt = z0 = E0(C0(1−hC))σ

(C∗

0 (1−h∗

C
))σ∗ where initial relative

consumption in prices denominated in the home currency reflects different initial wealth

7We ignore seignorage and consistent with this we later ignore the utility from money balances in the

household welfare function.
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in the two blocs. Therefore8

(

UC,t(Ct − hCCt−1)
−σ

U∗

C,t(C
∗

t − hCC∗

t−1)
−σ∗

)

=
z0Pt

StP ∗

t

=
z0

Et
(34)

2.6 The Steady State

A deterministic zero-inflation steady state, denoted by variables without the time sub-

scripts, Et−1(UC,t) = 1 and Et−1(UN,t) = κ is given by

CH = wH

(

PH

P

)

−µ

C (35)

CF = (1 − wH)

(

PF

P

)

−µ

C (36)

P =
[

wHP 1−µ
H + (1 − wH)P 1−µ

F

]
1

1−µ
(37)

(

M

P

)

−ϕ

=
[(1 − hC)C]−σ

P

(

R

1 + R

)

(38)

W (1 − T )

P
=

κ(1 − hN )φ(1 − hC)σ

1 − 1
η

(

N

νH

)φ

Cσ (39)

1 = β(1 + R) (40)

Y = AN (41)

PH = P 0
H =

W

A
(

1 − 1
ζ

) (42)

PF = P 0
F =

SP ∗

F
(

1 − 1
ζ

) i.e., ψF =

(

1 −
1

ζ

)

(43)

Y = νHC + G (44)

plus the 10 foreign counterparts and

T =
PH

PF
(45)

E =
SP ∗

P
(46)

E(C(1 − hC))−σ

(C∗(1 − h∗

C))−σ∗
= z0 (47)

8(34) is the risk-sharing condition for consumption, because it equates marginal rate of substitution

to relative price, as would be obtained if utility were being jointly maximized by a social planner (see

Sutherland (2002)). Note that (17) and (34) together imply the stochastic UIP condition (see Benigno and

Benigno (2001)).
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This gives 23 equations to determine the steady state of 25 endogenous variables: C,

CH , CF , P , M , W , N , R, Y , PH = P 0
H , PF = P 0

F , 11 foreign counterparts C∗ etc, T , S

and E given G and z0.

To pin down price levels we need to equate money demand in (38) and its foreign

counterpart with exogenously set money supplies in the two blocs, which then gives us a

determinate steady state of the model. It is convenient to assume that money supplies in

our steady state are set so as to result in S = 1 and dispense with the money demand

equations. Furthermore as is standard in general equilibrium models we choose units of

output appropriately so that prices of the two goods in their own currencies are unity; i.e,

PH = P ∗

F = 1. With these assumptions the law of one price gaps are ΨH =
SP ∗

H

PH
= P ∗

H

and ΨF =
SP ∗

F

PF
= 1

PF
. The foreign counterpart to (43) is a mark-up relationship

P ∗

H =
PH

S(1 − 1
ζ )

(48)

It follows that ΨH = 1
ΨF

and the price of the imported good in a steady state equilibrium,

PI say, in either currency is given by

PI = P ∗

H = PF =
1

T
=

1

1 − 1
ζ

(49)

Thus in our normalization and choice of exchange rate in the steady state the domestic

good in each bloc is priced at unity and the imported good is marked above unity at

PI = 1
1− 1

ζ

. As exchange rate pass-through becomes complete, ζ → ∞ and both goods are

priced at unity. The consumer price indices are

P =
[

wH + (1 − wH)P 1−µ
I

]
1

1−µ
(50)

P ∗ =
[

wF + (1 − wF )P 1−µ∗

I

]
1

1−µ∗

(51)

2.6.1 Conditions for a Symmetric Steady State

We now examine the conditions for which a symmetric steady state with z0 = E = 1,

P = P ∗, C = C∗ etc exists. In such a steady state we assume that preferences are

identical which includes the degree of bias in the two blocs and, as mentioned in describing

household behaviour, we have assumed that the the ratio of households to firms are the

same in each bloc. Normalizing the total world population and variety numbers at unity

11



we can put νH = ν, νF = 1 − ν, nH = n, nF = 1 − n. Therefore we have

ν

n
=

1 − ν

1 − n
(52)

ωH = ωF = ω (53)

say. We further assume that G
G∗ = ν

1−ν . With these symmetry assumptions the output

equilibrium condition (44) and its foreign counterpart become

Y =

(

νwH

(

1

P

)

−µ

+ (1 − ν)(1 − wF )

(

PI

P

)

−µ
)

C (54)

Y ∗ =

(

(1 − ν)wF

(

1

P ∗

)

−µ

+ ν(1 − wH)

(

PI

P ∗

)

−µ
)

C∗ +
1 − ν

ν
G (55)

where

wH =
nω

nω + (1 − n)(1 − ω)
; wF =

(1 − n)ω

(1 − n)ω + n(1 − ω)
(56)

It follows that a symmetric equilibrium with P = P ∗, consumption per household equal

in the two blocs (C = C∗) and output per firm equal (Y
n = Y ∗

1−n) requires that

wH = wF (57)

(1 − ν)2(1 − wF ) = ν2(1 − wH) (58)

It follows that with incomplete exchange rate pass-through so PI 6= 1, a symmetric

equilibrium for unequally sized blocs is only possible if there is autarky (ω = wH = wF =

1), or the blocs are of equal size (n = ν = 1
2). To summarize:

Proposition 1

With symmetry conditions ν
n = 1−ν

1−n , ωH = ωF = ω and G
G∗ = ν

1−ν a symmetric

equilibrium of trading economies is only possible if autarky prevails, or the

blocs are of equal size.

The intuition behind this result is straightforward. In an open economy the smaller

a country is, the greater its CPI index as imported goods incur a second mark-up by

retailers. It follows that in a symmetric equilibrium of open (but not autarkic) economies,

equal CPI indices requires equally-sized blocs.

12



2.6.2 The Inefficiency of a Symmetric Steady State

Now consider a symmetric world equilibrium satisfying the requirements of proposition 1.

After some manipulation, the steady-state level of output (the ‘natural rate’), is given by

Y φ(Y − G)σ =
(1 − T )

(

1 − 1
ζ

) (

1 − 1
η

)

A1+φ

κ(1 − hC)σ(1 − hN )φ
(59)

Following the argument of Choudhary and Levine (2004), the social planner puts

Ct(r) = Ct and Nt(r) = Nt = Yt

At
and maximizes household’s utility in equilibrium.

The efficient steady-state level of output Y e, say, is then given by

(Y e)φ(Y e − G)σ =
(1 − hCβ)A1+φ

κ(1 − hNβ)(1 − hC)σ(1 − hN )φ
(60)

Comparing (59) and (60), since (Y )φ(Y −G)σ is an increasing function of Y , we arrive at

Proposition 2

The natural level of output, Y , is below the efficient level, Y e, if and only if

(1 − T )

(

1 −
1

ζ

) (

1 −
1

η

)

<
1 − hCβ

1 − hNβ
(61)

In the case where there is no habit persistence for both consumption and labour effort,

hC = hN = 0, then (61) always holds. In this case tax distortions and market power

in the output and labour markets captured by the elasticities η ∈ (0,∞) and ζ ∈ (0,∞)

respectively drive the natural rate of output below the efficient level. If T = 0 and

η = ζ = ∞, tax distortions and market power disappear and the natural rate is efficient.

Another case where (61) always holds is where habit persistence for labour supply exceeds

that for consumption; i.e., hN ≥ hC . Some empirical estimates (though not in this paper)

suggest that hC < hN which leads to the possibility that the natural rate of output can

actually be above the efficient level (see Choudhary and Levine (2004)).

2.7 Linearization

We now linearize around a baseline and, in general, asymmetric, steady state in which

consumption, output, employment and prices in the two blocs are constant. Then inflation

is zero. Output is then at its inefficient natural rate studied in the previous section and the

nominal rate of interest is given by (40). Now define all lower case level variables, such as
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Ct, Yt, as proportional deviations from this baseline steady state. Rates of change, inflation

and interest rates are expressed as absolute deviations.9 Home producer and consumer

inflation are defined as πHt ≡
PHt−PH,t−1

PH,t−1
≃ pHt − pH,t−1 and πt ≡ Pt−Pt−1

Pt−1
≃ pt − pt−1

respectively. Similarly, define foreign producer inflation and consumer price inflation.

Combining (23) and (24), we can eliminate P 0
Ht to obtain in linearized form

πHt =
β

1 + βγH
EtπH,t+1 +

γH

1 + βγH
πH,t−1 +

(1 − βξH)(1 − ξH)

(1 + βγH)ξH
mct (62)

where

mct = wt − pH,t − at (63)

∆mct = ∆wt − πH,t − ∆at (64)

The linearized version of the marginal rate of substitution defined in (16) is given by

mrst = −

(

φ

1 − hN

)

at +
hNφ

1 − hN
at−1 +

σ

1 − hC
(ct − hCct−1)

+
φ

1 − hN
(yt − hNyt−1) + uN,t (65)

Then combining (29) and (30), we can eliminate W 0
t to obtain

∆wt + βγW πt = βEt∆wt+1 + γW πt−1 +
(1 − βξW )(1 − ξW )

ξW
(mrst + pt − wt + tt) (66)

where ∆wt = wt − wt−1 is wage inflation, and from (25) and (26), we obtain

πF,t =
β

1 + βγF
EtπF,t+1 +

γF

1 + βγF
πF,t−1 +

(1 − βξF )(1 − ξF )

(1 + βγF )ξF
ψF,t (67)

Linearizing the remaining equations (17), (34) and (31) yields

1

1 + hC
Etct+1 − ct +

hC

1 + hC
ct−1 =

1 − hC

(1 + hC)σ
[rt − Etπt+1 + EtuC,t+1 − uC,t] (68)

σ∗

1 − h∗

C

(c∗t − h∗

Cc∗t−1) =
σ

1 − hC
(ct − hCct−1) − et + uC,t − u∗

C,t (69)

yt = αH [ct − µ(pH,t − pt)] + αF [c∗t − µ(p∗H,t − p∗t )] + αGgt (70)

9That is, for a typical variable level Xt, xt = Xt−X̄

X̄
≃ log

(

Xt

X̄

)

where X̄ is the baseline steady state.

Rate variables such as the interest and tax rates however are expressed as an absolute deviation; i.e.,

rt = Rt − R and tt = Tt − T .
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where

αH = wH
νHC

Y

(

PH

P

)

−µ

(71)

αF = (1 − wF )
νF C∗

Y ∗

(

P ∗

H

P ∗

)

−µ∗

(72)

αG = 1 − αH − αF (73)

gt = tt + yt + mct (74)

Let ΨH,t ≡
StP ∗

H,t

PH,t
= Et

P ∗

H,t

P ∗

t

Pt

PH,t
be the relative price of the home good for foreign

consumers relative to that for home consumers; i.e., the ‘law of one price gap’. Similarly

define ΨF,t ≡
StP ∗

F,t

PF,t
. Then the foreign counterpart to ΨH,t is Ψ∗

F,t =
PF,t

StP ∗

F,t
= 1

ΨF,t
. The

linearized model is now completed with

ψH,t = et + p∗H,t − p∗t − (pH,t − pt) (75)

ψF,t = et + p∗F,t − p∗t − (pF,t − pt) (76)

πt = wH

(

PH

P

)1−µ

πH,t + (1 − wH)

(

PF

P

)1−µ

πF,t (77)

pt − pH,t = −(1 − wH)

(

PF

P

)1−µ

τt (78)

pt − pF,t = wH

(

PH

P

)1−µ

τt (79)

By analogy with (78) and (79) we have

p∗t − p∗F,t = −(1 − wF )

(

P ∗

H

P ∗

)1−µ∗

τ∗

t (80)

p∗t − p∗H,t = wF

(

P ∗

F

P ∗

)1−µ∗

τ∗

t (81)

where τ∗

t = p∗F,t−p∗H,t are the terms of trade in linear-deviation form in the foreign country.

Note first, from (75) and (76) that τ∗

t = ψF,t −ψH,t − τt. Second that the Keynes-Ramsey

condition (68), its foreign counterpart and the risk-sharing condition (69) together imply

Etet+1 − et = rt − r∗t − (Etπt+1 − Etπ
∗

t+1) (82)

which is the UIP condition for the real exchange rate and real interest rates.

For the exogenous shocks uC,t = UC,t − 1, uN,t, at, gt and foreign counterparts we

assume AR(1) processes uC,t = ρCuC,t−1 + ǫC,t, uN,t = ρNuN,t−1 + ǫN,t, at = ρaat−1 + ǫa,t

and gt = ρggt−1 + ǫg,t where ǫi,t, i = C, N, a, g is a white noise disturbance.
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We finally close the model by assuming a standard Taylor-type rule for the conduct

of monetary policy in each block, in which interest rates are set in an inertial manner to

respond to inflation and the output gap, ŷ, (which is further described below)

rt = ρrrt−1 + (1 − ρr)(κππt + κyŷt) + ǫr,t (83)

and similarly for the foreign block with parameters ρ∗r , κ
∗

π and κ∗

y.

2.8 State Space Representation

Taking first differences of τt = pH,t − pF,t and τ∗

t = p∗F,t − p∗H,t we have

∆τt = πH,t − πF,t (84)

∆τ∗

t = π∗

F,t − π∗

H,t (85)

and substituting (78) to (81) into (75) and (76) we have

ψH,t = et − wF

(

P ∗

F

P ∗

)1−µ∗

τ∗

t − (1 − wH)

(

PF

P

)1−µ

τt (86)

ψF,t = et + (1 − wF )

(

P ∗

H

P ∗

)1−µ∗

τ∗

t + wH

(

PH

P

)1−µ

τt (87)

We can write this system in state space form as










z1,t+1

z2,t+1

Etxt+1











= A











z1,t

z2,t

xt











+ Bot + C





rt

r∗t



 + Dǫt+1 (88)

Fot = H











z1,t

z2,t

xt











(89)

where z1,t = [uC,t, u
∗

C,t, uN,t, u
∗

N,t, at, a
∗

t , gt, g
∗

t ]
T is a vector of predetermined exogenous

variable, z2,t = [at−1, a
∗

t−1, ct−1, c
∗

t−1, πH,t−1, π
∗

H,t−1, π
,
F,t−1π

∗

F,t−1, πt, π
∗

t , yt−1, y
∗

t−1, τt−1τ
∗

t−1,

mct−1, mc∗t−1]
T is a vector of predetermined endogenous variables at time t, xt = [at, a

∗

t ,

ct, c
∗

t , πH,t, πF,t, π
∗

H,t, π
∗

F,t, ∆wt, ∆w∗

t ]
T are non-predetermined variables, ǫt = ǫN,t, ǫ

∗

N,t, ǫa,t, ǫ
∗

a,t,

ǫg,t, ǫ
∗

g,t]
T is a vector of white noise disturbances and ot = [mrst, mrs∗t , yt, y

∗

t , ψH,t, ψF,t, tt, t
∗

t , πt, π
∗

t ,

wt −pt, w
∗

t −p∗t ]
T is a vector of outputs. Matrices A, B, etc are functions of model param-

eters. Rational expectations are formed assuming an information set {z1,s, z2,s, xs}, s ≤ t,

the model and the monetary rule.
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For later use we require the output gap the difference between output for the sticky

price-wage model obtained above and output when prices and wages are flexible and

exchange rate pass-through is complete, ŷt say. The latter, obtained by setting ζ = ∞

and hence P ∗

H = PF = 1, ξH = ξF = ξW = mct = ψH,t = ψF,t = mrst + pt − wt + tt = 0

and τ̂t = −τ̂∗

t in (65) to (81), is in deviation form given by10

−

(

1 +
φ

1 − hN

)

at +
hNφ

1 − hN
at−1 +

σ

1 − hC
(ĉt − hC ĉt−1)

+
φ

1 − hN
(ŷt − hN ŷt−1) + p̂t − p̂H,t + t̂t + uN,t = 0 (90)

êt = −
σ∗

1 − h∗

C

(ĉ∗t − h∗

C ĉ∗t−1) −
σ

1 − hC
(ĉt − hC ĉt−1)) + uC,t − u∗

C,t (91)

êt = (1 − wH − wF )τ̂t (92)

ŷt = αH [ĉt − µ(p̂H,t − p̂t)] + αF [ĉ∗t − µ(p̂∗H,t − p̂∗t )] + αGgt (93)

gt = t̂t + p̂H,t − p̂t (94)

p̂t − p̂H,t = −(1 − wH)τ̂t (95)

p̂∗t − p̂∗H,t = −wF τ̂t (96)

with foreign counterparts. This can we written in state-space form

ẑt = J ẑt−1 + Kôt + Lǫt (97)

M ôt = Rẑt (98)

where ẑt = [ĉt, ĉ
∗

t , ŷt, ŷ
∗

t ]
T and ôt = [t̂t, t̂

∗

t , τ̂t, êt]
T .

The whole model can now be written in state space form as

















z1,t+1

z2,t+1

ẑ2,t

Etxt+1

















= A

















z1,t

z2,t

ẑ2,t−1

xt

















+ Bot + C





rt

r∗t



 + Dǫt+1 (99)

Fot = H

















z1,t

z2,t

ẑ2,t−1

xt

















(100)

10Note that the zero-inflation steady states of the sticky and flexi-price steady states are the same.
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3 Estimation

3.1 Data

We take the United States and the Euro Area to represent the theoretical domestic and

foreign blocks of the model, respectively. The solution to the linearized version of the

model is then fit to thirteen series: output, consumption, domestic and all-goods inflation,

nominal wage inflation and interest rates observed both in the United States and Euro

Area, as well as the real exchange rate. The model has fourteen structural shocks (tech-

nology, preferences, government, labour supply, the innovations to the monetary policy

rule as above and, in addition, we add a mark-up shock to prices and wages with standard

deviations sd(mπ) and sd(mw) in the tables below). Rather than imposing a disturbance

to the interest parity equation, which would contradict our complete markets assumption,

we include in addition a white noise measurement error in the real exchange rate with

standard deviation sd(e) (as discussed below, this seems also natural given our construc-

tion of this series). Consequently, this last innovation does not enter the solution of the

linear system but only the measurement equation in the state space representation.

Domestic and all-goods inflation for each block are given by the quarterly log-difference

(annualized) in the consumption and GDP deflators respectively. Wage inflation also

corresponds to the quarterly log-difference in nominal wages. Real private consumption

and real output are expressed in log-deviations from a linear trend, while nominal interest

rates are annualized. The log-difference in the real exchange rate is constructed in a model

consistent manner by adding up quarterly Euro all-goods inflation and the (log) change in

the bilateral nominal exchange rate and subtracting U.S .all-goods inflation. All series for

the Euro Area are taken from the database for the Area-Wide Model (AWM) developed

at the ECB (see Fagan et al. (2001)).11

11Corresponding to the mnemonics in the AWM database our foreign observables are given by YER

(real GDP), PCR (real personal consumption), PCD (consumption deflator), YFD (GDP deflator), WRN

(nominal wage-rate) and STI (short-term nominal interest rates). In contrast to Smets and Wouters (2003)

who use the same dataset for Europe, we do not impose the same trend for consumption and output. For

the domestic block, the series are obtained from Haver Analytics, with mnemonics GDPH (real GDP),

CH (real personal consumption ), JC (consumption deflator), JGDP (GDP deflator), LKPRIVA (average

weekly earning of total private industry) and FFED (effective federal funds rate). As mentioned, the real

exchange rate is constructed using the all-goods inflation measures and the bilateral exchange rate All
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3.2 Normalizations

For purposes of the estimation, we make a number of convenient normalizations. First

normalization total firms and households in the world economy at unity so that

νH + νF = nH + nF = 1 (101)

and assume households per firm are the same in each bloc:

νH

nH
=

νF

nF
(102)

Then νH = nH and νF = nF are parameters indicating the relative size of the two

blocs which we can calibrate using data on GDP. Second we use the price normalizations

introduced in the steady-state section above, namely

PH = P ∗

F = 1 (103)

PI = P ∗

H = PF =
1

T
=

1

1 − 1
ζ

(104)

P =
[

wH + (1 − wH)P 1−µ
I

]
1

1−µ
(105)

P ∗ =
[

wF + (1 − wF )P 1−µ∗

I

]
1

1−µ∗

(106)

Thus relative prices PH

P , PF

P ,
P ∗

F

P ∗ ,
P ∗

H

P ∗ appearing the linearization can be expressed in terms

of one further fundamental parameters to be estimated: ζ.

Included in the parameters to estimate are the bias parameters ωH and ωF . In principle

these can be treated as any other parameter. However we adopt an alternative procedure

using trade data so as to equate

PF CF

PC
= (1 − wH)

(

PF

P

)1−µ

= imports share of consumption in H bloc ≡ sH (107)

P ∗

HC∗

H

P ∗C∗
= (1 − wF )

(

P ∗

H

P ∗

)1−µ∗

= imports share of consumption in F bloc ≡ sF (108)

so shares are constant if the elasticities µ = µ∗ = 1 but fall or rise with the price of the

domestic good relative to the CPI index depending on whether domestic and imported

goods are substitutes (µ, µ∗ > 1) or complements (µ, µ∗ < 1). Let sH , sF be these import

series are demeaned and the sample for the estimation runs from 1982q1 until 2003q4. For purposes of the

estimation, the Kalman filter is initialized using data starting in 1975q2.
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shares in the two blocs. Substituting for P and P ∗ we the arrive at the weights

wH =
(1 − sH)P 1−µ

F

sH + (1 − sH)P 1−µ
F

(109)

wF =
(1 − sF )(P ∗

H)1−µ∗

sF + (1 − sF )(P ∗

H)1−µ∗
(110)

Then the bias parameters, ωH and ωF , are obtained using (7) and its foreign counterpart.

3.3 Priors

We adopt a Bayesian approach to inference, as in Smets and Wouters (2003), Justiniano

and Preston (2004), Batini et al. (2004b) and more recently Shorfheide and Lubik (2005).

Therefore, the likelihood obtained from the solution to the linearized model is combined

with the prior to obtain a posterior density. As usual, not all parameters can be estimated

and hence the discount factor is calibrated to be the same in both blocks to the usual value

of 0.99. We set νH = νF = 0.5 implying blocks of equal size, which is in line with calcula-

tions using GDP series at PPP (1995) values. Meanwhile the ratios of consumption and

government to GDP are calibrated at the historical average over our estimation sample:

0.78 and 0.22 for the United States, and 0.73 and 0.27 for the Euro Area.12 Similarly, the

shares of foreign goods in GDP are fixed at the average over the sample given by sH = 0.14

and sF = 0.37 for the domestic and foreign blocks. Finally the elasticity of substitution

amongst varieties of locally produced goods, ζ, is calibrated at 4, implying a markup of

0.33 which is higher than those reported by Rotemberg and Woodford (1997).

For the remaining parameters, our priors are given in Table A, where we report the

mean and standard deviation of the densities together with 1% and 99% prior probability

intervals. A-priori the domestic and foreign blocks are treated symmetrically, hence an

identical prior is used for the same coefficient in each block. The prior for σ is intended

to capture a fairly wide set of possible values for the parameter governing the curvature

of the utility function. Ex-ante beliefs on ξH and ξ∗F allow for prices in the currency of

the producer country to be reoptimized roughly every 1.5 to 5 quarters, implying a broad

degree of assumptions on price stickiness,while we further allow a-priori for some small to

moderate degree of price indexation. Given the lively debate on the degree of pass-through

12The size of the Euro Area and the United States blocks obtained when aggregating the 1995 GDP

series (at PPP) are 0.51 and 0.49.
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and pricing assumptions in the international macro literature, we assume a more agnostic

stance on the behavior of prices for imported goods as reflected in our priors for both the

frequency of price re-optimization (ξF )and the extent to which prices are indexed (γF ).

Meanwhile, for wages our prior assigns small probability to the fully flexible or rigid wage

scenarios, while permitting indexation to parallel that for domestically-produced goods.

Regarding habit, our priors for consumption would well accord with estimates by Smets

and Wouters (2003) and Christiano et al. (2001) and less with higher values reported in the

literature. We assume a more agnostic stance for habit in labour, a parameter relatively

unexplored by other papers in this field.

Both the inverse elasticity of labour supply (φ) and elasticity of domestic and foreign

goods (µ) are notorious for the disagreements between the micro and macro evidence,

which suggests considering a fairly broad set of possible parameter values. Priors for the

coefficients of the Taylor rule are standard and entail a substantial degree of inertia in

interest rates.

Regarding the AR(1) coefficients of the different shocks in the model, our priors reflect

beliefs on very inertial stochastic processes mainly for technology and to a lesser degree

government spending. Preference shocks, both affecting the intertemporal marginal rate

of substitution and the disutility of labour, are assumed to be somewhat less persistent,

although the prior for the latter type of disturbances encompasses a fairly wide range of

possible values.13

Disturbances to technology and utility in consumption (ǫC and ǫC∗) are allowed to be

correlated across countries, to allow for channels of transmission other than trade. For

the correlation coefficient on technology shocks, υǫa, ǫa∗
, an uninformative beta prior is

specified. Meanwhile, our prior allows for a moderate to high degree of correlation across

shocks to consumption utility, υǫC , ǫC∗
.

3.4 Estimates

Having adopted a Bayesian perspective for inference we seek to characterize the posterior

distribution of the parameters. An optimization algorithm (Chris Sims’ csminwel) is used

13Recall that innovations to price and wage mark-ups, as well as the measurement error in the real

exchange rate are assumed to be i.i.d.
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to obtain an initial guess of the posterior mode. In the second step,a random walk metropo-

lis algorithm, one particular class of Markov Chain Monte Carlo Methods (MCMC), gen-

erates chains of draws from the posterior densities. In this case, the Hessian obtained from

the initial maximization is then scaled upwards and used as an over-dispersed distribution

for randomly generating starting values for two chains of 40,000 simulations each, where

we discard the initial 10,000 as a burn-in phase. These draws enable us to compute mean,

medians and posterior probability intervals, which are reported in tables B1 and B2 for

the domestic and foreign block respectively. Overall, the coefficient estimates are different

from zero, fairly tightly pinned down and quite plausible. We provide a brief discussion

of the main features of our coefficient estimates.

Posterior probability bands for σ and σ∗ are indicate a very similar degree of curvature

in the utility function across blocks. When combined with the posterior estimates for the

degree of habit in consumption, h, one obtains elasticities of intertemporal substitution,

given by 1−h
σ , that well accord across the two blocks and that are in the neighborhood of

0.4, which is very similar with the estimates reported in the Euro area model with external

habit of Smets and Wouters (2003).

In contrast, and in disagreement with our symmetric priors for domestic and foreign

coefficients, posterior estimates indicate substantial differences in the degree of price stick-

iness for goods in the currency of producers. Notice that posterior intervals for ξH and

ξ∗F are tight (particularly for the latter) not overlapping and suggestive of a higher degree

of price stickiness in the foreign block. According to the posterior medians, the average

duration of price contracts in the United States is roughly two quarters, while close to

four quarters in the Euro Area. Curiously, the degree of price indexation is inferred to be

twice as large in the domestic than in the foreign block, with medians of 0.43 and 0.24.

Together, these set of estimates point towards greater flexibility in the evolution of prices

in the currency of the producer for the United States.

Turning to import prices, the behavior of the parameters governing Calvo pricing is

closer in line with our symmetry assumption across blocks. However, posterior probability

intervals are very concentrated far out in the right tails of our prior and point to a seemingly

implausible degree of price stickiness (medians are 0.96 and 0.97 for the United States and

the Euro Area). To compensate, in part, for the very low frequency of price adjustments,
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there is substantial indexation in the Euro Area (median is 0.53) while this is not the case

in the domestic block. The results for the United States accord well with the view that

there is substantial pricing to market by exporters into the U.S. market.

Regarding wages, our estimates suggest that the average duration of foreign wage con-

tracts is approximately 5.8 quarters, which is higher than for prices of goods in the currency

of producers. We note that this result is contrast to that obtained by Smets and Wouters

(2003) who were somewhat puzzled by the robust finding that price contracts have longer

duration than for wages. For the United States, the lower frequency of re-optimization

in wages, relative to price, contracts is eve more startling, since our median parameters

estimates suggest durations of 9 quarters, which seem to be in part compensated by a

higher degree of wage indexation. Overall, our inferred parameters indicate a reasonable

degree of nominal rigidities in wages and prices for the Euro Area. In the case of the

domestic block, however, posterior estimates point to a greater role for wage contracts in

generating nominal rigidities than for prices. In a future version of this paper we intend

to analyze the implications of these discrepancies for the dynamic response to shocks, as

well as to gauge the sensitivity of these results to our choice of priors.

Turning to the estimated inverse elasticities of labour supply, the likelihood prefers

values quite smaller than our priors. The coefficients are very similar across blocks and

point towards (close to) unitary elasticities. It is interesting notice that however, the

degree of habit in labour is far larger for the United States, as evidenced by comparing

the posterior probability bands.

As mentioned earlier, there is substantial disagreement on plausible values for the elas-

ticity of substitution between domestic and foreign goods. In our case, median estimates

are 1.39 and 1.11 for the domestic and foreign blocks, although posterior bands reveal this

parameter is not well pinned down for the Euro-Area. These point estimates (keeping in

mind the caveats on the dispersion of the latter) lie in the mid-range of vales in the liter-

ature: far smaller for instance than the chosen value of 6 in Obstfeld and Rogoff (2000)

but higher than in Justiniano and Preston (2004) who estimate elasticities as low as 0.3

for small open economies.

Posterior medians for the Taylor Rule echo findings of a high degree of interest rate

smoothing, which is estimated to be higher in the case of the Euro-area, judging by the
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posterior probability bands. The response coefficients on inflation adhere to the Taylor

principle in that the monetary authority rises real interest rate rise in response to infla-

tionary pressures. The greatest discrepancy across blocks emerges from the parameter

governing the response to the output gap, which is very small for the foreign block (pos-

terior probabilities cover the 0.01 to 0.12 interval). It is worth flagging that the countries

comprising our foreign block were subject to common monetary rule only for a brief part

of our sample. While the assumption of adopting a Taylor rule to describe the conduct of

monetary policy in this region seems to hold rather well, this suggests however the need

to be cautious in reading deeply into this particular result.14

Despite the inclusion of intrinsic mechanisms of persistence in the form of wage and

price indexation, (external) habit in labour and consumption, and even deviations in the

law of one price, the exogenous shocks are estimated to be very persistent. While close

to unit root estimates in technology are not uncommon (as for the domestic block), ρ

estimates above 0.9 for the disturbances to consumption and labour preferences are some-

what surprising and lie beyond (to the right) of the percentiles reported in our priors and

result in tight posterior probability intervals. As mentioned, this highlights the model’s

inability to generate enough endogenous persistence to match the dynamics in the data

and presents a challenge for introducing other sources of inertia (capital and adjustment

costs, for instance) to this end.

Shocks to productivity and consumption preferences exhibit a similar degree of cor-

relation across blocks. The inferred coefficients are seen to be different from zero and lie

on the lower range of plausible values allowed by our prior, particularly for the case of

disturbances to the consumption utility.

Regarding the volatilities, the large values of for the sd(ǫC) and sd(ǫN ) (as well as their

foreign counterparts) may at first seem quite striking, particularly considering the plausi-

ble range of values entertained by our prior.15 However, it is important to remember that

the stochastic processes of these shocks enter the structural equations multiplied by coef-

ficients which are non-linear combinations of the degree of habit (consumption and leisure

14See the discussion in Smets and Wouters (2003) and references therein.
15sd(ǫC) = 4.13 coupled with ρC = 0.99, which implies that sd(uC) = 1√

(1−ρ2

C
)
sd(ǫC) = 7.09 × 4.13,

is particularly implausible. In the simulations that follow we therefore imposed the same distributions on

sd(ǫC) and sd(ǫ∗C), and on ρC and ρ∗

C , using the estimated results for the foreign bloc.
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accordingly) such as 1−h
σ . This problem is generally resolved by imposing a normalization

in the disturbances that will feature in future re-estimations of our models, although we

emphasize that these should not affect the estimates other than for the standard devia-

tions. We also note that posterior for the standard deviation of the measurement error in

the real exchange resemble closely its prior density, suggesting that the role of this shocks

is rather superfluous.

Parameters Distribution Mean Std 1% 99%

σ, σ∗ N 2 0.8 0.14 3.86

ξH , ξ∗F B 0.65 0.1 0.4 0.87

γH ,γ∗

F B 0.5 0.1 0.27 0.73

ξF , ξ∗H B 0.5 0.2 0.09 0.91

γF , γ∗

H B 0.5 0.2 0.09 0.91

ξW , ξ∗W B 0.5 0.1 0.27 0.73

γW , γ∗

W B 0.5 0.1 0.27 0.73

h, h∗ B 0.5 0.1 0.27 0.73

hN , h∗

N B 0.5 0.15 0.17 0.83

φ, φ∗ N 2.5 0.6 1.1 3.9

µ, µ∗ N 2.5 0.6 1.1 3.9

κπ,κπ∗ N 1.8 0.25 1.22 2.38

κy, κ∗

y N 0.4 0.15 0.05 0.75

ρr, ρ
∗

r B 0.75 0.1 0.49 0.93

ρa, ρ∗a B 0.85 0.1 0.55 0.99

ρg, ρ
∗

g B 0.75 0.1 0.49 0.93

ρN , ρ∗N B 0.6 0.1 0.36 0.81

ρC , ρ∗C B 0.6 0.15 0.25 0.9

υǫa,ǫa∗
B 0.5 0.2 0.08 0.91

υǫC ,ǫC∗
B 0.4 0.2 0.41 0.86

sd(ǫr) I 0.3 0.1 0.12 0.58

sd(ǫa) I 0.6 0.4 0.06 1.9

sd(ǫg) I 0.6 0.4 0.06 1.9

sd(ǫN ) I 0.6 0.2 0.23 1.16

sd(ǫC) I 0.5 0.2 0.15 1.08

sd(mπ) I 0.3 0.1 0.11 0.58

sd(mw) I 0.3 0.1 0.11 0.58

sd(e) I 0.2 0.05 0.1 0.33

Table A. Priors16

16Prior densities: N, normal, B, beta, I, Inverse-Gamma1. Third and fourth column report the mean

and standard deviations, while the last two columns the 1st and 99th percentiles corresponding to each

density. Coefficients are treated symmetrically across blocks.
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Parameters Median Std 10% 90%

σ 1.43 0.17 1.23 1.66

ξH 0.45 0.04 0.41 0.53

γH 0.43 0.08 0.34 0.53

ξF 0.96 0.01 0.95 0.96

γF 0.13 0.05 0.07 0.19

ξW 0.89 0.02 0.86 0.91

γW 0.62 0.05 0.54 0.67

h 0.46 0.04 0.41 0.51

hN 0.83 0.1 0.66 0.92

φ 1.34 0.28 0.91 1.64

µ 1.39 0.24 1.11 1.73

κπ, 2.11 0.13 1.95 2.29

κy, 0.43 0.14 0.24 0.6

ρr 0.74 0.03 0.69 0.77

ρa 0.99 0.003 0.98 0.99

ρg 0.9 0.02 0.87 0.92

ρN 0.97 0.01 0.96 0.97

ρC 0.99 0.005 0.98 0.99

υǫa,ǫa∗
0.16 0.06 0.08 0.24

υǫC ,ǫC∗
0.13 0.06 0.06 0.22

sd(ǫr) 0.22 0.02 0.2 0.25

sd(ǫa) 0.58 0.05 0.51 0.65

sd(ǫg) 0.77 0.06 0.7 0.85

sd(ǫN ) 2.65 0.17 2.46 2.89

sd(ǫC) 4.13 0.22 3.78 4.38

sd(mπ) 1.15 0.07 1.07 1.24

sd(mw) 0.45 0.04 0.41 0.51

sd(e) 0.2 0.05 0.14 0.28

Table B1. Posterior: Domestic Bloc17

17 Posterior medians, percentiles and standard deviations obtained with the Random Walk MCMC

algorithm.

26



Parameters Median Std 10% 90%

σ∗ 1.56 0.22 1.35 1.92

ξ∗F 0.75 0.02 0.72 0.78

γ∗

F 0.24 0.06 0.17 0.32

ξ∗H 0.97 0.01 0.96 0.98

γ∗

H 0.53 0.06 0.45 0.59

ξ∗W 0.83 0.03 0.79 0.87

γ∗

W 0.34 0.07 0.26 0.43

h∗ 0.4 0.07 0.31 0.48

h∗

N 0.37 0.11 0.22 0.51

φ∗ 1.01 0.3 0.58 1.37

µ∗ 1.12 0.36 0.66 1.61

κπ∗ 1.32 0.09 1.23 1.46

κ∗

y 0.05 0.04 0.01 0.12

ρ∗r 0.82 0.02 0.8 0.84

ρ∗a 0.91 0.03 0.86 0.94

ρ∗g 0.91 0.02 0.88 0.93

ρ∗N 0.94 0.02 0.92 0.96

ρ∗C 0.93 0.01 0.92 0.95

sd(ǫ∗r) 0.14 0.01 0.13 0.16

sd(ǫ∗a) 0.58 0.05 0.51 0.65

sd(ǫ∗g) 0.66 0.05 0.6 0.73

sd(ǫ∗N ) 1.23 0.17 1.03 1.47

sd(ǫ∗C) 1.50 0.15 1.33 1.7

sd(mπ∗) 0.78 0.05 0.72 0.86

sd(mw∗) 0.46 0.04 0.5 0.51

Table B2. Posterior: Foreign Bloc 18

4 Analysis of Special Case

In this special case we assume an entirely symmetrical model (equal-sized blocs, equal

parameter values, preferences and identical stochastic processes though not realizations

of shocks). With no habit persistence and indexation we put hC = hN = 0 = γH =

γF = γW = 0. Wages are flexible so ξW = 0 and wt − pt = mrst. Another convenient

simplifying assumption is to assume Cobb-Douglas household preferences with respect to

domestic and imported goods and put µ = µ∗ = 1. Then all terms involving
(

1
P

)1−µ
and

(

PI

P

)1−µ
in the linearization are unity. We further put G = 0 and assume only technology

18Posterior medians, percentiles and standard deviations obtained with the Random Walk MCMC algo-

rithm.
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shocks at and a∗t . With these simplifications the model reduces to

Etct+1 = ct +
1

σ
(rt − Etπt+1) (111)

Etc
∗

t+1 = c∗t +
1

σ
(r∗t − Etπ

∗

t+1) (112)

βEtπH,t+1 = πH,t − λHmct (113)

βEtπ
∗

F,t+1 = π∗

F,t − λ∗

F mc∗t (114)

where λH = λ∗

F = (1−βξH)(1−ξH)
ξH

and

mct = −(1 + φ)at + σct + φyt − (1 − ω)τt (115)

mc∗t = −(1 + φ)a∗t + σc∗t + φy∗t − (1 − ω)τ∗

t (116)

βEtπF,t+1 = πF,t + λF ψ∗

F,t (117)

βEtπ
∗

H,t+1 = π∗

H,t + λ∗

HψH,t (118)

where λF = λ∗

H = (1−βξF )(1−ξF )
ξF

and

ψH,t = et − ωτ∗

t − (1 − ω)τt (119)

ψF,t = −ψ∗

F,t = et + (1 − ω)τ∗

t + ωτt (120)

et = −σ(c∗t − ct) (121)

yt = ω(ct − (1 − ω)τt) + (1 − ω)(c∗t + ωτ∗

t ) (122)

y∗t = ω(c∗t − (1 − ω)τ∗

t ) + (1 − ω)(ct + ωτt) (123)

πt = ωπH,t + (1 − ω)πF,t (124)

π∗

t = ωπ∗

F,t + (1 − ω)π∗

H,t (125)

∆τt = πH,t − πF,t (126)

∆τ∗

t = π∗

F,t − π∗

H,t (127)

17 Equations (111) to (127) can be solved for 17 variables ct, c
∗

t , πH,t, π
∗

F,t, πF,t, π
∗

H,t,

mct, mc∗t , ψH,t, ψF,t, et, yt, y
∗

t , τt, τ
∗

t and πt, π
∗

t given rt, r
∗

t and processes for at, a
∗

t . How-

ever unlike the case of complete exchange rate pass-through, the need for relationships

(126) and (127) means the state space formulation involves structural dynamics19 This

19Monacelli (2003) eliminated these dynamics by in effect writing (126) as Etτt+1 − τt = Et(πH,t+1 −

πF,t+1) and similarly for (127) but this is not correct as it treats τt as an extra independent jump variable.
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makes the optimal policies difficult to calculate analytically even if we use the Aoki de-

composition into sums and differences as in Batini et al. (2004a). However two useful

exercises are analytically tractable and provide useful insights for understanding the nu-

merical results on the full model. The first is the short-term and long-term effects of

permanent unanticipated changes in domestic inflation in each of the two blocs. This ex-

ercise in particular identifies the nature of monetary spillovers and the role for monetary

policy coordination. The second exercise is the study of the possible stability, instability

and indeterminacy of inflation-based forecast rules. We consider these in turn.

4.1 Monetary Policy Spillovers

For symmetric economies it proves convenient to separately analyze the aggregate or sum

system and the difference system. Define sums cs
t = ct + c∗t and similarly for variables ys

t ,

rs
t , mcs

t and τ∗

t . Aggregate domestic and imported inflation rates are defined as πs
D,t =

πH,t + π∗

F,t and πs
I,t = πF,t + π∗

H,t respectively and the aggregate deviations from the law

of one price by ψt = ψH,t + ψ∗

F,t. Differences are defined by cd
t = ct − c∗t etc. Then (111)

to (127) decomposes into the following sum system:

Etc
s
t+1 = cs

t +
1

σ

(

rs
t − Etπ

s
t+1

)

(128)

βEtπ
s
D,t+1 = πs

D,t − λH mcs
t (129)

mcs
t = −(1 + φ)as

t + σcs
t + φys

t − (1 − ω)τ s
t (130)

βEtπ
s
I,t+1 = πs

I,t + λF ψs
t (131)

ψs
t = −τ s

t (132)

ys
t = cs

t (133)

πs
t = ωπs

D,t + (1 − ω)πs
I,t (134)

∆τ s
t = πs

D,t − πs
I,t (135)

and the following difference system:

Etc
d
t+1 = cd

t +
1

σ

(

rd
t − Etπ

d
t+1

)

(136)

βEtπ
d
D,t+1 = πd

H,t − λH mcd
t (137)

mcd
t = −(1 + φ)ad

t + σcd
t + φyd

t − (1 − ω)τ s
t (138)

βEtπ
d
I,t+1 = πd

I,t − λF ψd
t (139)
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ψd
t = 2et + (2ω − 1)τd

t (140)

et = σcd
t (141)

yd
t = (2ω − 1)cd

t − 2ω(1 − ω)τd
t (142)

πd
t = ωπd

D,t + (1 − ω)πd
I,t (143)

∆τd
t = πd

D,t − πd
I,t (144)

4.1.1 The Sum System

We now examine the effect in the sum system of an unanticipated permanent increase

in domestic inflation πs
D,t = π̄s

D, t ≥ 1. We start at the baseline steady state where all

variables in deviation form are zero. There are no other shocks so we put at = 0. Consider

first the first-period t = 1 response for which expected domestic and imported inflation

and expected consumption are still zero so that E1π
s
D,2 = E1π

s
I,2 = E1c

s
2 = 0. From (129)

to (133) we then have

πs
D,1 = λHmcs

1 = ((σ + φ)ys
1 − (1 − ω)τ s

1 )

πs
I,1 = λF τ s

1 = λF (πs
D,1 − πs

I,1)

Putting πs
D,1 = π̄s

D the short-run responses to aggregate domestic inflation, the terms of

trade and output can be derived as

πs
I,1 =

λF

1 + λF
π̄s

D (145)

τ s
1 =

1

1 + λF
π̄s

D (146)

ys
1 =

(1 + λF + λH(1 − ω))

λH(σ + φ)(1 + λF )
π̄s

D ≡ αs
1π̄

s
D (147)

From (128) to engineer this rise in domestic inflation aggregate interest rates must be

lowered and set at rs
1 = −σys

1. For λF < ∞, equation (145) describes the incomplete

pass-through of an aggregate domestic monetary expansion to imported inflation since

πs
I,1 < π̄s

D. As λF → ∞, the law of one price gap disappears and πs
I,1 → π̄s

D. According to

(146) this is associated with a rise in the aggregate terms of trade. In (147) there are two

components of the stimulus to output, one associated with a domestic inflation surprise

and one with an imported inflation surprise.
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From time t ≥ 2 the permanent rise in inflation is anticipated and the dynamics of

aggregate variables τ s
t and πs

I,t are given by





1 0

λF β









τ s
t

Etπ
s
I,t+1



 =





1 −1

0 1









τ s
t−1

πs
I,t



 +





1

0



 π̄s
D (148)

with τ s
1 given by (146). The eigenvalues of (148) are those of the matrix





1 0

λF β





−1 



1 −1

0 1



 =
1

β





β −β

−λF 1 + λF



 (149)

which can easily be shown to have one eigenvalue within the unit circle and one outside.

The dynamic system (148) with one predetermined and one non-predetermined variable

is therefore saddlepath stable.

Given the trajectories for τ s
t , πs

I,t and πs
D,t = π̄s

D, (128) to (134) now describes the

trajectories for the rest of the sum system. This converges to a new steady state π̄s
I etc

with π̄s
I = π̄s = r̄s = π̄s

D, τ̄ s = 0 and consumption and output given by

c̄s = ȳs =
(1 − β)(λF + λH(1 − ω))

λHλF (σ + φ)
π̄D ≡ ᾱs π̄s

D (150)

Thus for a discount factor β < 1 there is a long-run output-inflation trade-off, a familiar

feature of New Keynesian DSGE models.

4.1.2 The Difference System

The short-run and long-run responses of the difference system following an unanticipated

increase in πd
D,t can be found in the same way, though the algebra is not so straightforward.

We first eliminate cd
t and yd

t from (140), (137) and (138) to obtain

ψd
t = θ1mcd

t + θ2τ
d
t (151)

where

θ1 =
2σ

σ + (2ω − 1)φ
(152)

θ2 =
σ + φ((2ω − 1)2 + 4(1 − ω)ωσ)

σ + (2ω − 1)φ
(153)
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Proceeding as for the sum system the short-run responses are found from

πd
D,1 = λHmcd

1 = λH((σ + φ)yd
1 − (1 − ω)τd

1 )

πd
I,1 = λF ψd

1 = λF (θ1mcd
1 + θ2τ

d
1 )

τd
1 = πd

D,1 − πd
I,1

Putting πd
D,1 = π̄d

D the short-run responses to domestic inflation, the terms of trade and

output differences can be derived as

πd
I,1 =

λF (θ1 + λHθ2)

λH(1 + λF θ2)
π̄d

D (154)

τd
1 = −

λF θ1 − λH

λH(1 + λF θ2)
π̄d

D (155)

yd
1 =

(1 + λF θ2)(2ω − 1) + λH(1 − ω)(1 − 2ω(1 − σ))(λF θ1 − λH)

λH(1 + λF θ2)(σ + (2ω − 1)φ)
π̄d

D

≡ αd
1 π̄d

D (156)

To bring about these changes the difference in the interest rate must be set at rd
1 = −σyd

1 .

The key feature of these short-term responses is the direction of change of the terms of

trade. If λF θ1 > λF , that is, substituting for θ1, if

2σ

σ + (2ω − 1)φ
>

λH

λF
(157)

then exchange rate pass-through is sufficiently large in the first period to engineer a fall

in the terms of trade difference. In the absence of consumption bias where ω = 1
2 this

condition becomes simply λF > λH

2 , so the degree of price stickiness in the retail market

for imported goods needs to only half of that in the market for domestic goods for a fall

in the terms of trade. For price stickiness in the retail market sufficiently large such that

(157) no longer holds, then a unilateral monetary expansion on one bloc results in an

appreciation of its terms of trade.20 As we shall see this has important consequences for

the direction of monetary spillovers on output.

From time t ≥ 2 the permanent change in inflation differences is anticipated and the

dynamics of aggregate variables τd
t and πd

I,t are given by





1 0

λF θ2 β









τd
t

Etπ
d
I,t+1



 =





1 −1

0 1









τd
t−1

πd
I,t



+





0 1

−λF θ1 0









(1−β)
λF

1



 π̄d
D (158)

20A similar result is obtained by Betts and Devereux (2000a) in a model of ‘pricing-to-market’.
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with τ s
1 given by (155). The dynamic matrix in (158) has the same form as for the sun

system with one eigenvalue outside and one inside the unit circle. The difference system

is therefore also saddlepath stable.

Given the trajectories for τd
t , πd

I,t and πd
D,t = π̄d

D, (136) to (143) now describes the

trajectories for the rest of the difference system. This converges to a new steady state π̄d
I

etc with π̄d
I = π̄d = r̄d = π̄d

D and output and the terms of trade given by

ȳd =
(1 − β)(λF θ2(2ω − 1) + λH(1 − ω)(1 − 2ω(1 − σ))(λF θ1 − λH))

λHλF θ2(σ + (2ω − 1)φ)
π̄d

D

≡ ᾱd π̄d
D (159)

τ̄d = −
(1 − β)(λF θ1 − λH)

λHλF θ2
π̄d

D (160)

4.1.3 Positive or Negative Spillovers?

We can now assess the sign of the monetary spillovers on output. Write the results obtained

as

ys
1 ≡ y1 + y∗1 = αs

1 πs
D,1 ≡ αs

1(πH,1 + π∗

F,1) (161)

yd
1 ≡ y1 − y∗1 = αd

1 πd
D,1 ≡ αd

1(πH,1 − π∗

F,1) (162)

ȳs ≡ ȳ + ȳ∗ = ᾱs π̄s
D ≡ ᾱs(π̄H + π̄∗

F ) (163)

ȳd ≡ ȳ − ȳ∗ = ᾱ1 π̄d
D ≡ ᾱd(π̄H − π̄∗

F ) (164)

Hence the short-run and long-run responses on output in the home bloc to unanticipated

(in the first period) permanent change in domestic inflation in both blocs is given by

y1 =
1

2

[

(αs
1 + αd

1)π̄H + (αs
1 − αd

1)π̄
∗

F

]

(165)

ȳ =
1

2

[

(ᾱs + ᾱd)π̄H + (ᾱs − ᾱd)π̄∗

F

]

(166)

Hence short-run spillovers are positive (negative) if αs
1 > (<)αd

1 and similarly for long-

run spillovers. Substituting for αs
1, αd

1, ᾱs, ᾱd whether spillovers are positive or negative

depends on the sign of

αs
1−αd

1 =
1

λH

[

(1 + λF + λF (1 − ω))

(σ + φ)(1 + λF )
−

(1 + λF θ2)(2ω − 1) + (1 − ω)(1 − 2ω(1 − σ))(λF θ1 − λH)

(1 + λF θ2)(σ + (2ω − 1)φ)

]

(167)

for the short-run and on the sign of

ᾱs−ᾱd =
(1 − β)

λHλF

[

(λF + λH(1 − ω))

(σ + φ)
−

(λF θ2(2ω − 1) + (1 − ω)(1 − 2ω(1 − σ))(λF θ1 − λH))

θ2(σ + (2ω − 1)φ)

]

(168)
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for the long-run.

To assess these results first note that as ω → 1 and the two blocs cease to trade then,

as logic demands, the spillovers disappear. Second, let us examine the case of complete

exchange rate pass-through which is obtained from (167) and (168) by letting λF → ∞.

A little algebra then yields

[

αs
1 − αd

1

]

λF =∞

=

[

αs − αd

1 − β

]

λF =∞

=
4ωσ(1 − ω)(1 − σ)

λH(σ + φ)[σ + φ((2ω − 1)2 + 4ω(1 − ω)σ)]
(169)

Thus we have the following proposition generalizing the result of Clarida et al. (2002)

which assumed no consumption bias ω = 1
2 to our case with ω ∈ [12 , 1]:

Proposition 3

For the case of complete exchange rate pass-through, the spillover effect of a

monetary expansion on output is positive or negative depending on whether

σ < 1 or σ > 1.

Now consider what happens as λF falls reducing the speed of exchange rate pass-

through. Differentiating (167) we have

d

dλF

[

αs
1 − αd

1

]

=
(1 − ω)

λH

[

−
λH

(σ + φ)(1 + λF )2
−

(1 − 2ω(1 − σ))(θ1 + λHθ2)

(σ + (2ω − 1)φ)(1 + λF θ2)2

]

(170)

If we now confine ourselves to the empirically realistic case of σ > 1, then 1−2ω(1−σ) > 1

and the derivative in (170) can be unambiguously signed as negative. Then together with

the result of proposition 3 we can now assert that the effect of incomplete exchange rate

pass-through (a fall in λ) is bring about a reduction in the negative spillover effect of

monetary expansion on output. A similar result applies to the long-run spillover.

Finally we can determine an upper bound of the spillover by evaluating (168) at λF = 0.

Some more algebra yields:

[

αs
1 − αd

1

]

λF =0
=

2(1 − ω)
[

σ − λHω
(

(σ − 1)2 − (1 + (2ω−1)
ω φ

)]

λH(σ + φ)(σ + (2ω − 1)φ)
(171)

Thus for σ = 1 the case where spillovers disappeared for the complete exchange rate

pass-through case, now the upper bound on the spillover effect is positive. More generally

provided σ−λHω(σ−1)2 > 0 the upper bound in (171) is positive. For instance if σ = 3, a

large value, this condition becomes λHω < 0.75, a condition that is empirically plausible.

Noting that the results also apply to the long-run, we can summarize these results as:
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Figure 1: Short-Run Monetary Spillovers on Output αs
1 − αd

1.

Proposition 4

For σ > 1, the effect of incomplete exchange rate pass-through is to reduce

absolute magnitude of the negative short-run and long-run spillover effect of

monetary expansion on output. If price-setting in the imported goods retail

sector is sufficiently sticky, then the spillover can become positive provided

λHω < (σ−1)2

σ .

Figure 1 illustrates these results by plotting the short-run monetary spillover term αs
1−

αd
1 against the probability ξF that the price in the imported retail sector is not optimized.

ξF varies between zero (complete exchange rate pass-through) to ξ = 0.8 corresponding

to an expected contract length of 5 quarters. For σ < 1 spillovers are positive. For

σ = 1 spillovers disappear for the case of complete exchange rate pass-through. For

σ = 2 spillovers are negative at this point, but as pass-through becomes incomplete the

spillovers becomes less in magnitude, until at ξF a little over 0.4, corresponding to an

expected contract length of just over 1.7 quarters, the spillovers become positive. All this

is in accordance with propositions 3 and 4.
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4.2 Stability and Determinacy of IFB Rules

This section studies an IFB-Taylor rule of the form

rt = ρrt−1 + θ(1 − ρ)Etπt+j ; ρ ∈ [0, 1), θ > 0

= rt−1 + ΞEtπt+j ; ρ = 1, Ξ > 0 (172)

and

rt = ρrt−1 + θ(1 − ρ)EtπH,t+j ; ρ ∈ [0, 1), θ > 0

= rt−1 + ΞEtπH,t+j ; ρ = 1, Ξ > 0 (173)

for the home bloc, where j ≥ 0 is the forecast horizon, which is a feedback on single-period

inflation over the period [t+j−1, t+j]. An analogous rule applies to the foreign bloc. With

rule (172), policymakers set the nominal interest rate so as to respond to deviations of

CPI inflation from target. With rule (173) the policymaker responds to domestic inflation.

In addition, policymakers smooth rates, in line with the idea that central banks adjust

the short-term nominal interest rate only partially towards the long-run inflation target,

which is set to zero for simplicity in our set-up. The parameter ρ ∈ [0, 1] measures the

degree of interest rate smoothing. If ρ = 1 we have an integral rule that guarantees that

the long-run inflation target (zero in our set-up) is met, provided the rule stabilizes the

economy. For ρ < 1, (172) can be written as ∆rt = 1−ρ
ρ [θEtπt+j − it] which is a partial

adjustment to a static IFB rule rt = θEtπt+j . j is the feedback horizon of the central

bank. When j = 0, the central bank feeds back from current dated variables only. When

j > 0, the central bank feeds back instead from deviations of forecasts of variables from

target. Finally, θ, Ξ > 0 are the feedback parameters for the non-integral and integral

rules respectively: the larger is θ or Ξ, the faster is the pace at which the central bank

acts to eliminate the gap between expected inflation and its target value.

We shall see in the next two sections that virtually all the optimal simple rules that

we compute are of the integral form (ρ = 1). As a consequence we shall not address

the more general rules (ρ < 1). However, we note that it is possible to derive the same

general results as in BLP for the simplified sum and difference systems of this section: (i)

for given ρ < 1 there exists a forward horizon J such that for any j > J the system is

suffers from indeterminacy; (ii) the critical J will be slightly greater than 1/(1 − ρ); (iii)
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a similar result holds when average expected inflation is used as the feedback variable for

the interest rate, but in this case the critical value J is slightly greater than 2/(1 − ρ).

From these results, it is evident that for integral rules (ρ = 1), there will be no

corresponding critical horizon that is ruled out by the requirement of determinacy. To see

this more clearly we obtain the characteristic equations for the sum and difference systems

under IFB rules that depend either on expected PPI or on expected CPI inflation.

As above, stability is addressed most easily by considering the sum and difference form

separately. In each case the characteristic equation is formed from the matrices describing

the z-transform of the systems; these matrices are displayed in Appendix A.

4.2.1 The Sum System

Sum System: Interest Rate Responds to PPI Inflation

Taking z-transforms of the system (128) to (135) with the rule (173), the characteristic

equation for this is given by

(z − 1)[(z − 1)2(βz − 1)2 − (z − 1)(βz − 1)z(λF + λH(1 − ω))

−λH
σ + φ

σ
(ω(z − 1)(βz − 1) − λF z)]

+Ξzj+1λH
σ + φ

σ
((z − 1)(βz − 1) − λF z) = 0 (174)

Sum System: Interest Rate Responds to CPI Inflation

Similarly taking z-transforms of the system (136) to (144) and using the rule (172), the

characteristic equation for this is given by

(z − 1)[(z − 1)2(βz − 1)2 − (z − 1)(βz − 1)z(λF + λH(1 − ω))

−λH
σ + φ

σ
(ω(z − 1)(βz − 1) − λF z)]

+Ξzj+1λH
σ + φ

σ
(ω(z − 1)(βz − 1) − λF z) = 0 (175)
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4.2.2 The Difference System

Proceeding as for the sum system we have:

Difference System: Interest Rate Responds to PPI Inflation

The characteristic equation is given by

(z − 1)[(z − 1)2(βz − 1)2 − (z − 1)(βz − 1)z(λF + λHω)

−λH(1 − ω)(1 + 2ωφ)z((z − 1)(βz − 1) − 2λF z)

−
λH(2ω − 1)z

σ
(φω(z − 1)(βz − 1) − (σ + φ(2ω − 1))λF z)]

+Ξzj+1λH [((z − 1)(βz − 1) − λF z(1 + 4ω(1 − ω)φ)

+
(2ω − 1)φ

σ
((z − 1)(βz − 1) − λF (2ω − 1)z))] = 0 (176)

Difference System: Interest Rate Responds to CPI Inflation

The characteristic equation when there is no home bias, ω = 1
2 , is given by

(z − 1)[(z − 1)2(βz − 1)2 − (z − 1)(βz − 1)z(λF + λHω)

−λH(1 − ω)(1 + 2ωφ)z((z − 1)(βz − 1) − 2λF z)

−
λH(2ω − 1)z

σ
(φω(z − 1)(βz − 1) − (σ + φ(2ω − 1))λF z)]

+
Ξ

σ
zj+1[(λHω(σ + φ(2ω − 1) + 2λF σ(1 − ω))(z − 1)(βz − 1)

−λHλF z(σ + φ(2ω − 1)2 + 4σ(1 − ω)ωφ)] = 0 (177)

With such a forward-looking system, stability is not an issue, but if there are too

many stable eigenvalues (i.e., roots of the characteristic equation) of either the sum or

difference system, then the system is indeterminate. A useful method for tracking the

roots in the complex plane as Ξ increases, is the Root Locus method, invented by Evans

(1954).21 Unlike the work of Batini and Pearlman (2002) and BLP, the systems here are

too complicated to analyze easily.22 We note that all the characteristic equations are very

similar to one another, so as a consequence we can draw some stylised root locus diagrams

indicating the paths of the roots of the system as Ξ increases from 0 to ∞.

21See BLP for a users’ guide to the Root Locus method.
22In fact it is possible to confirm that the numerical results that we obtain appear to be true in general.

However it requires several intermediate diagrams to get to this point, so fuller discussion is omitted.
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1−1

Figure 2: The Position of Eigenvalues for Symmetrical IFB0 Rules.

1−1

Figure 3: The Position of Eigenvalues for Symmetrical IFB1 Rules.
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1−1

A

A

Figure 4: The Position of Eigenvalues for Symmetrical IFB2 Rules.

1−1

A

A

Figure 5: The Position of Eigenvalues for Symmetrical IFB3 Rules.

Figures 2-4 show the root locus diagrams for values j = 0, 1, 2, 3. These start at the

roots of the system under no control (indicated by a black disc), and head off in the

directions indicated by the arrows. The number of required stable roots corresponds to

the number of predetermined variables in each of the two systems, of which there are two:

τ and r. From 2 it is clear that there are always exactly two stable roots, so that for j = 0

there is never a problem of determinacy. For j = 1, there is indeterminacy only after the

root locus crosses the unit circle at z = −1, while for j = 2, 3, the root locus first crosses

the unit circle at the points labelled A. One can continue drawing these diagrams for all

values of j, but they all have the same general appearance as Figs 4 and 5, apart from extra
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branches heading in from ∞. The conclusion that can be drawn is that there is always a

conjugate pair of critical points on the unit circle corresponding to a particular value of Ξ

beyond which there is indeterminacy. We summarise these observations as follows:

Proposition 5

The system under integral control is determinate (a) for all values of Ξ > 0

when j = 0 (b) over a bounded range of Ξ > 0 when j > 0.

Numerical simulations confirm an important property of the bound Ξ in proposition

5: the bound decreases as the rules become more forward-looking, i.e., as j increases.

An interesting knife-edge situation emerges when there is no home bias for home goods

(ω = 1/2), and when there is no inertia in setting the price of imported goods (ξF = 0).

For the special case we are addressing this section, preferences across countries are Cobb-

Douglas. It follows that, even though there is a mark-up (ζ/(ζ − 1)) on imported goods,

the consumer price index is essentially the same in each country, differing only by the

nominal exchange rate i.e. PPP holds. Thus we have following result also obtained in

BLP:

Proposition 6

For the case of no price inertia in imported goods, there is indeterminacy when

CPI is used in the interest rate rule.

Proof

We can show this in two ways. Firstly consider the equations for the difference system.

Combining (136) and (141) yields a UIP relationship. But for the difference system,

the interest rate rule now merely feeds back on (expected) changes in the nominal interest

rate. This implies a feedback rule that produces a path for the nominal exchange rate, but

which is completely decoupled from other aspects of inflation. Thus πd
D and πd

I now evolve

independently of the control rule, and display indeterminacy. An alternative method of

showing this is to use (177), and setting λF to ∞. This yields a characteristic equation

(z − 1 − Ξzj)z((z − 1)(βz − 1) − λH(1 + φ)z) = 0 that is a product of two polynomials -

one of them corresponding to the control rule on the nominal exchange rate, and the other

corresponding to the dynamics of πd
D and πd

I , implying that the latter is unaffected by the

control rule. ¤
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5 Optimized IFB Rules without Model Uncertainty

In this section we compute optimized IFB rules and optimal Taylor-type rules feeding back

on either current producer price or consumer price inflation alone or on inflation and the

output gap. The general form of the rule that covers integral and non-integral IFB as well

as the Taylor-type rules is given for the home bloc and for CPI inflation by

it = ρit−1 + ΘEtπt+j ; ρ ∈ [0, 1], Θ, Θy > 0, j ≥ 0 (178)

and analogous rules apply for producer price inflation and for the foreign bloc.

In the absence of model uncertainty we assume that the policy problem of the home

bloc central bank is to choose at time t = 0 in each period t = 0, 1, 2, · · · an interest rate

rt so as to minimize a standard expected loss function that depends on the variation of

the output gap, CPI inflation and the level of the nominal interest rate:

ΩH
0 = E0

[

1

2

∞
∑

t=0

βt
c

[

(ŷt − yt)
2 + bπ2

t + cr2
t

]

]

(179)

where βc is the discount factor of the central bank. There is no ambitious output target

that try to drive output closer to the efficient output level examined in section 3.6.2. Hence

there is only a stochastic but no deterministic component of policy.23 Given the estimated

variance-covariance matrix of the white noise disturbances, an optimal combination (Θ, ρ)

can be found for each rule defined by the time horizon j ≥ 0.

With two central banks policy can either be set cooperatively or non-cooperatively. For

cooperative rule of a particular type, the policymakers are assumed to jointly minimize

an average loss function (ΩH + ΩH)/2. In the absence of cooperation, policymakers each

independently choose an optimized feedback rule of a particular type given the choice of

rule by the other. The resulting combination of rules will then be a closed-loop Nash

equilibrium. The outcome under all rules are measured relative to an optimal baseline

which is achieved if the two policymakers could both commit to the private sector and

coordinate without being constrained to any particular simple form of rule. Details of all

policy rules are provided in Appendix B.

23Since the IFB rule assumes a commitment mechanism, the policymaker in principle should be able to

implement a policy it = īt plus a feedback component such as (172) or (178) relative to īt, where the latter

is the optimal deterministic trajectory.
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5.1 Monetary Spillovers in the Estimated Model

Before we turn to the optimized rules it is instructive to examine the nature of the mone-

tary spillovers in our estimated model. To carry out this exercise we run the model with a

current CPI inflation rule of the form rt = −r̄ +1.001π, r∗t = 1.001π where the permanent

decrease in the interest rate r̄ is chosen so that the home bloc engineers an unanticipated

increase of 1% in its domestic inflation rate in period 0. From our theory which applies to

a simplified version of the model we then expect the spillover effect on foreign output to

be positive for low rates of exchange rate pass-through and to be negative for high rates

of exchange rate pass-through. Figure 6 shows that the former is the case. In figure 7

we simulate a hypothetical model with the same parameter values except that ξF , ξ∗H are

set at very low values and γF = γ∗

H = 0. This change then imposes complete exchange

rate pass-through (i.e., PPP) on the model. Now the spillover effect on foreign output is

positive, again as predicted by our theoretical analysis.

5.2 Optimized IFB Rules

The results are shown in table 1 for IFB rules feeding back on expected producer price

inflation. In these results we put parameter values at their mean values in the posterior

distribution of the estimated model and this is our baseline model. The weights in the loss

function are welfare-based weights b = 20.8 and c = 1.6 taken from Woodford (2003).24

A number of interesting observations emerge from this table. First, from the output

equivalent loss (relative to the optimal commitment outcome) of ‘minimal feedback’, the

closest saddle-path stable integral rule using current domestic inflation to no feedback rule

at all, we see that there are very significant gains from a stabilization policy amounting to

around 7% output increase equivalent on average. These are most pronounced for the US.

Second, simple current inflation rules are able to deliver almost all of these gains. If the

policymaker can commit using a simple rule, the best one in this respect is a Taylor inte-

gral rule, and this realizes a large part of the potential stabilization gain. Third, for each

24Since these weights apply to a far simpler DSGE model of the US only, the results are only indicative

as to actual welfare gains. Noting that our model is quarterly, the weights correspond to b = 20.8/16

and c = 1.6/16 in an annual model, values well within the range found in the literature. Future work

will use the procedure for approximating a quadratic form of the consumers’ utility based on Benigno and

Woodford (2004).
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Figure 6: Monetary Spillovers on Foreign Output from a Monetary Expansion

Home Bloc H: Model B.
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Figure 7: Monetary Spillovers on Foreign Output from a Monetary Expansion

Home Bloc H: Model B with PPP imposed.
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model we search for optimized rules within those that satisfy the determinacy conditions

on ρ and θ for non-integral rules and on Θ for integral rules. We found that integral rules

consistently performed the best. Fourth, our theory has shown that the requirement of

determinacy severely constrains the range of possible stabilizing rules as the horizon j in-

creases and as a result compared with the Taylor rule, IFBj rules perform increasingly less

well. In our results the loss from IFB5 rules compared with a current inflation IFB0 rule is

almost 2% on average. Finally for our estimated 2-bloc model the gains from coordinating

the design of IFBj rules is very small amounting to a 0.02% output equivalent gain at most.

Rule (ρH , ρF ) (ΘH , ΘF ) (ΩH
0 , ΩF

0 ); Ω̄0 % Output Equiv

Minimal Feedback (1, 1) (10−3, 10−3) (578, 436); 507 (9.06, 5.36); 7.2

IFB0(C) (1, 1) (0.28, 0.20) (161, 187); 174 (0.72, 0.38); 0.54

IFB0(NC) (1, 1) (0.27, 0.29) (167, 183); 175 (0.84, 0.30); 0.56

IFB1(C) (1, 1) (0.53, 0.28) (156, 192); 174 (0.62, 0.48); 0.54

IFB1(NC) (1, 1) (0.51, 0.38) (161, 189); 175 (0.72, 0.42); 0.56

IFB2(C) (1, 1) (1.24, 0.45) (161, 202); 181 (0.72, 0.68);0.68

IFB2(NC) (1, 1) (1.17, 0.58) (165, 200); 182 (0.80, 0.64); 0.70

IFB3(C) (1, 1) (3.19, 0.74) (169, 219); 194 (0.88, 1.04); 0.94

IFB3(NC) (1, 1) (3.06, 0.95) (173, 217); 195 (0.96, 0.98); 0.96

IFB4(C) (1, 1) (2.68, 1.29) (193 ,242); 217 (1.36,1.48); 1.40

IFB4(NC) (1, 1) (2.68, 1.65) (198,240); 219 (1.46, 1.44); 1.40

IFB5(C) (1, 1) (1.31, 2.38) (252, 268); 260 (2.54, 2.00); 2.26

IFB5(NC) (1, 1) (1.32, 3.0) (256, 266); 261 (2.62,1.96); 2.28

Optimal n.a. n.a. (125,168) (0,0)

Table 1. Baseline Model B25

Whilst the gains from coordinating IFB rules are small there are nonetheless interesting

25IFBj(C) and IFBj(NC) denote a j-period ahead IFB rule. Let under cooperation and non-cooperation

rpectively. Let Ωi be the loss for bloc i for any particular rule and Ωi
Obe the loss from optimal cooperative

rule with commitment. A 1% permanent fall in the output gap leads to a reduction in the loss function

of 1
2(1−βc)

= 50 in our calibration. The % output equivalent loss is then a measure of the degree of

sub-optimality of each rule and is defined as
Ωi

−Ωi
O

41
.
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differences between the cooperative and non-cooperative rules. Under both cooperation

and non-cooperation, the EU bloc uses monetary policy more aggressively in the face of

high expected producer-price inflation. This is as one would expect from the more open

of the two blocs. This aggressive use of monetary policy becomes more pronounced in

the non-cooperative equilibrium resulting in a gain of as much as 0.06% for the EU at

the expense of as much as 0.1% loss for the US. The net effect on the average of the

non-cooperative compared with the cooperative loss is a small, as already noted.

Rule (ρH , ρF ) (ΘH , ΘF ) (ΩH
0 , ΩF

0 ); Ω̄0 % Output Equiv

Minimal Feedback (1, 1) (10−3, 10−3) (368, 563); 466 (3.84, 7.68); 5.76

IFB0(C) (1, 1) (0.10, 0.40) (185, 231); 208 (0.18, 1.04); 0.60

IFB0(NC) (1, 1) (0.20, 0.61) (192, 234); 215 (0.32, 1.10); 0.74

IFB1(C) (1, 1) (0.18, 0.52) (184, 241); 213 (0.16, 1.24); 0.70

IFB1(NC) (1, 1) (0.41, 0.73) (189, 249); 219 (0.26, 1.40); 0.82

IFB2(C) (1, 1) (0.38, 0.77) (191, 259); 225 (0.30, 1.60); 0.94

IFB2(NC) (1, 1) (1.06, 1.09) (196, 267); 232 (0.40, 176); 1.08

IFB3(C) (1, 1) (1.06, 1.23) (201, 283); 242 (0.50, 2.08); 1.28

IFB3(NC) (1, 1) (3.40, 1.70) (205, 288); 247 (0.58, 2.18); 1.38

IFB4(C) (1, 1) (3.40, 2.05) (212, 306); 259 (0.72, 2.54); 1.62

IFB4(NC) (1, 1) (3.37, 2.80) (219,303); 262 (0.86, 2.48); 1.68

IFB5(C) (1, 1) (1.76, 3.83) (231, 324); 278 (1.10, 2.90); 2.00

IFB5(NC) (1, 1) (1.76, 4.88) (236, 322); 279 (1.20, 2.86); 2.02

Optimal n.a. n.a. (176,179) (0,0)

Table 2. Alternative Model with Full Trade Linkages

We have found that the gains from coordinating on IFB rules are extremely small for the

two blocs. This perhaps is not surprising given the low trade linkages between the US and

the Euro-zone.26 In our next exercise we therefore ask the question: what would the gains

be if the goods markets where completely integrated with import shares sH = sF = 0.5.

Table 2 shows these results.

26Recall the calibrated import shares sH = 0.14, sF = 0.37.

46



In this hypothetical world of full trade linkages between the US and the Euro-zone table

2 shows that the gains from coordinating the design of current inflation and IFB rules are

now significant ranging from a 0.12% output equivalent for the current inflation rules but

falling as the rule becomes more forward-looking and j increases. The reason for this can

be seen in proposition 5 and the numerical result alluded too just after the proposition:

the upper bound on the feedback parameter necessary to avoid in determinacy falls as j

increases, thus placing a increasingly tight constraint on the policymaker and forcing the

cooperative and non-cooperative rules together.

Our estimates of gains from coordination are rather higher than those reported in

Obstfeld and Rogoff (2002) in a far simpler model without many of the persistence mech-

anisms of that in this paper.27 However their finding that the coordination gains are far

less than the stabilization gains are borne out in our results.

6 Optimized IFB Rules with Model Uncertainty

6.1 Theory

In this section we consider model uncertainty in the form of uncertain estimates of the

non-policy parameters of the model, Θ. Suppose the state of the world s is described by

a model with Θ = Θs expressed in state-space form as





z
s
t+1

Etx
s
t+1



 = As





z
s
t

x
s
t



 + Bs





rt

r∗t



 + Cs





ǫgt+1

ǫat+1



 (180)

os
i = Es





z
s
t

x
s
t



 (181)

where z
s
t = is a vector of predetermined variables at time t and xt are non-predetermined

variables in state s of the world. In (180) and (181) it is important to stress that variables

are in deviation form about a zero-inflation steady state of the model in state s. For

example output in deviation form is given by ys
t =

Y s
t −Ȳ s

Ȳs
where Ȳ s is the steady state of

the model in state s defined by parameters Θs and rs
t = rt − r̄s for the home bloc where

the natural rate of interest in model s, r̄s = 1
βs − 1.

27Also, our results need to be treated with some caution as they depend on the estimates of the standard

errors of the shocks which as we noted were implausible in one particular case.
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Consider simple rules of the general form





rt

r∗t



 = Dyt = D





zt

xt



 (182)

where D is constrained to be sparse in some specified way. Rule (B.20) can be quite

general. By augmenting the state vector in an appropriate way it can represent a PID

(proportional-integral-derivative) form of rule (though the paper is restricted to a simple

proportional or integral form only).

For M-robustness, in general one sets up a composite model of outputs from each of

the states s = 1, 2, · · ·, n corresponding to the rival models and minimizes the expected

loss across these states using estimated posterior probabilities. Because each model is

linearized about a different steady state, we must now set up the model in state s in terms

of the actual interest rate, not the deviation about the steady state. Then augmenting the

state vector to become z
s
t we still have a state have a state-space form (180) and (181)

and for the home bloc we minimize

Ω0 =
1

2

∞
∑

t=0

βt
c

n
∑

s=1

ps

[

(ȳs
o,t − ks)2 + bs(π̄

s
t )

2 + cs(r̄t − r̄t−1)
2

+ E0

[

(ỹs
o,t)

2 + bs(π̃
s
t )

2 + cs(r̃t − r̃t−1)
2
]

]

(183)

where ys
o,t = ŷs

t − ỹs
t is the output gap in state s. Note that the inefficiency captured by ks

depends on the state. For P-robustness (183) is replaced with the average utility loss across

a large number of draws from all models using both the posterior model probabilities and

the posterior parameter distributions for each model.

In (183) the output target in state s of the world is given by os
t = yn

t + ks where

the ambitious output target ks depends on s. In fact we will continue to assume that

the central bank has no ambitious output targets and set ks = 0 in its loss function.

However with model uncertainty there is still a deterministic component of policy arising

from differences in the natural rate of interest compatible with zero inflation in the steady

state, r̄s = 1
βs − 1.28 A non-integral rule specifying rt = r̄s in the long-run will only result

in zero inflation in model s. From the consumers’ Euler equation (14) in model s′ with

28In fact in this paper we impose βs = 0.99 for all states, so the point we make here is only potentially

important if the βs are estimated (as in Batini et al. (2004b)).
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βs > βs′ , implementing the rule designed for model s gives a steady state inflation rate

π̄s′ given by
βs′(1 + r̄s)

(1 + π̄s′)
=

βs′

βs(1 + π̄s′)
= 1 i.e., π̄s′ =

βs′

βs
− 1 > 0 (184)

Our robust non-integral rule designed for any model specifies a natural zero inflation rate

of interest r̄R, corresponding to a discount factor βR = 1
1+r̄R

to result in an expected

long-run inflation rate across models of zero. This implies βR is determined by

n
∑

s=1

ps

[

βs

βR
− 1

]

⇒ βR =
n

∑

s=1

psβs (185)

That is, βR is the expected value of βs across the model variants. The need to specify

a natural rate of interest, r̄R, only applies to non-integral rules. By contrast, a further

benefit of integral rules is that the economy is automatically driven to a zero-inflation

steady state whatever the state of the world without having to specify r̄R.

There is one final consideration first raised by Levine (1986) that is usually ignored in

the literature. Up to now we have assumed that private sector expectations Etx
s
t+1 are state

s model-consistent expectations. In other worlds in each state of the world the private

sector knows the state and faces no model uncertainty. In a more general formulation of

the problem we can relax this assumption and assume that both the policymaker and the

private sector faces model uncertainty. Suppose that in state s of the world the latter

believes model s′ is the correct one. Then Etx
s
t+1 must be replaced by the composite

expectation Et,s′x
s
t+1 where the expectational operator at time t is now conditional on

model s′. In state of the world s with the private sector believing state of the world

s′, the system under control (180), with the interest rate rules (believed by the private

sector) given by (B.20), has a rational expectations solution with xss′
t = −N s′zss′

t where

N s′ = N s′(D) is calculated on the basis of model s′. Hence

zss′

t+1 = (Gs
11 − Gs

12N
s′)zss′

t (186)

where Gs =


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(187)
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and the corresponding modification of P-robust rules is analogous.

6.2 P-Robust IFB Rules

In the results that follow we confine ourselves to model-consistent expectations and to

P-robust rules with no ambitious output target. Table 3 sets out the P-robust rules for

this case computed as described above. The notable features of these results are: first, as

with optimized rules under certainty in table 1, integral rules or in the case of the current

inflation rule IFB0, a near-integral rule, perform the best.

Rule (ρH , ρF ) (ΘH , ΘF )

IFB0 (C) (1,0.98) (0.23,0.17)

IFB0 (NC) (0.99,1) (0.23,0.29)

IFB1 (C) (1,1) (0.45,0.29)

IFB1 (NC) (1,1) (0.42,0.45)

IFB2 (C) (1,1) (1.05,0.52)

IFB2 (NC) (1,1) (1.01,0.78)

IFB3 (C) (1,1) (2.08,0.94)

IFB3 (NC) (1,1) (2.08,1.04)

IFB4 (C) (1,1) (0.87,1.56)

IFB4 (NC) (1,1) (0.87,2.05)

IFB5 (C) (1,1) (0.52,2.0)

IFB5 (NC) (1,1) (0.53,2.01)

Table 3. P-Robust IFB Rules using Domestic Inflation.

Second, comparing the optimized rules with and without model uncertainty, the av-

erage degree of feedback under uncertainty is substantially lower. The need to exercise

more caution in the conduct of stabilization policy where parameter values in the model

are stochastic is a familiar result originating with Brainard (1967). It should be stressed

however that this uncertainty induces caution results applies to the average response of

the two blocs, but not necessarily to each of them. For example with the IFB4 rule, the
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US is extremely cautious responding to a policy in the EU that is more aggressive under

uncertainty.

Finally as in the absence of parameter uncertainty, the EU responds more aggressively

in the non-cooperative equilibrium compared with cooperation. However, as the horizon

j increases the upper bound constraint of IFBj rules highlighted in section 6.2 of our

analysis kicks in with a consequence that the robust rules with and without cooperative

draw closes so that for j = 5 they are almost identical.

In order to demonstrate the role of P-robustness in the design of optimized IFB rules

we pick a number of interesting model variants from the draws of parameter combinations

used to compute the P-robust rules. In the table that follows:

1. Variant 1 has a combination of parameters with the minimum value of the important

risk aversion, σ, in the H bloc at σ = 0.89.

2. Variant 2 has a combination of parameters with the minimum value of the indexation

parameter in the F-bloc’s domestic sector, γ∗

F , at γ∗

F = 0.077.

3. Variant 3 has a combination of parameters with the minimum value of the habit in

labour supply, h∗

N , in the F-bloc at h∗

N = 0.057.

Table 4 sets out the outcomes under the rules. Non-robust rules IFBj, j = 0, 1, ···5 are

those from table 1 designed for parameter values from our baseline model with parameters

set at the mean of the distribution. The first column then repeats the losses in table 1 for

these rules. P-robust rules are those from table 3. Each row gives the value of the loss

function for the H and F bloc followed by the average corresponding to each state of the

world. Underneath are losses expressed as output equivalents.

Consider the outcome when a rule is designed for the baseline model, but an alternative

model turns out to be the true state of the world. Then variant 1 that suppresses most

of the inflation persistence in the EU bloc is the most determinacy-prone of our four

alternative models. Variant 3 with low output persistence in the EU bloc generated by

habit persistence in labour supply is the next most inflation-prone. In both cases IFBj

rules which are designed to be optimal for the baseline model lead to indeterminacy if

j ≥ 4 and in the case of variant 1 for j ≥ 3. Whether the blocs cooperative or not does

not change this conclusion and the outcomes under cooperation and non-cooperation are
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Rule Model B Variant 1 Variant 2 Variant 3

IFB0(C) (161, 187); 174 (396, 164); 280 (342, 100); 221 (102, 105); 104
(0.72, 0.38); 0.54 (5.12, 0.26); 2.70 (2.66, 0.50); 1.58 (0.30, 0.40); 0.36

IFB0(NC) (167, 183); 175 (398, 161); 280 (342, 100); 221 (102, 105); 104
(0.84, 0.30); 0.56 (5.16, 0.20); 2.70 (2.66, 0.50); 1.58 (0.30, 0.40); 0.36

IFB0(C,P-Robust) (159, 192); 175 (389, 166); 277 (325, 107); 216 (104, 112); 108
(0.68, 0.48); 0.56 (4.98, 0.30); 2.64) (2.32, 0.64); 1.48 (0.34, 0.54); 0.44

IFB0(NC,P-Robust) (168, 183); 175 (393, 161); 277 (324, 86); 205 (112, 97); 105
(0.86, 0.30); 0.56 (5.06, 0.20); 2.64 (2.30, 0.22); 1.26 (0.34, 0.54); 0.38

IFB1(C) (156, 192); 174 (327, 166); 246 (313, 106); 209 (104, 111); 107
(0.62, 0.48); 0.54 (3.74, 0.30); 2.02 (2.08, 0.62); 1.34 (0.30, 0.52); 0.42

IFB1(NC) (161,189); 175 ((329, 163); 246 (310, 94); 202 (109, 103); 106
(0.72, 0.42); 0.56 (3.78, 0.24); 2.02 (2.02, 0.38); 1.20 (0.44, 0.36); 0.40

IFB1(C,P-Robust) (157, 191); 174 (329, 166); 247 (300, 104); 202 (107, 110); 109
(0.64, 0.46); 0.54 (3.78, 0.30); 2.04 (1.82, 0.58); 1.20 (0.40, 0.50); 0.46

IFB1(NC,P-Robust) (165, 190); 177 (335, 163); 248 (295, 88); 192 (115, 100); 107
(0.80, 0.44); 0.60 (3.90, 0.24); 2.06 (1.72, 0.26); 1.00 (0.56, 0.30); 0.42

IFB2(C) (161, 202); 181 (273, 171); 222 (302, 108); 205 (113, 117); 115
(0.72, 0.68); 0.68 (2.66, 0.40); 1.54 (1.86, 0.66); 1.26 (0.52, 0.64); 0.58

IFB2(NC) (165, 200); 182 (276, 167); 222 (297, 98); 198 (117, 110); 113
(0.80, 0.64); 0.70 (2.72, 0.32); 1.54 (1.76, 0.46); 1.12 (0.60, 0.50); 0.54

IFB2(C,P-Robust) (163, 201); 182 (279, 169); 224 (289, 102); 195 )(117, 112); 115
(0.76, 0.66); 0.70 (2.78, 0.36); 1.58 (1.60, 0.54); 1.06 (0.60, 0.54); 0.58

IFB2(NC,P-Robust) (171, 204); 188 (284, 165); 225 (287, 90); 189 (123, 105); 114
(0.92, 0.72); 0.82 (2.88, 0.28); 1.60 (1.56, 0.30); 0.94 (0.72, 0.40); 0.56

IFB3(C) (169, 219); 194 indeterminacy (303, 109); 206 (123, 122); 123
(0.88, 1.04); 0.94 (1.88, 0.68); 1.28 (0.72, 0.74); 0.74

IFB3(NC) (173, 217); 195 indeterminacy (299, 101); 200 (126, 116); 121
(0.96, 0.98); 0.96 (1.80, 0.52); 1.16 (0.78, 0.62); 0.70

IFB3(C,P-Robust) (175, 218); 197 (254, 173); 213 (276, 101); 189 (134, 117); 125
(1.00, 1.00); 1.00 (2.28, 0.44); 1.36 (1.34, 0.52); 0.94 (0.94, 0.64); 0.78

IFB3 (NC, P-Robust) (177, 218); 198 (254, 152); 213 (277, 98); 187 (135, 115); 125
(1.04, 1.00); 1.02 (2.28, 0.42); 1.36 (1.36, 0.46); 0.90 (0.96, 0.60); 0.78

IFB4(C) (193, 242); 217 indeterminacy (263,;108); 186 indeterminacy
(1.36, 1.48); 1.40 (1.08, 0.66); 0.88

IFB4(NC) (198, 240); 219 indeterminacy (263, 102); 183 indeterminacy
(1.46, 1.44); 1.40 (1.08, 0.54); 0.82

IFB4(C,P-Robust) (231, 243); 237 (502, 183); 343 (270, 104); 187 (203, 127); 165
(2.12, 1.50); 1.80 (7.24, 0.64); 3.96 (1.22, 0.58); 0.90 (2.32, 0.84); 1.58

IFB4(NC,P-Robust) (236, 245); 240 (509, 181); 345 (271, 98); 184 (207, 123); 165
(2.22, 1.54); 1.86 (7.36, 0.60); 4.00 (1.24, 0.46); 0.84 (2.40, 0.76); 1.58

IFB5(C) (252, 268); 260 indeterminacy (283, 107); 195 indeterminacy
(2.54, 2.00); 2.26 (1.48, 0.64); 1.06

IFB5(NC) (256, 266); 261 indeterminacy (283, 102); 192 indeterminacy
(2.62, 1.96); 2.28 (1.48, 0.54); 1.00

IFB5(C, P-Robust) (289, 272); 282 (825, 197); 510 (304, 113); 208 (273, 144); 208
(3.28, 2.08); 2.72 (13.7, 0.92); 7.30 (1.90, 0.76); 1.32 (3.72, 1.18); 2.44

IFB5 (NC,P-Robust) (288, 276); 282 (825, 197); 510 (304, 113); 208 (273, 144); 208
(3.26, 2.16); 2.72 (13.7, 0.92); 7.30 (1.90, 0.76); 1.32 (3.72, 1.18); 2.44

Optimal Commitment (125, 168); 147 (140, 151); 145 (209, 75); 142 (87, 85); 86

Table 4. Outcome with Model Uncertainty using Domestic Inflation
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very similar. By contrast IFB0, IFB1 and IFB2 rules designed for the baseline model

are remarkably robust across the model variants and there is little by way of increased

robustness to be gained from using the P-robust rules.

For more forward-looking rule, IFBj with j ≥ 3, P-robust rules by design offer pro-

tection against indeterminacy, but at a cost. If model B is the true model, P-robust rule

with j = 4 results in a 0.5% equivalent output loss compared with the rule designed for

model B. This rises to a 7.3% loss compared with an optimal rule designed for variant 1.

The conclusion to be drawn from these results is that if a very forward-looking IFB as

opposed to say a current inflation rule is employed, then P-robust rules become essential

to avoid indeterminacy.

7 Conclusions

We summarize the main results of the paper as follows:

1. Analysis using a simplified symmetrical model without persistence mechanisms and

wage stickiness showed that, if we assume (as supported by our estimation) that the

risk-parameter σ > 1, then the spillover effect of a monetary expansion in one bloc on

output in the other is negative. The effect of incomplete exchange-rate pass-through

is to reduce the absolute magnitude of these spillovers. For a sufficient departure

from the law of one price, spillovers become positive.

2. Numerical Results from the full estimated model are

(a) Forward-looking IFB rules designed for the baseline model, whether cooperative

or non-cooperative are outperformed by current inflation rules both in terms of

their performance when the model is known, and their robustness when there

is parameter uncertainty.

(b) There are only very small overall gains from cooperation in terms of the average

loss, but under non-cooperation we find a significant increase in the aggressive-

ness of monetary policy in the EU at the expense of the US.

(c) In a hypothetical world of full trade linkages between the US and the Euro-zone

the gains from coordinating the design of current inflation and IFB rules are
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now significant ranging from a 0.12% output equivalent for the current inflation

rules but falling as the rule becomes more forward-looking and the horizon j

increases. The reason for this is a determinacy constraint on the policymaker

that becomes increasingly tight, forcing the cooperative and non-cooperative

rules together.

(d) The coordination gains are far less than the stabilization gains, a result in

agreement with Obstfeld and Rogoff (2002).

(e) Under cooperation or non-cooperation a P-robust rule is essential for very

forward-looking rules offering protection against indeterminacy in all states

of the world. This protection however comes at a significant output equivalent

cost.

There are a number of limitations of our research which future research will seek to

redress. First, the model has a number of deficiencies such as the absence of a rest of the

world bloc, the absence of capital and the allowance for incomplete asset markets. Second,

in common with much of the literature in computing optimized rules, we optimize using

a plausible policymakers’ loss function that penalizes deviations from zero of the output

gap and inflation, and changes in the interest rate. Rules that optimize the welfare of

households would provide an interesting comparison.29 Third, as we have pointed out, in

considering model uncertainty we still imposed model-consistent expectations. Finally in

the closed-economy model of Batini et al. (2004a) which assumed flexible prices but no

habit persistence in labour supply, we were able to find a number of rival models that were

accepted by the data. Current work is attempting the same for our two-bloc model.
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Clarida, R., Gaĺı, J., and Gertler, M. (2000). Monetary Policy Rules and Macroeconomic

Stability: Evidence and Some Theory. Quarterly Journal of Economics, 115(1), 147–80.
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A Derivation of Characteristic Equations

We obtain the characteristic equations of the sum and difference systems from the deter-

minant of the z-transform matrix (where z is the forward operator) on the endogenous

variables describing each of the systems (128)-(135), (172) and (136)-(144), (173). For the

ordering c, πD, πI , τ, r these matrices are given by:

Sum System:

















z − 1 ωz
σ

(1−ω)z
σ 0 − 1

σ

λH(φ + σ) βz − 1 0 −λH(1 − ω) 0

0 0 βz − 1 λF 0

0 −z z z − 1 0

0 −Ξzj+1Υs
1 −Ξzj+1Υs

2 0 z − 1

















(A.1)

where Υs
1 = ω, Υs

2 = 1 − ω for CPI inflation rules and Υs
1 = 1, Υs

2 = 0 for PPI inflation

rules.

Difference System:

















z − 1 ωz
σ

(1−ω)z
σ 0 − 1

σ

λH(σ + φ(2ω − 1)) βz − 1 0 −λH(1 − ω)(1 + 2ωφ) 0

2λF σ 0 βz − 1 λF (2ω − 1) 0

0 −z z z − 1 0

0 −Ξzj+1Υd
1 −Ξzj+1Υd

2 0 z − 1

















(A.2)

where Υd
1 = ω, Υd

2 = 1 − ω for CPI inflation rules and Υd
1 = 1, Υd

2 = 0 for PPI inflation

rules.

B The Policy Rules

Substituting out for outputs (89), the state-space representation (88) in deterministic form

is:
[

zt+1

xe
t+1,t

]

= A

[

zt

xt

]

+ Bwt (B.1)

where zt is an (n − m) × 1 vector of predetermined variables including non-stationary

processes, z0 is given, wt = [rt, r
∗

t ]
T is a vector of policy variables, xt is an m× 1 vector of

non-predetermined variables and xe
t+1,t denotes rational (model consistent) expectations

of xt+1 formed at time t. Then xe
t+1,t = xt+1 and letting yT

t = [zt, xt]
T , (B.1) becomes

yt+1 = Ayt + Bwt (B.2)
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Define target variables st by

st = Myt + Hwt (B.3)

and the policymakers’ loss function under cooperation at time t by

Ωt =
1

2

∞
∑

i=0

λt[sT
t+iQ1st+i + wT

t+iQ2wt+i] (B.4)

which we rewrite as

Ωt =
1

2

∞
∑

i=0

λt[yT
t+iQyt+iQyt+i + 2yT

t+iUwt+i + wT
t+iRwt+i] (B.5)

where Q = MT Q1M , U = MT Q1H, R = Q2 + HT Q1H, Q1 and Q2 are symmetric

and non-negative definite R is required to be positive definite and λ ∈ (0, 1) is discount

factor. The procedures for evaluating the three policy rules are outlined in the rest of this

appendix (or Currie and Levine (1993) for a more detailed treatment).

B.1 The Optimal Policy: Cooperation with Commitment

Consider the policy-maker’s ex-ante optimal policy at t = 0. This is found by minimizing

Ω0 given by (B.5) subject to (B.2) and (B.3) and given z0. We proceed by defining the

Hamiltonian

Ht(yt, yt+1, µt+1) =
1

2
λt(yT

t Qyt + 2yT
t Uwt + wT

t Rwt) + µt+1(Ayt + Bwt − yt+1) (B.6)

where µt is a row vector of costate variables. By standard Lagrange multiplier theory we

minimize

L0(y0, y1, . . . , w0, w1, . . . , µ1, µ2, . . .) =
∞

∑

t=0

Ht (B.7)

with respect to the arguments of L0 (except z0 which is given). Then at the optimum,

L0 = Ω0.

Redefining a new costate vector pt = λ−1µT
t , the first-order conditions lead to

wt = −R−1(λBT pt+1 + UT yt) (B.8)

λAT pt+1 − pt = −(Qyt + Uwt) (B.9)

Substituting (B.8) into (B.2)) we arrive at the following system under control
[

I λBR−1BT

0 λ(AT − UR−1BT )

] [

yt+1

pt+1

]

=

[

A − BR−1UT 0

−(Q − UR−1UT I

] [

yt

pt

]

(B.10)

To complete the solution we require 2n boundary conditions for (B.10). Specifying z0

gives us n−m of these conditions. The remaining condition is the ‘transversality condition’

lim
t→∞

µT
t = lim

t→∞

λtpt = 0 (B.11)
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and the initial condition

p20 = 0 (B.12)

where pT
t =

[

pT
1t pT

2t

]

is partitioned so that p1t is of dimension (n − m) × 1. Equation

(B.3), (B.8), (B.10) together with the 2n boundary conditions constitute the system under

optimal control.

Solving the system under control leads to the following rule

wt = −F

[

I 0

−N21 −N22

] [

zt

p2t

]

(B.13)

[

zt+1

p2t+1

]

=

[

I 0

S21 S22

]

G

[

I 0

−N21 −N22

] [

zt

p2t

]

(B.14)

N =

[

S11 − S12S
−1
22 S21 S12S

−1
22

−S−1
22 S21 S−1

22

]

=

[

N11 N12

N21 N22

]

(B.15)

xt = −
[

N21 N22

]

[

zt

p2t

]

(B.16)

where F = −(R + BT SB)−1(BT SA + UT ), G = A − BF and

S =

[

S11 S12

S21 S22

]

(B.17)

partitioned so that S11 is (n − m) × (n − m) and S22 is m × m is the solution to the

steady-state Ricatti equation

S = Q − UF − F T UT + F T RF + λ(A − BF )T S(A − BF ) (B.18)

The cost-to-go for the optimal policy (OP) at time t is

ΩOP
t = −

1

2
(tr(N11Zt) + tr(N22p2tp

T
2t)) (B.19)

where Zt = ztz
T
t . To achieve optimality the policy-maker sets p20 = 0 at time t = 0. At

time t > 0 there exists a gain from reneging by resetting p2t = 0. It can be shown that

N22 < 0, so the incentive to renege exists at all points along the trajectory of the optimal

policy. This is the time-inconsistency problem.

B.2 Optimized Simple Rules

We now consider simple sub-optimal rules of the form

wt = Dyt = D

[

zt

xt

]

(B.20)
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where D is constrained to be sparse in some specified way. Rule (B.20) can be quite

general. By augmenting the state vector in an appropriate way it can represent a PID

(proportional-integral-derivative)controller (though the paper is restricted to a simple pro-

portional controller only).

First consider the design of cooperative simple rules. Substituting (B.20) into (B.5)

gives

Ωt =
1

2

∞
∑

i=0

λty
T
t+iPt+iyt+i (B.21)

where P = Q + UD + DT UT + DT RD. The system under control (B.1), with wt given by

(B.20), has a rational expectations solution with xt = −Nzt where N = N(D). Hence

yT
t Pyt = zT

t Tzt (B.22)

where T = P11 − NT P21 − P12N + NT P22N , P is partitioned as for S in (B.17) onwards

and

zt+1 = (G11 − G12N)zt (B.23)

where G = A + BD is partitioned as for P . Solving (B.23) we have

zt = (G11 − G12N)tz0 (B.24)

Hence from (B.25), (B.22) and (B.24) we may write at time t

ΩSIM
t =

1

2
zT
t V zt =

1

2
tr(V Zt) (B.25)

where Zt = ztz
T
t and V satisfies the Lyapunov equation

V = T + HT V H (B.26)

where H = G11 − G12N . At time t = 0 the optimized simple rule is then found by

minimizing Ω0 given by (B.25) with respect to the non-zero elements of D given z0 using

a standard numerical technique. An important feature of the result is that unlike the

previous solution the optimal value of D is not independent of z0. That is to say

D = D(z0)

For the non-cooperative case, in a closed-loop Nash equilibrium we assume each poli-

cymaker chooses rules wt = Dyt and w∗

t = D∗yt independently taking the rule of the other

bloc as given. The equilibrium is then computed by iterating between the two countries

until the solutions converge.
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B.3 The Stochastic Case

Consider the stochastic generalization of (B.1)

[

zt+1

xe
t+1,t

]

= A

[

zt

xt

]

+ Bwt +

[

ut

0

]

(B.27)

where ut is an n × 1 vector of white noise disturbances independently distributed with

cov(ut) = Σ. Then, it can be shown that certainty equivalence applies to all the policy

rules apart from the simple rules (see Currie and Levine (1993)). The expected loss at

time t is as before with quadratic terms of the form zT
t Xzt = tr(Xzt, Z

T
t ) replaced with

Et

(

tr

[

X

(

ztz
T
t +

∞
∑

i=1

λtut+iu
T
t+i

)])

= tr

[

X

(

zT
t zt +

λ

1 − λ
Σ

)]

(B.28)

where Et is the expectations operator with expectations formed at time t.

Thus for the optimal policy with commitment (B.19) becomes in the stochastic case

ΩOP
t = −

1

2
tr

(

N11

(

Zt +
λ

1 − λ
Σ

)

+ N22p2tp
T
2t

)

(B.29)

For the simple rule, generalizing (B.25)

ΩSIM
t = −

1

2
tr

(

V

(

Zt +
λ

1 − λ
Σ

))

(B.30)

The optimized cooperative simple rule is found at time t = 0 by minimizing ΩSIM
0

given by (B.30). Now we find that

D∗ = D∗

(

z0 +
λ

1 − λ
Σ

)

(B.31)

or, in other words, the optimized rule depends both on the initial displacement z0 and on

the covariance matrix of disturbances Σ. The non-cooperative rule for the stochastic case

follows as before.
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