
Robust Forecasting by Regularization

Preliminary and Incomplete

Dobrislav Dobreva, Ernst Schaumburgb,∗

aDobrislav Dobrev: Federal Reserve Board of Governors, dobrislav.p.dobrev@frb.gov
bErnst Schaumburg: Federal Reserve Bank of New York, ernst.schaumburg@gmail.com

Abstract

The prediction of multivariate outcomes in a linear regression setting with a large number of potential

regressors is a common problem in macroeconomic and financial forecasting. We exploit that the fre-

quently encountered problem of nearly collinear regressors can be addressed using standard shrinkage

type estimation. Moreover, independently of near collinearity issues, when the outcomes are correlated

random variables, univariate forecasting is often sub-optimal and can be improved upon by shrinkage

based on a canonical correlation analysis. In this paper, we consider a family of models for multivariate

prediction that employ both types of shrinkage to identify a parsimonious set of common forecasting

factors. The approach is designed to jointly forecast a vector of variables of interest based on a near

collinear set of predictors. We illustrate its promising performance in applications to several standard

forecasting problems in macroeconomics and finance relative to existing approaches. In particular, we

show that a single factor model can almost double the predictability of one-month bond excess returns

across a wide maturity range by using a set of predictors combining yield slopes and the maturity related

cycles of Cieslak and Povala (2011).
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1. Introduction

Let Y be a m dimensional vector of variables of interest that the econometrician wishes to

predict using a vector, X, consisting of a large but finite number n random variables. In the

time series context, Y = Yt+h and X = Xt, and X possibly contains lagged elements of Y itself.1

The goal is to identify the best linear predictor in the mean squared error sense based on the

multivariate regression:

Y = XΘ + e , Θ ∈ Rn×m (1)

∗We are grateful for comments from Christopher Sims and participants at the IF workshop at the Federal
Reserve Board of Governors.
The views expressed herein are those of the authors and should not be interpreted as reflecting the views of the
Federal Reserve Board of Governors, the Federal Reserve Bank of New York or the Federal Reserve System.

1Without loss of generality, we shall assume throughout that X,Y are zero mean.
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where Y,X are the (T ×m) and (T × n) matrices of stacked observations of outcomes, Y , and

predictors, X, and e is a T ×m matrix of residual terms.

Prediction of multivariate outcomes based on a multivariate regression (1) with a large

number of non-orthogonal regressors is commonplace in macroeconomics and finance. Stock

and Watson (2011), for instance, consider forecasting m = 35 macro aggregates and m = 108

disaggregate series using the latter as n = 108 predictors for T = 195 quarters of observations.

Cieslak and Povala (2011) extend Cochrane and Piazzesi (2005) to forecast up to m = 20 bond

excess returns using up to n = 20 predictors derived from lagged yields and inflation for T = 468

monthly observations. We shall study these two examples in greater detail below. In many such

forecasting applications, alternatives to ordinary least squares (OLS) are preferable due to the

common occurrence of one or more of the following three features of the problem:

First, when the number of predictors, n, is larger than the number of observations, T , OLS

is infeasible. Even when n < T but n is large, the sheer number of potential right hand side

predictors leads to an in-sample over-fitting problem. One way to address this problem, as we

shall in this paper, is to postulate that X contains a smaller number k � n components, Z that

predict Y:

Y = ZB + e , B ∈ Rk×m (2)

In reality, all n dimensions of the data may of course contain useful information for predicting

Y and the justification for focussing on k � n components is therefore that the signal-to-noise

ratio in the relationship between Y and the remaining n−k components is so poor that it would

degrade the forecasting performance of the model to include them. In practice, the dimension k

is therefore a key “bandwidth” parameter to be chosen by the econometrician (and one for which

a strong prior is often not available). When Z consists of k elements or k linear combinations

of X, this is known as the variable selection and factor selection problems respectively. In this

paper we focus strictly on the factor selection problem.

Second, while near collinearity of the predictors necessarily occurs when n ≈ T , it is a

prominent feature of the problem in some financial datasets even when n � T , especially

when series are connected by a (near) arbitrage relationship or (near) accounting identity. The

ill-condition of the design matrix, X, typically results in severe instability of the estimated

relationship between Y and X and a poor out-of-sample forecasting performance. A general

framework for addressing an ill-conditioned system (1) is regularization, which naturally leads

to a shrinkage type estimator that we shall use extensively in this paper.

Finally, when the dimension of Y is m ≥ 2 and the elements of Y are correlated variables,

näıve OLS may be dominated by a shrinkage estimator that exploits the structure of the canoni-

cal covariates of Y andX.2 In other words, forecasting multiple outcomes using a smaller number

2This situation arises when the Y s themselves exhibit a strong (predictable) factor structure, such as the level,
slope and curvature of bond yields.
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of common forecasting factors imposes discipline on the factor extraction problem. When the

design matrix is also ill conditioned, the two types of shrinkage estimation may be combined

to produce a robust forecasting model. A main contribution of this paper is the development

of a family of estimators of Θ that apply standard regularization techniques (to deal with near

collinarity) to reduced rank regression (in order to exploit covariance between outcomes) that

provides the econometrician with a flexible framework for extracting common predictive factor

structures in the data. The resulting forecasting models are called Regularized Reduced Rank

Regression models, or simply RRRR.

We demonstrate that the proposed RRRR estimators perform very well across a range of

applications to both the Stock and Watson (2011) macro data set as well as bond excess returns,

and investigate a number of data driven methods for the choice of regularization threshold based

on random matrix theory. We find that the method of regularization has a non-trivial impact on

forecasting performance. In particular, we find that the commonly used Tihonov regularization

performs noticeably worse in our macro application than the simpler spectral truncation method

which is a natural extension of principal components regression (PCR) to the reduced rank

framework. By contrast, the Tikhonov scheme does markedly better in the finance application.

In all our applications, the RRRR model is among the best performing and most parsimo-

nious out-of-sample predictors. In particular, we find support for the Stock and Watson (2011)

finding of roughly 5 important principal components among the 108 individual predictors they

consider (our estimate varies across subsamples from 3-8 with a median of 5), but that the di-

mension of the most parsimonious predictor set is somewhat less, at 3-5. Thus RRRR provides

a more parsimonious model for jointly forecasting the 35 Macro aggregates in the Stock and

Watson (2011) data set.

In the case of the notoriously hard problem of forecasting 1-month bond excess returns,

we investigate a number of different predictors considered in the literature, including maturity

related inflation cycles (henceforth “cycles”), forward rates, forward slopes, and the current yield

slopes. Across all specifications, the RRRR is consistently among the best performing methods,

while parsimoniously relying on a single common forecasting factor to predict the entire curve of

bond excess returns (1-month excess returns to holding bonds of maturity from 1 to 15 years),

consistent with the presence of a strong factor structure in the cross-section of bond returns. In

particular, we confirm a recent result by Cieslak and Povala (2011) which suggests that a single

or two factor model based on cycles is useful for jointly predicting holding period returns. We are

able to improve somewhat on this result by including individual cycles as predictors and letting

RRRR extract a single predictive factor that captures the relevant information. Remarkably,

the out-of-sample R-squared of the non-overlapping monthly forecasts can be almost doubled by

including current slopes along with cycles, but due to the severe ill-condition, only the RRRR

approach is fully able to take advantage of the extra information.

The remainder of the paper is structured as follows. In Section 2, we briefly review regular-
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ization as a general technique to deal with high dimensional predictor sets and near collinearity.

In Section 3, we discuss how shrinkage estimation arises naturally in the context of a multivari-

ate response Y . We then turn to developing the Regularized Reduced Rank Regression (RRRR)

model in Section 4 and the issue of factor interpretability in Section 5. Data driven techniques

for choosing the degree of regularization are discussed in Section 6 while Section 7 documents

the efficacy of RRRR as a forecasting model in our application to the Stock and Watson (2011)

macro data and bond return forecasting. We find promising performance compared to other

commonly used techniques, although we stress that no one method is uniformly best across

datasets and sample periods. Section 8 concludes.

2. Regularization and Shrinkage Estimation

In classical regression analysis, regularization is a particular method for shrinking the set

of admissible predictors that essentially involves a delicate trade-off between over- and under-

fitting of the data. In this section we introduce filter-factors and two regularization schemes

with long histories in applied work that differ dramatically in their treatment of eigenvalues

of “intermediate” size. The first method, Principal Components Regression (PCR), eliminates

eigenvalues of X that fall below a chosen threshold while the second scheme, Tikhonov regu-

larization, down-weights small eigenvalues depending on their size.3 Since the “optimal” filter

factors depend on the properties of the un-known noise, there is in general no ex-ante preferred

scheme and the performance of each must be evaluated in applications.

Unless otherwise indicated, we shall for notational simplicity assume that T > n and work

with two matrix norms compatible with a mean squared error forecast objective. On the space

of positive semidefinite (PSD) n × n matrices, S, we define ‖S‖ = tr{S}. On the space of real

n×m matrices, A, we shall use the Frobenius norm, ‖A‖ = tr{A′A}1/2. Throughout we use the

notation SXY = X′Y/T for the sample covariance matrix of two generic data matrices X and

Y.

2.1. Related Literature

The RRRR framework involves the choice of two shrinkage parameters: the degree of reg-

ularization, which we denote by ρ, and the predictor dimension k. There is a vast literature

dealing with each of these types of shrinkage both from the frequentist and Bayesian perspective.

In the extensive Bayesian forecasting literature the ill-condition of the system (1) is naturally

dealt with by transforming the problem of determining a point estimate in Rn×m into a well-

posed extension on the larger space of distributions. The precision of the Gaussian prior on the

3Another popular regularization scheme, least absolute shrinkage and selection (LASSO), is not considered here
as it does not allow for a closed form solution but instead involves a difficult numerical optimization problem.
See Mol, Giannone, and Reichlin (2008) for a comprehensive comparative study of ridge and LASSO regression
based forecasts in a univariate setting.
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regression coefficients Θ can be interpreted as a regularization parameter. Of particular relevance

to our setting is Doan, Litterman, and Sims (1984) who consider multivariate Bayesian VAR

forecasting, Koop and Potter (2004) who consider Bayesian forecasting in dynamic factor models

with many regressors, and Geweke (1996), who proposed Bayesian estimation of reduced rank

regressions. Although Geweke (1996) proposes a Bayesian model selection approach to choosing

k there is no mention of the choice of prior variance, ρ, as ill-conditioned design matrices are not

his focus. Moreover, the parametrization of the Bayesian reduced rank regression is not in terms

of an easily interpretable prior that can be understood as a regularization of the corresponding

frequentist model.4

Another rich strand of the Bayesian literature, concerned with model selection procedures,

attempts to pick a subset of predictor variables from the original n predictors of Y . In the

Bayesian framework, one needs the marginal distribution of the data, the prior probabilities of

each of the 2n models and the ability to compute the posterior distribution of the parameters of

interest for each model. In the context of linear regression, each of these components is available

in closed form, as shown in Raftery, Madigan, and Hoeting (1997). The main problem is that the

model space quickly gets too large , even for modest size n, and the estimation of posterior model

probabilities and Bayesian model averaging must be based on a subset of models. The factor

approach implied by reduced rank regression circumvents the curse of dimensionality at the cost

of the potential loss of interpretability of the resulting factors which are linear combinations of

many, typically disparate, regressors. In Section 5 we directly address this concern and suggest

a practical approach for imposing a degree of interpretability on the factor structure.

In the frequentist forecasting literature, Principal Component Regression (PCR) is perhaps

the most frequently used method for dealing with ill-conditioned systems. Similarly to RRRR,

PCR achieves regularization via down-weighting (in fact eliminating) the influence of small

eigenvalues of SXX but differs from RRRR in that it does not incorporate any information

from the cross-moment matrix, SXY , in the factor selection. A prominent example of PCR in

macroeconomic forecasting, is Stock and Watson (1998), who suggest forecasting key variables

like inflation and output using factors extracted from an extensive set of macroeconomic time

series and choosing the number of factors based on out-of-sample forecasting performance.5

Partial Least Squares (PLS), which is based on a singular value decomposition of SXY , has

a long history in chemometrics but has also been applied in economics and is closely related to

the 3PRF model recently proposed by Kelly and Pruitt (2011). However, PLS is not in general

a shrinkage technique (in terms of the eigenvalues of SXX) and it therefore does not per se

address ill-conditioned design matrices. By contrast, the degree of shrinkage involved in RRRR

4To be precise, the reduced rank regression coefficient is Θ = AB where Θ is of rank k < n. Geweke (1996)
considers separate (independent) Gaussian priors on A and B which are hard to interpret as it is the product AB
that has economic meaning.

5This is clearly different from exploiting the information in the SXY matrix because the most important factors
in explaining X may not be the most important forecasting factors.
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is explicitly parametrized and interpretable in terms of Bayesian precision priors. Moreover, the

RRRR estimators solve an explicit penalized least squares objective function involving the two

explicit shrinkage parameters whereas it is not clear in which sense the 3PRF/PLS type estima-

tors are optimal nor which explicit objective function is being optimized, thereby complicating

its interpretation considerably.

2.2. Regularized Least Squares

The properties of the linear system (1) are completely determined by the singular value

decomposition of the matrix X:

X = UΣV ′ =

n∑
i=1

σiuiv
′
i (3)

where U = (u1, . . . , un) ∈ RT×n, V = (v1, . . . , vn) ∈ Rn×n are orthonormal matrices and Σ =

diag(σ1, . . . , σn) is a diagonal matrix containing the singular values in decreasing order. We

shall often need to decompose X into the contribution from the r largest singular values versus

the contribution from the n− r smallest singular values:

X = UrΣrV
′
r + Un−rΣn−rV

′
n−r (4)

where U = [Ur Un−r], V = [Vr Vn−r], and Σ =

[
Σr 0

0 Σn−r

]
The matrix X, and hence the system (1), is called ill-conditioned if the following two con-

ditions are satisfied: a) The condition number σ1/σn is large, and b) The sequence of singular

values σ1 ≥ · · · ≥ σn ≥ 0 decreases gradually to zero.6 Figure A.1 shows the singular values

for our two empirical applications, illustrating the ill-condition of X in each case, ranging from

the moderate (the Macro application) to the extreme (the Finance application). It is also clear

from the picture, that there is no visible “gap” in the spectrum which is what is explicitly or

implicitly assumed in approximate factor models in order to asymptotically identify the “true”

number of factors (c.f. Chamberlain et al (1987) and Bai and Ng (2002)).

A large condition number is indicative of potential instability in the estimated Φ in the sense

that even a small change in the observed Y in certain directions may lead to a disproportionate

change in the estimated relationship between Y and X. To see this, note that the OLS estimate

is simply

Θ̂OLS =
n∑
i=0

vi
u′iY

σi
= Θ0 +

n∑
i=0

vi
u′ie

σi
(5)

6The case where one or more eigenvalues are literally zero is easily handled by eliminating redundant vari-
ables. However, in many situations, the addition of additional predictors simply increases the number of small
eigenvalues.
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where Θ0 is the true value. Thus a large condition number implies that the OLS estimate,

Θ̂OLS , is disproportionately sensitive to noise components that lie in the space spanned by

the left singular vectors corresponding to the smallest singular values.7 In the context of the

forecasting relationship (1), an ill-conditioned design matrix X therefore in general translates

into a poor out-of-sample performance of the estimated relationship since it usually cannot be

guaranteed that u′ie/σi remains uniformly small (e.g. if errors are Gaussian). In the simple case

of spherical errors, where E[e′e] = κ2Im, it is easy to see that the MSE of the OLS estimator is

E‖Θ̂OLS−Θ0‖2 = κ2 tr{(X′X)−1} = κ2
∑n

i=1 σ
−2
i , thus illustrating the problem of ill-condition.

An effective approach to solving ill-conditioned systems of equations is via regularization of

the equation (5):

Θ̃ =
n∑
i=1

fivi

(
u′iY

σi

)
, ‖Θ̃‖2F =

n∑
i=1

f2
i

(
u′iY

σi

)2

(6)

where the sequence of so called filter factors {fi}ni=1 satisfies that 0 ≤ fi ≤ 1 and decrease

sufficiently fast that fi/σi ≈ 0 for large i. Clearly, in the case of OLS, fi ≡ 1 and the estimator

is un-regularized. Most standard regularization schemes can be expressed via a specific choice

of filter factors and as such can be seen as shrinkage estimators with respect to the rotated

coordinate system determined by the columns of V since ‖Θ̃‖F ≤ ‖Θ̂OLS‖F .

The econometrician wishing to apply regularization techniques is thus faced with the familiar

trade-off between suppressing (possibly spurious) fine features of the data (associated with small

eigenvalues and presumably a high noise-to-signal ratio in finite samples) in return for gaining

robustness. To be precise, let Θ0 denote the true value, Θ̃∞ the limiting value of the shrinkage

estimator as T →∞, and Θ̃ the finite sample shrinkage estimate. In general Θ̃→ Θ̃∞ 6= Θ0 as

T →∞ and we have the bound

E‖Θ0 − Θ̃‖︸ ︷︷ ︸
root mean squared

shrinkage estimation error

≤ ‖(Θ0 − Θ̃∞‖︸ ︷︷ ︸
bias due to regularization

+ E‖(Θ̃∞ − Θ̃‖︸ ︷︷ ︸
dampened volatility
due to regularization

(7)

which will tend to compare favorably to OLS when the design matrix is ill-conditioned. The

first term is the (deterministic) bias induced by the regularization term under the null, which

is increasing in the degree of regularization. The second term is increasing as a function of the

noise dispersion but decreasing in the degree of shrinkage due to the dampening effect of the

regularization term, thus creating a trade-off.8

7If all eigenvalues happen to be small (or very large), it of course merely means that the problem is badly
scaled.

8Note that, in the classical case where n/T → 0, one can let the degree of regularization go to zero at a suitable
rate (to ensure a bias of order op(1/

√
T )), in order to restore asymptotic unbiasedness: Θ̃∞ = Θ0.
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2.2.1. Tikhonov Regularization a.k.a. Ridge Regression

One of the most commonly used regularization techniques is Tikhonov regularization due

to its ease of implementation and interpretation as a penalized least squares estimator. In the

(multivariate) regression context Tikhonov regularization is also known as (multivariate) Ridge

Regression and corresponds to penalizing the norm of the solution9

min
Θ̃
‖Y −XΘ̃‖2 + ρ2‖Θ̃‖2 , Θ̃ ∈ Rn×m, ρ ≥ 0 (8)

Solving the Lagrangian implies that Θ̃ = (X′X + ρ2In)−1X′Y =
∑n

i=1

[
σ2
i

σ2
i+ρ2

]
vi

(
u′iY
σi

)
, cor-

responding to the specific family of filter factors fi = σ2
i /(σ

2
i + ρ2). Clearly a larger ρ implies

greater down weighting of small singular values and leads to a smaller norm of Θ̃ at the cost of

a greater residual norm. In general, the bias-variance trade-off (7) in the Tikonov case is

Θ̃−Θ0 = −
[
In − (SXX + ρ2In)−1SXX

]︸ ︷︷ ︸
bias

Θ0 + (SXX + ρ2In)−1SXe︸ ︷︷ ︸
dampened error

where the last term is bounded in squared norm by
∑

(σ2
i + ρ2)−2‖SXe‖2, whereas a (tight)

upper bound on the (squared) norm of the OLS error is much larger at
∑
σ−4
i ‖SXe‖2.

From the penalty term in (8) it is also immediately clear that scaling and rotation of the

problem is not innocuous, e.g. dividing a regressor by 10 will generally result in a different

solution. Care must therefore be taken in appropriate selection and scaling of regressors.

2.2.2. Spectral Truncation Regularization a.k.a. Principal Component Regression (PCR)

For a given regularization threshold ρ, such that σr ≥ ρ ≥ σr+1, PCR methods simply set

f1 = · · · = fr ≡ 1 and fr+1 = · · · = fn ≡ 0 so than any components of Y orthogonal to the last

n− r left singular vectors of X is ignored with the tacit assumption that these components are

“noisy”.10 This type of regularization can be motivated under the null that X is driven by an

r-dimensional factor structure:

X = FΛ + E.

Let the singular value decomposition of X be given by (3)-(4), then the r principal factors are

given by F = XVrΣ
−1
r and it is assumed that only the factors (and not E) have forecasting

9The Tikhonov formulation is usually slightly more general:

min
Θ
‖Y −XΘ‖2 + ρ2‖R′ vec(Θ)‖2 , R ∈ Rp×nm,Θ ∈ Rn×m

but only R = Im ⊗ In is usually considered in statistics. In the case of Bayesian linear regression with a i.i.d.
Gaussian prior, ρ = σnoise

σprior
, is the ratio of standard deviation of the noise to the standard deviation of the prior.

10Regularization methods like PCR, that restrict attention to components of Y that lie in a subspace of X are
also known as “sub-space” methods in the numerical analysis literature. In engineering and physics, where the
system (1) frequently arises as a (deterministic) discretization of integral equations, the PCR approach has a long
history and is commonly known as Truncated Singular Value (TSVD) or Spectral Cutoff regularization.
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power for Y.

The regularized (via spectral truncation) estimator is obtained by replacing S−1
XX by its

generalized inverse S†XX = VrΣ
−2
r V ′r in the expression for the OLS estimator:

Θ̃ = S†XXSXY = VrΣ
−1
r (SUrY ) (9)

while the PCR estimator is

Θ̃PCR = S−1
FFSFY = SUrY (10)

and we thus have: FΘ̃PCR = X(VrΣ
−1
r )SUrY = XΘ̃, so that the two methods coincide.

The Stock and Watson (1998) DFM5 estimator is an example of PCR (with r = 5) which

we shall consider as our benchmark in our empirical study below.

In general, the bias-variance trade-off (7) in the spectral truncation case is

Θ̃−Θ0 = −

V diag(

r︷ ︸︸ ︷
0, . . . , 0,

n−r︷ ︸︸ ︷
1, . . . , 1)V ′


︸ ︷︷ ︸

bias

Θ0 + V diag(σ−2
1 , . . . , σ−2

r , 0, . . . , 0)V ′ SXe︸ ︷︷ ︸
dampened error

where the last term is bounded in squared norm by
∑

i=1,...,r σ
−4
i ‖SXe‖2, whereas a (tight) upper

bound on the (squared) norm of the OLS error is
∑

i=1,...,n σ
−4
i ‖SXe‖2.

Finally we note that in all PCR techniques, a judiciously chosen pre-scaling of the components

of X is clearly crucial as it will affect both singular values and vectors.

3. Reduced Rank Regression and Shrinkage Estimation

Shrinkage estimation arises as a natural procedure in situations where one wishes to jointly

predict multiple outcomes, as famously pointed out by Stein (1956) in the multivariate Gaussian

context. While the Stein result does not rely on any correlation between the Y components,

further improvement may be possible when outcomes are correlated. This will be the case if the

Y s a driven by a common low dimensional factor structure, e.g. if each component is a noisy

measurement of a single variable y∗.

To see this, we momentarily abstract from the issue of ill-conditioned X and focus on the

information about the relationship between Y and X contained in the SXY matrix. Similarly

to the regularization analysis, the goal will be to select “strong” signals and dampen “weak”

or “noisy” signals conveyed through this matrix. The main tool of this type of analysis is the

classic canonical correlation analysis (CCA) of Anderson (1951) in which linear combinations

of X and Y are identified that are maximally correlated.11 The canonical correlations analysis

11Anderson (1951) in turn builds on the seminal works on canonical correlations by Hotelling (1933).
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identifies transformations τX = [τ
(1)
X , . . . , τ

(m)
X ] ∈ Rn×m, τY = [τ

(1)
Y , . . . , τ

(m)
Y ] ∈ Rm×m such that

τ ′XSXXτX = Im τ ′Y SY Y τY = Im, τ ′XSXY τY = diag(κ1, . . . , κm) (11)

where κ1 ≥ κ2 ≥ · · · ≥ κm are the m ordered canonical correlations.12 Thus τ
(1)′

X X represents

the component of X that best predicts Y and the component of Y that it predicts is given

by τ
(1)′

Y Y . The second column, τ
(2)
X represents the component of X, orthogonal to the first,

that has the second most explanatory power for Y , and so on, where the explanatory power of

each component is given by the respective canonical correlations, κj . The canonical correlations

analysis thus combines the information contained in both SXX and SXY to extract the optimal

predictors of Y . In applications, small canonical correlations indicate that certain dimensions

of X are only weakly related to Y and including them in the point estimate of Θ may entail an

unattractive bias-variance trade-off. To see this, define X̃ = XτX and Ỹ = YτY then

Ỹ = X̃ [diag(κ1, . . . , κm)] + Ẽ (12)

where the standard OLS estimate in (1) can be retrieved as Θ = τX [diag(κ1, . . . , κm)]τ−1
Y . Note

that the canonical correlations are invariant to rotation and scaling of the original X and Y

(as opposed to regular correlation analysis), but we stress that CCA does not in and by itself

address ill-condition of the X (or Y) data.

This leads to the natural idea of zeroing out the (m − k) canonical correlations that fall

below a certain threshold and replacing the OLS estimator by the shrinkage estimator Θ̃ =

τX [diag(κ1, . . . , κk, 0, . . . , 0)]τ−1
Y . This estimator clearly has smaller norm than the OLS estima-

tor and k controls the degree of shrinkage.13

Zeroing out of the m− k smallest canonical correlations is the key idea behind the reduced

rank regression (RRR) of Izenman (1975) who considers a multivariate regression with a large

number of non-orthogonal regressors and the problem of replacing X by a lower dimensional set

of orthogonal predictors in a way that minimizes the increase in the in-sample (weighted) mean

squared fitting error. To this end, define the “factors” Z = A′X, where A is a n×k matrix with

k � n and identifying restrictions A′SXXA = Ik×k and consider the (weighted) least squares

problem

min
{A,B}

‖(Y −XAB)W 1/2‖2 , A ∈ Rn×k, B ∈ Rk×m (13)

In (13), the parameters A,B are chosen jointly to minimize the fitting error of Y and the

parameter k controls the degree of “shrinkage” relative to the OLS estimator. For k ≥ m there

12For simplicity we assume that n > m in what follows.
13To see this, note that (11) implies that Θ̃ = [τXdiag(1, . . . , 1︸ ︷︷ ︸

k

, 0, . . . , 0︸ ︷︷ ︸
m−k

)τ ′X SXX ] ΘOLS , and the matrix in square

brackets is clearly a projection onto a k dimensional sub-space.
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is no shrinkage since AB is full rank and the model is simply OLS. For k < m, on the other

hand, the reduced rank condition imposes discipline on the choice of factors by forcing a few

factors to simultaneously fit multiple components of Y .

In practice, (13) is solved separately for A and B in two steps,

min
{A}

‖Var
[
W 1/2Y |A′X

]
‖2 (14)

min
{B}

‖(Y − (XA)B)W 1/2‖2 (15)

in a fashion similar to PCR, except that in PCR the A parameter in the first step solves

min
{A}

‖Var
[
X|A′X

]
‖2 (16)

without taking into account to the outcomes, Y , of ultimate interest.

For a given choice of weighting matrix W ∈ Rm×m (e.g. W = S−1
Y Y ) in (14), it is well known

that the optimal A is found by solving the generalized eigenvalue problem14

|SXYWSY X − λSXX | = 0 (17)

and setting A equal to the k eigenvectors belonging to the largest eigenvalues. The expression

(17) is also known as a matrix pencil and it is well-known that when the matrix SXX in (17) is

singular or ill-conditioned, the solution to the generalized eigenvalue problem becomes unstable

(c.f. Gantmacher (1960)). Thus reduced rank regression, while a proper shrinkage estimator

in the sense of exploiting the correlation structure of the outcomes, remains susceptible to

instability when regressors are nearly collinear. This serves as our motivation to introduce

regularization into the reduced rank regression framework. Combining the two forms of shrinkage

delivers the RRRR models that are the focus of this paper.

4. Regularized Reduced Rank Regression (RRRR) Models

Combining the two types of shrinkage estimation described in the preceding sections produces

a forecasting model which is robust to near collinearity and at the same time exploits the

correlation structure between the Y variables. In this section, we focus on the regularization of

reduced rank estimators for a fixed choice of k and defer the discussion of shrinkage parameter

selection until Section 6 below.

14Setting A equal to the first k columns of τX and exploiting the relations (12) we see that the objective (13)
becomes

arg min
A
‖(Ỹ − X̃C̃)τ−1

Y W 1/2‖2F , where C̃ = diag(κ1, . . . , κk, 0, . . . , 0)

which is equivalent to running the least squares regression (13) when the choice of weighting matrix is W = S−1
Y Y .
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4.1. Tikhonov Regularization of Reduced Rank Regression

In the context of the reduced rank regression (13), Tikhonov regularization involves modi-

fying the objective function to include a term that penalizes “large” values of ‖AB‖:

min
{A,B}

‖(Y −XAB)W
1
2 ‖2 + ρ2‖R(AB)W

1
2 ‖2, s.t. A′SXXA = Ik (18)

where R in general is a q × n matrix which may be chosen to differentially penalize certain

directions in the parameter space.15 In the special case when R = In,W = Im and k = m, (18)

specializes to

min
{A,B}

‖(Y −XΘ)‖2 + ρ2‖Θ‖2 (19)

This is known as a (multivariate) Ridge Regression in the statistics literature (and denoted RR

in our applications) in which the squared norm of the implied OLS coefficients are penalized.

However, we stress that in many cases of interest in macroeconomics and finance, k � m and

that the technique is much more general than that. The following Proposition thus generalizes

Ridge Regression to the reduced rank context:

Proposition 1 (Regularized Reduced Rank Regression). Let W ∈ Rm×m be a symmetric pos-

itive semi definite weighting matrix, then the solution to the weighted regularized reduced rank

regression (18) for a given choice of k, is given by A? = {c1; · · · ; ck} where c1, . . . , ck are the k

eigenvectors corresponding to the k largest eigenvalues, λ1, . . . , λk of the generalized eigenvalue

problem

|SXYWSY X − λ(SXX + ρ2R′R)| = 0 (20)

Note that the weighting matrix is applied to the regularization term in (18) as well since it

is natural to scale the regularization term for the mth equation proportionally to the scaling of

the in-sample fitting errors of the mth equation. This choice also has the benefit of preserving

the structure of the problem.16

4.2. Spectral Truncation Regularization of Reduced Rank Regression

Spectral truncation of the Reduced Rank Regression can be seen as a natural extension of the

PCR idea to the reduced rank context which takes into account the correlation structure in the

SXY . In a multivariate PCR framework, the parameter r (the considered number of principal

15More generally, the penalty term would be of the form ‖R̃ vec(AB)‖ but to maintain the simple structure of
the problem, we restrict attention to terms of the form R̃ = (W 1/2 ⊗R).

16Finally, we note that the issue of missing values (while not discussed explicitly in this paper), in practice
should be handled effectively using an EM type algorithm to iterate on the generalized eigenvalue problem in a
manner similar to Stock and Watson (2011) or the methods described in Troyanskaya et al (2001).
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components of X), plays the double role of both regularizing SXX as well as being the number

of common factors. In general, not all r factors that are important for explaining the cross-

sectional variation in X need be important for forecasting Y.17 In this case, the econometrician

would want to investigate whether a subset of k ≤ r factors suffice for predicting Y while still

using the spectral cutoff r to regularize SXX .

One way to think about extending PCR to the reduced rank context is in terms of a two

step procedure: In the first step, r principal factors, F, are extracted from the n regressors,

X. Second, a reduced rank regression of Y on F is run to extract k ≤ r forecasting factors. It

turns out that this formulation has an elegant implementation in terms of a penalized one-step

estimator of the form (20) as stated in the following Proposition:

Proposition 2 (Regularized Reduced Rank Regression via Spectral Truncation).

Let the singular value decomposition of X be given by (3)-(4) and let F = XVrΣ
−1
r be the r

principal factors of X. For k ≤ r, if a ∈ Rr×k is the matrix of the k principal eigenvectors of

0 = |SFYWS′FY − λSFF | (21)

then A = VrΣ
−1
r a ∈ Rn×k spans the eigen space of the k principal eigenvalues of

0 = |S†XXSXYWS′XY − λIn| (22)

where S†XX = VrΣ
−2
r V ′r is the regularized (via spectral truncation) inverse of SXX . Moreover,

(22) can be understood as a penalized estimator of the form (20) with R = V ′n−r and ρ→∞.

The theorem shows that the ad-hoc two-step approach can be motivated in terms of a limiting

case of a penalized estimator which puts infinite penalty on directions in the parameter space

spanned by the right singular vectors belonging to the n − r smallest singular values, Vn−r.

Thus the formulation (18) is general enough to encompass spectral truncation as an important

limiting special case. The limiting nature of this argument makes the Bayesian interpretation of

the spectral cut-off (and other sub-space methods) somewhat more delicate relative to the more

smooth Tikhonov prior.

More generally, we note that any set of filter factors can be captured by the formulation

(18) since, by setting R = V diag(ρ1, . . . , ρn)V ′ in equation (20), we have the one-to-one corre-

spondance fi = σ2
i /(σ

2
i + ρ2

i ) and the interpretation of each ρi is as the penalty applied to the

parameter sub-space spanned by the ith right singular vector of X.

17As a simple example, consider the case where X consists of lagged Y and some factors are serially uncorrelated
and therefore not useful as predictors.
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5. Factor Interpretability and Zero Restrictions

An important criticism of many factor based forecasting models in applied work is the lack

of interpretability of the extracted statistical factors. In this section, we show how to partially

alleviate this shortcoming by imposing zero restrictions on the columns of the reduced rank

coefficient matrix A = [A1, . . . , Ak]. Specifically, suppose that one wishes to impose the sequence

of constraints:

P ′1A1 = 0, P ′2A2 = 0, . . . , P ′kAk = 0 (23)

where each Pi is some n× fi matrix. For instance, Pi might contain only ones and zeros corre-

sponding to selecting which variables should be excluded from the ith factor. It is straightforward

to directly impose these orthogonality constraints on the generalized eigenvalue problem in an

iterative fashion using the following Corollary.

Corollary 1 (Constrained Regularized Reduced Rank Regression). Consider the penalized re-

duced rank regression problem (18) subject to the constraint P ′A = 0 for some P ∈ Rf×n.

Let P⊥ ∈ Rn×(n−f) be a basis for the orthogonal complement of P , then the objective of the

regularized reduced rank regression subject to the orthogonality constraint is:18

min
{a,B}

‖(Y −XP⊥aB)‖2 + ρ2‖RP⊥aB‖2 , s.t. a′P⊥′SXXP
⊥a = Ik (24)

where a ∈ R(n−f)×k and the optimal factors are given by A = P⊥a. For a given choice of k, the

optimal solution is obtained by setting a? equal to the eigenvectors corresponding to the k largest

eigenvalues of the n− f dimensional generalized eigenvalue problem

|P⊥′SXY S′XY P⊥ − λP⊥′(SXX + ρ2R′R)P⊥| = 0 (25)

When k = 1, the Corollary applies directly to finding the principal factor, A1 subject to the

f1 linear constraints P ′1A1 = 0. More generally, when k > 1, the constraint (23) is imposed iter-

atively: Assume that the first j < k factors have been found, and that the (j+1)st factor should

satisfy P ′j+1Aj+1 = 0 and be orthogonal to the subset the preceding factors {Ai1 , . . . , Aip}. This

factor can then be found by applying Corollary 1 by setting P = [SXXAi1︸ ︷︷ ︸
n×1

, . . . , SXXAip︸ ︷︷ ︸
n×1

, Pj+1︸︷︷︸
n×fj+1

],

for a total of p+fj+1 constraints. This choice ensures orthogonality with the specified preceding

p factors and that P ′j+1Aj+1 = 0.19

Example 1. Consider a setting with N regressors, each of which can be classified as belonging

18E.g. if P = UDV ′ is the singular value decomposition, then P⊥ can be taken as the last n− f columns of U .
19General constraints of the form P ′ vec(A) which impose constraints across eigenvectors do not preserve the

structure of the problem. We therefore restrict attention to the block diagonal case, P = diag(P1, . . . , Pk).
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to one or more of 4 groups, denoted by {G1, G2, G3, G4}. The goal is to find the principal factor

consisting of only variables from a single group.

Variable Memberships

1 G1, G2

2 G2, G3, G4

3 G1, G4

4 G3, G4

5 G1, G3, G4

...
...

N G3

⇒ To select “G1”-factor, set P ′ = P ′{G⊥1 }
=


0 1 0 0 0 · · · 0

0 0 0 1 0 · · · 0
...

...

0 0 0 0 0 · · · 1



Here the matrix P{G⊥1 }
is a n × g1 matrix, where g1 is the number of variables that are not

members of group G1. The gi × n matrices P{G⊥i }
, i = 2, . . . , 4 can be similarly defined.

Solving (25), once for each of the four choices of P ∈ {P{G⊥1 }, . . . , P{G⊥4 }} yields four candidate

factors and the principal factor is identified as the one associated with the largest eigenvalue.

Subsequent factors can then be extracted iteratively as described in the discussion following

Corollary 1 with orthogonality between factors imposed only within groups.20

Example 2. It is common in many situations for the econometrician to have pre-selected a small

number, f , of fixed (zero mean) regressors, F ∈ Rf , that he wishes to augment with a small

number of k predictors, Z = A′X, subject to the orthogonality condition A′SXF = 0k×f . The

fixed regressors, F , may of course consist in whole or part of variables from X or lagged values

of Y that the econometrician is confident belong in the forecasting equations. This is analogous

to the factor augmented regression proposed by Stock and Watson (2002) for macroeconomic

forecasting exploiting the information contained in a large number of variables.

Y = FΘ + X(AB) + ẽ , Θ ∈ Rm×f , B ∈ Rk×m (26)

The reduced rank regression with exogenous regressors is in practice most often implemented by

a two-step approach in which (Y,X) are first orthogonalized on the exogenous regressors, F , and

the robust reduced rank procedure above applied to the residuals. Note that the regularization

of X will not affect the slopes on the fixed regressors by virtue of the orthogonality requirement.

It is clear that setting P = SXF in Corollary 1 yields a solution to the fixed regressor case.

6. Data Driven Procedures for Determining the Degree of Regularization via Sub-

Space Methods

For a given choice of model complexity, k < m, the regularized reduced rank regression

introduced in Section 4 requires a choice of the regularization parameter ρ (or r for sub-space

20In many cases of interest, imposing orthogonality between factors belonging to separate groups would make
little sense. E.g. if group 1 was labeled “Real activity” and Group 2 “Interest rates”, one would fully expect the
principal factors from each group to be (imperfectly) correlated.
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methods). As alluded to earlier, the key challenge in determining a regularization parameter is

the generally unknown properties of the noise that make it difficult to determine the optimal

trade-off in (7). Loosely speaking, the goal is to reduce the influence of “small” singular values

that are prone to be “noisy” without losing potentially valuable information contained in the

regressors.

In this paper, we consider an approach to the choice of regularization threshold based on the

classic theory of the spectrum of large random matrices with i.i.d. entries, which is particularly

well suited for studying the spectral truncation approach. Another commonly used (ad-hoc)

technique often used by practitioners is based on the cross-validation idea. However, in our

setting the implementation of cross validation for selection of ρ (and possibly k) is complicated

by both serial dependence in the data and a relatively modest sample side in relation to the

number of parameters.21 Finally, numerous Bayesian approaches to the choice of shrinkage

parameters exist and are currently being explored in a separate paper.

6.1. Regularization based on random matrix theory

We focus here on methods based on random matrix theory which are appropriate when the

regressors, X, can be described by a “signal+noise” model. The ideas presented here are along

the lines of e.g. Patterson, Price, and Reich (2006) and Onatski (2010) among others, but

specialized to our regularization context. To be specific, assume a factor structure in X that is

helpful for forecasting Y:

Assumption 1 (Static Factor Structure). Let Y be the T ×m matrix of outcomes, and X the

T ×n matrix of regressors. Assume further that X contains r � n unobserved common factors,

F, satisfying the identifying restriction E[(F′F)] = Ir and that k ≤ r linear combinations of

these, Z = FÃ, contain information about Y while the residual, E, is uninformative:

X = FΛ + E , Λ ∈ Rr×n (27)

Y = FÃB + e , Ã ∈ Rr×k, B ∈ Rk×n (28)

where F, E, e are mutually independent and ÃB is an r ×m matrix of reduced rank k ≤ r.

In this setting, the factors, F, extracted from (27) play the role of the regressors in a standard

reduced rank regression (28). However, whereas the reduced rank model (??) is ill-conditioned,

the two-step procedure (27)-(28) yields a numerically well-behaved lower dimensional system

that is equivalent to the (one-step) RRRR estimator with spectral truncation given in Corollary

2.

The covariance structure of the factor model (27) is given by

SXX = Λ′Λ + Ωn (29)

21See e.g. Burman, Chow, and Nolan (1994) and Racine (2000) for a discussion of this issue in the context of
h-block and hv-block cross-validation.
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where Ωn = 1
T E′E. In the classical factor model setting, where n is fixed while T → ∞, the

estimated eigenvalues of SXX will tend to their population values (and satisfy a standard
√
T

CLT) so that the identification of factors versus noise components becomes trivial in the limit for

a given parametric assumption about the noise. However, in large panels, when both n, T →∞,

the task of identifying “significant” eigenvalues is much more difficult since in this case the

spectrum can typically not be consistently estimated and there will often be a lack of a clear

“gap” in the empirically observed spectrum, as observed in some of the empirical applications

studied in Section 7 below (c.f. Figure A.1).

The large n, T asymptotics we shall work with requires more structure than simply that

min(n, T ) → ∞, as in Bai and Ng (2002), and involves keeping the ratio n/T fixed (at least in

the limit). In applications, this distinction is of course unimportant. The ratio n/T turns out to

play an important role in controlling the distribution of the spectrum of the covariance matrix

of the observed data. Our maintained assumption throughout will be:

Assumption 2 (Large n, T limit). n, T →∞ with n/T → γ ∈ (0; 1).22

The high level regularity assumptions we shall need for the identification of factors in (27) are

quite strong, but necessary to pin down the behavior of the spectrum of the covariance matrix

SXX . Loosely speaking, the assumptions ensure that the noise is “orthogonal” to the signal

and that the signal (as conveyed through the smallest eigenvalue of Λ′Λ matrix) is sufficiently

strong compared to the noise (as conveyed through the largest eigenvalue of Ω). In general,

weaker assumptions about the signal will necessitate stronger assumptions about the noise and

vice versa.

In order to discuss convergence of a sequence of real symmetric random matrices that live on

spaces of increasing dimension, we recall the Spectral Representation Theorem for self-adjoint

operators, which states that the behavior of such operators (up to a rotation) is completely

described by their spectral density. For the n × n real symmetric random matrix Ωn with

eigenvalues ω1 ≥ ω2 ≥ · · · ≥ ωn, the empirical spectral density (ESD) is defined as the measure

on the real line with density (where δ(·) is the Dirac delta)

µΩn(x) =
1

n

n∑
i=1

δ(x− ωi) (30)

Clearly, µΩn is a random probability measure and we shall say that the sequence of random

matrices {Ωn} converges almost surely if the sequence of random measures µΩn converges weakly

almost surely.

Assumption 3 (Simple Noise Structure). The matrix E = {ẽij} ∈ RT×n consists of i.i.d. mean

zero, variance 1 entries with E|eij |4 <∞.

22Since the eigenvalues of X′X and XX′ are the same up to max(n, T )−min(n, T ) zero eigenvalues, the γ > 1
case is a trivial extension in which the spectrum has a point mass of 1− 1/γ is placed at zero.
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The i.i.d. assumption is of course very strong but note that we only require finite fourth

rather than eighth moments as is common in the approximate factor model literature (c.f. e.g.

Bai and Ng (2002)). As we shall see in Section 6.1.2 below, the assumption appears to lead to

a reasonable description of the behavior of the data.

The following classic theorem provides the limiting behavior of the noise as a function of

γ = n/T :

Theorem 1 (Marcenko and Pastur (1967)). Under Assumptions 2 and 3, the limiting distri-

bution of the spectrum of Ωn = 1
T E′E is given by the measure µΩ with support on the interval

[(1−√γ)2; (1 +
√
γ)2] and density:

dµΩ(x) =

√
(x− b−)(b+ − x)

2πγx
dx , where b± = (1±√γ)2 (31)

Theorem 1 tells us that, although the population eigenvalues of Ω are all equal to 1, the

empirical spectrum will asymptotically be distributed over the interval [(1 − √γ)2; (1 +
√
γ)2]

and the largest eigenvalue of Ω satisfies ω1
p→ (1 +

√
γ)2 > 1 as n, T → ∞. Even this simple

setting therefore tells us that our ability to identify “large” eigenvalues indicating a potential

factor structure in the data, depends on γ: A“true” outlying eigenvalue associated with a weak

signal may be absorbed in the bulk of the spectrum (which in the worst case scenario spans the

interval [0; 4] when n = T ).

A simple condition which ensures the correct identification (asymptotically) of the correct

number of factors is that additional regressors add substantial new information about the factors

in the sense that the eigenvalues of Λ′Λ diverge as n→∞.

Assumption 4 (Strong Factor Signal). Let the r non-zero eigenvalues of Λ′Λ be given by

λ1 ≥ · · · ≥ λr, where limn→∞ λr = +∞.

Under the additional assumptions above, Weyl’s inequality (c.f. Lemma 1) guarantees that

exactly r eigenvalues of SXX will diverge in the large n, T limit and therefore the dimension of

the factor structure is identified:

Proposition 3 (Spectral Rank Identification). Under the assumptions of Theorem 1 and if

additionally Assumption 4 is satisfied, then exactly r eigenvalues of SXX diverge as n, T → ∞
and, for i ≥ r, p limn,T→∞ σi ≤ (1 +

√
γ)2.

6.1.1. Application of Random Matrix Theory to Regularization

Under the assumption that a factor structure holds in the data, e.g. Assumption 1, the

theory presented in the preceding section suggests that the spectral truncation parameter should

be chosen to retain only eigenvalues which cannot be attributed to the presence of noise. In

particular, under the assumption of i.i.d noise, any eigenvalue above (1+
√
γ)2 should be retained

in the limit.
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The largest eigenvalue of the noise covariance matrix, Ωn converges to (1+
√
γ)2, but how fast

is the convergence and what is the asymptotic distribution of the largest eigenvalue? Theorem

2, due to Johnstone (2001), shows that the suitably normalized largest eigenvalue has a limiting

Tracy-Widom distribution, denoted TW1, and shown in Figure A.4:

Theorem 2 (Johnstone (2001)). Under Assumptions 2 and 3, the largest eigenvalue, ω1, of the

noise covariance matrix, Ωn, satisfies the CLT

ω1 − µn,T
σn,T

D−→ TW1 (32)

where TW1 is the Tracy-Widom distribution corresponding to the first β-ensemble (c.f. Figure

A.4):

µn,T =
(
√
n+
√
T − 1)2

T
≈ (1 +

√
γ)2 (33)

σn,t =
(
√
n+
√
T − 1)

T

[
1√
T − 1

+
1√
n

]1/3

≈ T−2/3(1 +
√
γ)4/3γ−1/6 (34)

Based on the Theorem, we see that the convergence of the maximum eigenvalue of SXX

under the null of no factor structure is quite rapid, and a cutoff value for the spectral truncation

can be chosen based on a suitable percentile of the limiting distribution. In the empirical section

below, we denote this data driven version of spectral truncation regularization by “SMP”.

In finite samples, there may be significant uncertainty around this signal-noise cut-off and

the Tikhonov scheme provides a way of down-weighting eigenvalues below the cut-off while

maintaining a large weight on eigenvalues above the cut-off. To be specific, we chose ρ such that

an eigenvalue at the chosen Tracy-Widom quantile receives a weight of 1
2 , and denote this data

driven regularization scheme by “TMP” in the empirical applications below.

6.1.2. Empirical Spectra

In section 7 below we consider forecasting based on a number of macro economic and yield

curve datasets with different panel sizes. The question we ask here is, how well do these panels

conform to the asymptotic random matrix theory laid out above? In panel (a) of Figure A.5

we show the empirical spectrum of the panel of 108 macro time series considered in Stock

and Watson (2011), corresponding to a panel size of n = 108, T = 195, along with the limiting

distribution of Theorem 1.23 Clearly, the match is quite poor, with the Stock and Watson (2011)

data displaying several large eigenvalues. In particular, there are around 6 eigenvalues that are

clearly separated from the bulk spectrum. The observed deviation from the asymptotic theory

could of course be due to several reasons: A finite sample phenomenon, serial dependence, and

cross sectional dependence. To investigate this further, panel (b) shows the effect of applying

23Note that T = 195 considered here corresponds to the full sample. In our rolling out-of-sample exercises we
have T = 100.
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an AR(12) filter to the X, so that any serial dependence is vastly reduced, while the cross-

sectional dependence is mainly left intact. This apparently has little or no effect on the empirical

spectrum and we therefore can rule out serial dependence as a likely cause. Finally, in panel

(c) we generate 10,000 synthetic panels by independently reshuffling the time indices of each

individual time series, thereby breaking both time series as well as cross-sectional dependence in

the data. Here we see a perfect match with the asymptotic theory and therefore conclude that

the observed deviation in panel (a) was primarily due to cross-sectional dependence (i.e. factor

structure) and not a finite sample phenomenon, nor due to serial dependence in the data.

The yield curve data sets correspond to much smaller panels with n = 15, T = 468 for

which the asymptotic theory might be expected to be less in accordance with the observed finite

sample behavior. Panel (1a)-(2a) of Figures A.6&A.7 show the empirical spectra for the four

bond excess return predictor panels. The deviations from the asymptotic theory are substantial

with at least one large outlier. In panels (1b)-(2b) we show that serial correlation does not

appear to be driving this result. Finally, in panels (1c)-(2c), we see that, reshuffling the time

index of each series independently, almost restores adherence to the asymptotic theory although

minor deviations persist, likely due to the relatively small panel size of only 15 eigenvalues.

7. Empirical Applications

We illustrate the empirical performance of the proposed family of regularized reduced rank

regression (RRRR) models, relative to a number of existing alternative models, when applied

to the following standard forecasting problems in macroeconomics and finance: (i) forecasting

a large set of macroeconomic series as in Stock and Watson (2011); (ii) forecasting a small set

of bond excess return series as in Cochrane and Piazzesi (2005) and Cieslak and Povala (2011).

In each application we explicitly account for model parsimony (Occam’s razor) as given by the

number of forecasting factors used for predicting all m outcomes.

7.1. Model taxonomy

The two types of shrinkage employed in our RRRR modeling approach lead to a natural

model taxonomy in terms of number of forecasting factors and regressor components. Our

taxonomy table A.1 summarizes all models considered in the empirical illustrations.

First, Panel A in Table A.1 depicts models based on a fixed number of regressor components

with the r-th row (r = 1, 2, ..., n) and k-th column (k = 1, 2, ...,min(r,m − 1) and k = m)

corresponding to models with r regressor components and k forecasting factors. In particular,

for k = 1, 2, ...,min(r,m− 1) we denote as RRRRk-PCr our regularized reduced rank regression

model with k forecasting factors and r principal components obtained via the fixed spectral

truncation cutoff r in section 4.2 above. As indicated on the main diagonal of the table, for

k = r this is simply equivalent to principal component regression with r factors, denoted PCR-r,

while the bottom right corner of the table corresponding to r = n and k = m represents OLS.
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Finally, in the last column of the table, for k = m, we consider alternative methods that do not

impose a smaller common set of forecasting factors across the m outcomes. For r = 1, 2, ..., n−1

these comprise partial least squares with r automatic regressor components denoted as PLS-

r, the three-pass regression filter with r automatic regressor components denoted as 3PRF-r,

as well as a version of ridge regression using spectral truncation with r principle components

denoted as RR-r.24,25

Next, Panel B in Table A.1 presents models relying on data driven regularization of the

regressor components stemming from our random matrix theory results in section 6.1. In par-

ticular, in column k of the table, for k < m, RRRRk-SMP (row 1) and RRRRk-TMP (row 2)

stand for our regularized reduced rank regression model with k forecasting factors in which the

number of regressor components is determined by proposition 3, utilizing respectively spectral

truncation (SMP) or Tikhonov (TMP) schemes as detailed is Section 6.1.1. We further impose

the natural restriction that the chosen number of regressor components is not smaller than

k, which is the minimum number of components required to span k forecasting factors of full

rank.26 Finally, the last column in Panel B of the table for k = m displays the corresponding

models with no reduction in the number of forecasting factors, denoted as RR-SMP (row 1) and

RR-TMP (row 2), which stand for ridge regression with the respective data driven regularization

approaches.

We rely on the above model taxonomy in our empirical illustrations and compare the fore-

casting performance of various RRRR and RR models to OLS, PCR, PLS and 3PRF as relevant

alternatives. Our primary focus in what follows is on the more interesting set of parsimonious

RRRR models with k << m, which allows us to study the extent to which just a few common

factors may jointly be able to forecast multiple variables of interest.

7.2. Forecasting macroeconomic series

In our first empirical illustration we consider the 35 aggregate and 108 disaggregate quarterly

U.S. macroeconomic series analyzed by Stock and Watson (2011), with a total of 195 quarterly

observations from 1960:Q2 through 2008:Q4. After transforming and categorizing each series,

we produce rolling out-of-sample one-step-ahead forecasts with rolling window size 100 quarters

for various models in our taxonomy table A.1.27 Following Stock and Watson (2011), we report

distributions of relative RMSE by forecasting method relative to the PCR-5 benchmark. Ta-

ble A.2 summarizes the results when forecasting the entire set of 143 macroeconomic variables

univariately without imposing a common factor structure as in Stock and Watson (2011), while

24Note that RR-r can also be defined as RRRR1-PCr when applied to forecast each outcome univariately in
isolation from the rest of the outcomes rather than jointly.

25The PLS and 3PRF estimators referred to throughout are implemented using the MATLAB code accompa-
nying Kelly and Pruitt (2011) which also introduces the “automatic” regressor terminology.

26The same restriction explains the lower triangular structure in Panel A of Table A.1 for the RRRR models
with a fixed number of regressor components.

27We thank Mark Watson for making the Gauss programs for replicating Stock and Watson (2011) available.
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Table A.3 contains results for the more interesting case when forecasting the subset of 35 aggre-

gate macroeconomic variables by imposing common forecasting factors. The predictors in both

cases comprise the subset of 108 disaggregate macroeconomic series. The tables present both

percentiles and empirical probabilities for intervals chosen to highlight any substantial down-

ward/upward deviations from a ratio equal to 1, indicating better/worse performance relative

to the PCR-5 benchmark.

As a natural starting point, Table A.2, Panel A reports results for the AR-4 and PCR-

50 “naive” benchmark models considered also by Stock and Watson (2011). In particular,

the obtained percentiles coincide with those reported by Stock and Watson (2011) for the same

“naive” models.28 Such exact match allows for meaningful comparison between the performance

of the rest of the models we present in Table A.2, Panels B, C, D, E to the performance of the

other shrinkage models considered by Stock and Watson (2011) but not implemented here.29

Overall, our findings are in line with the main conclusion in Stock and Watson (2011), that

PCR-5 is hard to outperform consistently across all 143 series. Moreover, any improvement in

the left tail of the distribution is more than offset by a deterioration in the right tail, keeping

the median roughly equal to 1 at best. The only notable competitor to PCR-5 appears to be

our RR-SMP model exploiting the random matrix theory results in section 6.1. As evident from

the first row in Panel C of Table A.2, RR-SMP attains a slightly better left tail without any

significant distortion in the right tail. A closer look at the distribution of the spectral truncation

cutoff implied by our MP (data driven) method reveals that it has a median of 5 and varies only

mildly from 3 to 8 across different series and time windows. This provides a compelling rationale

for why PCR-5 emerges as a hard to beat benchmark in Stock and Watson (2011), leaving only

modest room for improvement by suitable data driven procedures for determining the degree

of regularization. As such, our RR-SMP model appears to be the only viable competitor to

PCR-5 in terms of overall performance across all macro series among the shrinkage methods

considered in this paper and in Stock and Watson (2011), as well as the recently proposed 3PRF

models and its closely related PLS counterparts. We attribute the success of RR-SMP to the

reasonably good finite sample validity of our random matrix theory results for the considered

macroeconomic series.

We next consider the more restricted problem of jointly forecasting all 35 aggregate macroe-

conomic series with a common smaller set of factors extracted from the 108 disaggregate series.

Table A.3 presents results for the distribution of RMSE relative to the PCR-5 benchmark for

models grouped by number of forecasting factors set to 1 (panel A), 3 (Panel B), 5 (Panel C), 7

(Panel D), and 35 (Panel E). It is quite striking to observe that now a viable competitor to PCR-

5 is delivered by RRRR5-SMP, performing essentially on par with RR-SMP and outperforming

3PRF and PLS, none of which imposes common factor structure. By contrast, our approach to

28See table 5, panel (a) in Stock and Watson (2011) in whose notation PCR-50 is denoted as OLS.
29See again table 5, panel (a) in Stock and Watson (2011).
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combine the two types of shrinkage in a way that disentangles the degree of regularization of the

predictors from the number of factors that explain the outcomes offers a viable parsimonious

alternative to PCR-5. This finding should be of great interest to empirical macro economists in

the construction of VAR models.

Finally, it is interesting to observe that there appears to be marked difference in the out-

of-sample forecasting performance of the spectral (SMP) and Tikhonov (TMP) regularization

schemes in the considered data driven versions of our RRRR and RR models. The distribution

of relative RMSE vis-a-vis the PCR-5 benchmark reported in tables A.2 and A.3 reveals that

overall, across the considered large set of macroeconomic series, spectral truncation is generally

more preferable than Tikhonov regularization. In this regard, our results can be related to Mol

et al. (2008) who use ridge regression with Tikhonov regularization in a Bayesian framework

to forecast industrial production and inflation and provide a set of comparisons indicating that

different PCR benchmarks (and PCR-5 in particular) are hard to beat in terms of relative

RMSE using ridge regression. Using the much larger set of macroeconomic series studied by

Stock and Watson (2011), we find that a similar result holds for our data-driven RR-TMP and

RRRR-TMP models relying on Tikhonov regularization. By contrast, the spectral truncation

regularization that we utilize in our RR-SMP and RRRR-SMP models appears to offer a viable

data-driven alternative to the PCR-5 benchmark.

7.3. Forecasting bond excess returns

There are numerous examples in the finance literature where it is natural to think that a

small number of forecasting factors drive multiple outcomes and hence our RRRR models are

a particularly relevant forecasting approach. As an illustration we consider forecasting bond

excess returns, known to be largely driven by a single common forecasting factor constructed

differently by Cochrane and Piazzesi (2005) from forward rates and more recently by Cieslak

and Povala (2011) from maturity-related inflation cycles. For the period 1972-2010 we produce

rolling out-of-sample forecasts with rolling window size 120 months for five different sets of

predictors: (i) cycles (table A.4); (ii) forwards (table A.5); (iii) forward slopes (table A.6);

(iv) yield curve slopes (table A.7); (v) the union of cycles and yield curve slopes (table A.8).30

Although there are only about 15 predictors, the design matrix, X, is extremely ill-conditioned

as shown in Figure A.1, thus necessitating the use of regularization.

For each set of predictors constructed from zero-coupon bonds with maturities from 1 to 15

years we forecast monthly bond excess returns for maturities ranging from 2 to 15 years and

report out-of-sample R2 by forecasting method relative to a rolling average benchmark. Our

data source is the commonly used Gürkaynak, Sack, and Wright (2006) set of zero coupon yields

(GSW), maintained and made publicly available by the Federal Reserve Board. As noted by

Gürkaynak et al. (2006), the short end of the yield curve for maturities below 1 year is not

30Results for other possible combinations of predictors are available upon request.

23



reliably interpolated. Therefore, we construct forwards and cycles without utilizing GSW data

for maturities shorter than 1 year, while in our set of yield curve slopes we instead opt to include

the 1-month and 3-month T-bill rate from the CRSP Fama Risk-Free Rates Database.31 The

1-month T-bill rate plays the role of the risk free rate that we use to construct monthly bond

excess returns. Thus, the part of our empirical analysis based on forwards, forward slopes, and

cycles complements Cochrane and Piazzesi (2005) and Cieslak and Povala (2011) by considering

non-overlapping monthly bond excess returns in a rolling out-of-sample forecast exercise rather

than in-sample analysis of 12-month overlapping bond excess returns. Moreover, using our

RRRR methods we document non-trivial predictive power of the yield curve slopes (even more

so when combined with cycles) for the monthly non-overlapping excess returns in our sample.

Our main findings from the bond data analysis can be summarized as follows. First, our

regularized reduced rank regression models imposing common forecasting factors are always

among the best performing models for each set of predictors. Second, we document that the

predictive power of yield curve slopes (table A.7) is as strong as the predictive power of cycles

(table A.4), while forward slopes (table A.6) and forwards (table A.5) in particular have markedly

lower predictive power. Third, and most important of all, we document that combining yield

curve slopes and cycles as predictors almost doubles the out-of-sample predictive power of the

regressions for the longest maturities and our RRRR1-PC5 regularized reduced rank regression

model clearly outperforms the rest of the methods in this case (table A.8), while RRRR1-

SMP remains a close competitor among the data-driven methods for choosing the degree of

regularization. Overall, our results make a strong case for using our regularized reduced rank

models for forecasting bond excess returns which enable the extraction of predictive information

from the combination of multiple (possibly extremely ill-conditioned) predictor sets.

Comparing the spectral (SMP) and Tikhonov (TMP) regularization schemes across the

macro and bond applications, it can be observed that no one scheme uniformly dominates

in terms of forecasting performance. Instead the appropriate choice appears to depend on the

spectral properties of the data and (likely) the panel size. In particular, in the macro data

(large n), eigenvalues tend to be relatively closely spaced around the MP cutoff and SMP

clearly out-performs TMP. Comparing the filter factors (c.f. Figures A.2-A.3), the Tikhonov

scheme assigns non-trivial weight to a great many (possibly noisy) eigenvalues while the spectral

truncation scheme leads to a much simpler factor structure of the regularized regressors. By

contrast, TMP outperforms SMP in the bond data applications (small n), where the spacing of

eigenvalues around the MP cut-off tends to be sparse leading the SMP scheme to pick just 1 or

2 factors. One possible interpretation of the performance of TMP relative to SMP is therefore

that a few of the eigenvalues just below the MP threshold (which would receive positive weight

under TMP) contain valuable predictive information. This is consistent with the observed good

performance of the less conservative fixed truncation rules such as RRRR1-PC5 in the case of

31Note that the corresponding monthly forward rates still cannot be constructed without interpolation.
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the combined yield slopes and cycles predictor set.

8. Conclusion

We have proposed the Regularized Reduced Rank Regression (RRRR) forecasting model as

a robust method for jointly forecasting multiple outcomes in situations with many predictors or

nearly collinear predictors. The RRRR model combines two distinct types of shrinkage estima-

tion (in terms of the singular values of SXX and the canonical correlations) and can be derived

from a penalized reduced rank regression model as the solution to a standard generalized eigen-

value problem. Analogous to the ridge regression, the penalized RRRR estimate has a natural

Bayesian interpretation in terms of a Gaussian precision prior on the regression slopes. More-

over, in a purely frequentist setting, we have shown how to motivate the choice of regularization

parameter using classical results from random matrix theory in the large n, T limit.

A key advantage of RRRR models over existing univariate techniques is the extraction of

common predictive factors that jointly forecast the outcomes of interest. This is particularly

pertinent when Y itself contains a strong factor structure that is forecastable. Compared to

principal component regression (PCR), RRRR produces a more parsimonious forecasting model

whenever some important factors in X are irrelevant for forecasting Y, as clearly seen in our

application to forecasting bond excess returns.

While factor models provide a convenient solution to the curse of dimensionality faced by

variable selection methods, a common concern is the interpretability of purely “statistical”

factors. We show how to alleviate this problem when the econometrician is able to assign

(possibly non-exclusive) “group”-memberships to individual variables. In this case, a set of

linear restrictions can be imposed on the factor extraction problem to ensure that each factor

involves only variables that share a common group characteristic. While the total number of

required forecasting factors may increase due to these restrictions, the factor interpretability is

restored.

In our applications to out-of-sample forecasting of macro economic time series and bond ex-

cess returns, we find that the regularized reduced rank regression (RRRR) models are robust and

offer an attractive alternative to principal component regression (PCR). In particular, they de-

liver more parsimonious (lower dimensional) forecasting models than competing methods when

jointly predicting multiple outcomes that share a common factor structure (e.g. bond excess

returns). Moreover, we show that a single factor model can almost double the predictability of

one-month bond excess returns across a wide maturity range by using a set of predictors combin-

ing yield slopes and the maturity related cycles of Cieslak and Povala (2011). Furthermore, the

data driven version of our models based on spectral truncation offers a formal justification why

the Stock and Watson (2011) choice of five principal components is often the most suitable one

when forecasting large sets of macro variables. However, we stress that no one model appears

to be uniformly best in terms of out-of-sample performance across datasets and subsamples.
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Appendix A. Figures and Tables
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Figure A.1: The singular values of the Stock and Watson (2011) macro data and the four sets
of bond excess return predictors considered: The Cieslak and Povala (2011) inflation cycles, the
Forward rates, Forward slopes (with respect to the 1 month rate), the current yield slopes (with
respect to the 1 month rate). The macro data contains 108 individual time series while the bond
excess return predictors consist of 15 series each (corresponding to maturities of 1 through 15 years).
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Figure A.2: The filter factors fi as a function of the size of the singular value σi of the Stock
and Watson (2011) macro data for the two regularization schemes considered. In each case the
regularization parameter is set to ρ = σ10, the tenth largest singular value.
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Figure A.3: The filtered reciprocal singular values of the Stock and Watson (2011) dataset of 108
macroeconomic variables. The spectral truncation filter works by setting all singular values of X
that fall below a given cut-off level to zero while the Tikhonov scheme down weights small singular
values. In each case the regularization parameter is set to ρ = σ10, the tenth largest singular value.
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Figure A.4: The limiting Tracy-Widom distribution corresponding to the first β-ensemble (Gaus-
sian Orthogonal Ensemble, c.f. Johnstone (2001)), for the normalized largest eigenvalue of the noise
covariance matrix. The TW1 distribution function is not known in closed form but given by
TW1(s) = exp

{
− 1

2

∫∞
s
q(x) dx

}
, where q(·) satisfies the Painleve type II equations: q′′ = xq + 2q3

with boundary condition limx→∞[q(x)−Ai(x)] = 0 and Ai(·) is the Airy function. The solution can
be found numerically to any desired accuracy using an ODE solver.
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Figure A.5: Eigenvalues of the Stock and Watson (2011) SXX matrix. In each panel the red
curve shows the asymptotic distribution of the eigenvalues of the covariance matrix of a panel of i.i.d.
N(0,1) random variables with N/T = 108/198 as in the Stock and Watson (2011) dataset. Panel
a: The empirical distribution of the 108 eigenvalues of the SXX matrix. Panel (b): The eigenvalue
distribution of SXX after applying an AR(12) filter to eliminate the effect of autocorrelation in the
data while preserving the cross-sectional dependence. Panel (c): The eigenvalue distribution of
SXX for 10,000 resampled versions of the data in which the observation time indices have been
scrambled independently for each series to eliminate the effect of both autocorrelation and cross-
sectional dependence in the data.
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Figure A.6: Eigenvalues of the SXX matrix for the inflation cycle and yield slope data.
In each panel the red curve shows the asymptotic distribution of the eigenvalues of the covariance
matrix of a panel of i.i.d. N(0,1) random variables with N/T = 15/468 as in the yield slope and
inflation cycle datasets. Panels 1a&2a: The empirical distribution of the 15 eigenvalues of the
SXX matrix. Panels 1b&2b: The eigenvalue distribution of SXX after applying an AR(12) filter
to eliminate the effect of autocorrelation in the data while preserving the cross-sectional dependence.
Panels 1c&2c: The eigenvalue distribution of SXX for 10,000 resampled versions of the data in
which the observation time indices have been scrambled independently for each series to eliminate
the effect of both autocorrelation and cross-sectional dependence in the data.
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Figure A.7: Eigenvalues of the SXX matrix for the forward and forward slope data.
In each panel the red curve shows the asymptotic distribution of the eigenvalues of the covariance
matrix of a panel of i.i.d. N(0,1) random variables with N/T = 15/468 as in the yield slope and
inflation cycle datasets. Panels 1a&2a: The empirical distribution of the 15 eigenvalues of the
SXX matrix. Panels 1b&2b: The eigenvalue distribution of SXX after applying an AR(12) filter
to eliminate the effect of autocorrelation in the data while preserving the cross-sectional dependence.
Panels 1c&2c: The eigenvalue distribution of SXX for 10,000 resampled versions of the data in
which the observation time indices have been scrambled independently for each series to eliminate
the effect of both autocorrelation and cross-sectional dependence in the data.
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Table A.1: Taxonomy of forecasting models. We present a taxonomy of forecasting models
for any number of forecasting factors 1, 2, ...,M and any number of regressor components 1, 2, ..., N .
Panel A presents methods based on a fixed number of regressor components. Panel B presents
methods based on a data driven number of regressor components.

# Regressor Components 1 2 3 4 5 … m

Panel A: Fixed Number of Regressor Components

1 PCR‐1
RR‐PC1
PLS‐1
3PRF‐1

2 RRRR1‐PC2 PCR‐2
RR‐PC2
PLS‐2
3PRF‐2

3 RRRR1‐PC3 RRRR2‐PC3 PCR‐3
RR‐PC3
PLS‐3
3PRF‐3

4 RRRR1‐PC4 RRRR2‐PC4 RRRR3‐PC4 PCR‐4
RR‐PC4
PLS‐4
3PRF‐4

5 RRRR1‐PC5 RRRR2‐PC5 RRRR3‐PC5 RRRR4‐PC5 PCR‐5
RR‐PC5
PLS‐5
3PRF‐5

… … … … … … … …

n RRRR1‐PCn RRRR2‐PCn RRRR3‐PCn RRRR4‐PCn RRRR5‐PCn … OLS

Panel B: Data Driven Number of Regressor Components

MP MAX
Spectral

RRRR1‐SMP RRRR2‐SMP RRRR3‐SMP RRRR4‐SMP RRRR5‐SMP … RR‐SMP

MP MAX
Tikhonov

RRRR1‐TMP RRRR2‐TMP RRRR3‐TMP RRRR4‐TMP RRRR5‐TMP … RR‐TMP

# Forecasting Factors
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Table A.2: Distributions of relative RMSE by forecasting method for a set of 143
macroeconomic variables from Stock & Watson (2011). For rolling out-of-sample forecasts
with rolling window size 100 quarters we report quantiles (left half of the table) and relative frequen-
cies (right half of the table) of the empirical distributions of RMSE relative to PCR-5 by forecasting
method for the set of 143 macroeconomic variables in Stock & Watson (2011). The predictors com-
prise 108 non-aggregate macroeconomic variables transformed in accordance with Stock & Watson
(2011). Panel A represents replication check of the results for two naive benchmark models found
also in Stock & Watson (2011). Panels B, C, D, and E present results for a number of competing
methods described in the text and our model taxonomy table A.1.

Relative	RMSE	to	PCR‐5

Models 5 25 50 75 95 <0.90 0.90‐0.97 0.97‐1.03 1.03‐1.10 >1.10

Panel	A:	Naïve	benchmark	models
AR‐4 0.918 0.979 1.007 1.041 1.144 0.014 0.189 0.490 0.182 0.126
PCR‐50 0.968 1.061 1.110 1.179 1.281 0.007 0.056 0.091 0.273 0.573

Panel	B:	PCR	models
PCR‐1 0.929 0.975 0.995 1.034 1.114 0.035 0.189 0.517 0.175 0.084
PCR‐2 0.930 0.975 0.993 1.010 1.057 0.014 0.189 0.664 0.133 0.000
PCR‐3 0.954 0.982 0.992 1.008 1.029 0.000 0.126 0.832 0.042 0.000
PCR‐4 0.981 0.990 0.999 1.008 1.027 0.000 0.035 0.916 0.049 0.000
PCR‐5 1.000 1.000 1.000 1.000 1.000 0.000 0.000 1.000 0.000 0.000
PCR‐6 0.976 0.993 1.002 1.009 1.020 0.000 0.042 0.937 0.021 0.000
PCR‐7 0.973 0.995 1.005 1.017 1.042 0.000 0.021 0.846 0.133 0.000

Panel	C:	RR	models
RR‐SMP 0.977 0.990 0.996 1.003 1.013 0.000 0.028 0.965 0.007 0.000
RR‐TMP 0.975 1.026 1.069 1.111 1.187 0.000 0.042 0.252 0.413 0.294

Panel	D:	PLS	models
PLS‐1 0.950 0.987 1.009 1.035 1.087 0.000 0.133 0.594 0.224 0.049
PLS‐2 0.976 1.038 1.082 1.130 1.271 0.000 0.021 0.196 0.406 0.378
PLS‐3 1.019 1.088 1.153 1.234 1.422 0.000 0.000 0.063 0.217 0.720
PLS‐4 1.046 1.143 1.228 1.324 1.609 0.000 0.000 0.028 0.098 0.874
PLS‐5 1.086 1.207 1.301 1.428 1.733 0.000 0.000 0.007 0.063 0.930
PLS‐6 1.123 1.261 1.363 1.519 1.841 0.000 0.000 0.000 0.035 0.965
PLS‐7 1.130 1.309 1.420 1.606 1.906 0.000 0.000 0.000 0.007 0.993

Panel	E:	3PRF	models
3PRF‐1 0.947 0.980 1.002 1.026 1.081 0.000 0.147 0.629 0.203 0.021
3PRF‐2 0.979 1.020 1.060 1.103 1.239 0.000 0.035 0.273 0.427 0.266
3PRF‐3 1.010 1.080 1.144 1.229 1.424 0.000 0.007 0.084 0.231 0.678
3PRF‐4 1.035 1.135 1.225 1.323 1.601 0.000 0.000 0.049 0.091 0.860
3PRF‐5 1.070 1.198 1.302 1.426 1.726 0.000 0.000 0.007 0.063 0.930
3PRF‐6 1.126 1.258 1.368 1.514 1.853 0.000 0.000 0.000 0.042 0.958
3PRF‐7 1.140 1.307 1.420 1.585 1.914 0.000 0.000 0.007 0.021 0.972

Percentiles Empirical	Distribution
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Table A.3: Distributions of relative RMSE by forecasting method for a set of 35 aggre-
gate macroeconomic variables from Stock & Watson (2011). For rolling out-of-sample
forecasts with rolling window size 100 quarters we report quantiles (left half of the table) and rel-
ative frequencies (right half of the table) of the empirical distributions of RMSE relative to PCR-5
by forecasting method for the subset of 35 aggregate macroeconomic variables in Stock & Watson
(2011). The predictors comprise the remaining 108 non-aggregate macroeconomic variables. Panels
A, B, C and D present results for models with, respectively, 1, 3, 5 and 7 forecasting factors. Panel
E presents results for models that do not impose common forecasting factor structure across the 35
macroeconomic aggregates. Description of the models can be found in the text and in our model
taxonomy table A.1.

Relative	RMSE	to	PCR‐5

Models 5 25 50 75 95 <0.90 0.90‐0.97 0.97‐1.03 1.03‐1.10 >1.10

Panel	A:	Models	with	1	forecasting	factor
PCR‐1 0.590 0.951 1.000 1.036 1.145 0.086 0.229 0.371 0.171 0.143
RRRR1‐PC2 0.561 0.935 0.999 1.013 1.087 0.086 0.200 0.543 0.143 0.029
RRRR1‐PC4 0.546 0.939 1.003 1.019 1.189 0.086 0.200 0.514 0.114 0.086
RRRR1‐PC6 0.535 0.950 1.003 1.026 1.201 0.057 0.229 0.486 0.143 0.086
RRRR1‐PC8 0.526 0.953 1.005 1.038 1.231 0.057 0.257 0.400 0.171 0.114
RRRR1‐PC10 0.523 0.940 0.997 1.023 1.188 0.114 0.200 0.514 0.086 0.086
RRRR1‐PC12 0.521 0.947 0.997 1.024 1.205 0.114 0.200 0.457 0.114 0.114
RRRR1‐SMP 0.534 0.939 1.004 1.028 1.241 0.086 0.229 0.457 0.143 0.086
RRRR1‐TMP 0.534 0.954 1.001 1.033 1.165 0.114 0.171 0.429 0.143 0.143

Panel	B:	Models	with	3	forecasting	factors
PCR‐3 0.681 0.972 0.988 1.006 1.033 0.057 0.143 0.743 0.057 0.000
RRRR3‐PC4 0.495 0.971 0.987 1.006 1.031 0.057 0.171 0.714 0.057 0.000
RRRR3‐PC6 0.500 0.990 0.998 1.026 1.082 0.086 0.057 0.629 0.229 0.000
RRRR3‐PC8 0.482 0.982 0.996 1.054 1.131 0.086 0.029 0.600 0.171 0.114
RRRR3‐PC10 0.436 0.983 1.000 1.026 1.116 0.086 0.057 0.686 0.086 0.086
RRRR3‐PC12 0.432 0.990 1.014 1.039 1.140 0.086 0.057 0.543 0.200 0.114
RRRR3‐SMP 0.467 0.987 0.995 1.012 1.037 0.086 0.057 0.771 0.086 0.000
RRRR3‐TMP 0.445 0.993 1.042 1.096 1.148 0.057 0.114 0.314 0.314 0.200

Panel	C:	Models	with	5	forecasting	factors
PCR‐5 1.000 1.000 1.000 1.000 1.000 0.000 0.000 1.000 0.000 0.000
RRRR5‐PC6 0.476 0.983 0.993 1.003 1.022 0.057 0.114 0.829 0.000 0.000
RRRR5‐PC8 0.469 0.991 0.998 1.020 1.050 0.057 0.086 0.686 0.171 0.000
RRRR5‐PC10 0.407 0.965 0.988 1.006 1.035 0.057 0.257 0.600 0.086 0.000
RRRR5‐PC12 0.397 0.980 0.997 1.010 1.066 0.057 0.057 0.800 0.057 0.029
RRRR5‐SMP 0.470 0.989 0.997 1.000 1.013 0.057 0.029 0.914 0.000 0.000
RRRR5‐TMP 0.380 0.997 1.045 1.127 1.180 0.057 0.000 0.400 0.286 0.257

Panel	D:	Models	with	7	forecasting	factors
PCR‐7 0.969 0.996 1.004 1.029 1.332 0.000 0.057 0.714 0.171 0.057
RRRR7‐PC8 0.470 0.987 1.002 1.026 1.037 0.057 0.029 0.714 0.200 0.000
RRRR7‐PC10 0.407 0.964 0.992 1.010 1.035 0.057 0.200 0.686 0.057 0.000
RRRR7‐PC12 0.397 0.972 0.999 1.022 1.060 0.057 0.114 0.686 0.143 0.000
RRRR7‐SMP 0.473 0.985 1.000 1.012 1.037 0.057 0.086 0.743 0.114 0.000
RRRR7‐TMP 0.376 1.003 1.045 1.125 1.172 0.057 0.000 0.400 0.257 0.286

Panel	E:	Models	with	35	forecasting	factors
RR‐SMP 0.467 0.981 0.995 1.007 1.017 0.057 0.057 0.886 0.000 0.000
RR‐TMP 0.330 0.983 1.052 1.113 1.170 0.057 0.114 0.257 0.314 0.257
PLS‐1 0.472 0.965 0.995 1.016 1.046 0.114 0.171 0.571 0.143 0.000
PLS‐2 0.351 0.986 1.036 1.086 1.170 0.057 0.029 0.343 0.343 0.229
PLS‐3 0.291 1.052 1.153 1.277 1.375 0.057 0.029 0.114 0.086 0.714
PLS‐5 0.230 1.243 1.354 1.524 1.777 0.057 0.000 0.029 0.057 0.857
PLS‐7 0.246 1.354 1.514 1.785 2.131 0.057 0.000 0.000 0.057 0.886
3PRF‐1 0.455 0.965 1.007 1.036 1.092 0.086 0.171 0.457 0.286 0.000
3PRF‐2 0.360 1.016 1.074 1.114 1.203 0.057 0.029 0.200 0.371 0.343
3PRF‐3 0.309 1.061 1.170 1.297 1.411 0.057 0.029 0.057 0.171 0.686
3PRF‐5 0.245 1.241 1.369 1.545 1.790 0.057 0.000 0.029 0.057 0.857
3PRF‐7 0.255 1.360 1.528 1.800 2.146 0.057 0.000 0.000 0.029 0.914

Percentiles Empirical	Distribution
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Table A.4: Out-of-sample R2 by forecasting method for monthly bond excess returns
predicted by the maturity-related cycles of Cieslak & Povala (2011). For rolling out-
of-sample forecasts with rolling window size 120 months we report out-of-sample R2 by forecasting
method relative to a rolling average benchmark. We forecast monthly excess returns of bonds ranging
from 2 to 15 years of maturity. The risk-free rate is taken to be the 1-month T-bill rate from the
CRSP Fama Risk-Free Rates Database. The set of predictors includes the maturity-related cycles of
Cieslak & Povala (2011) for GSW yields from 1 to 15 years. The sample period is 1972-2010. Panel
A presents results for commonly used simple benchmark models. Panels B and C present results
for competing models with, respectively, 1 and 2 forecasting factors. Panel D presents results for
models that do not impose common forecasting factor structure across the 14 bond excess return
series. Description of the models can be found in the text and in our model taxonomy table A.1.

OutǦofǦsample�R2
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Table A.5: Out-of-sample R2 by forecasting method for monthly bond excess returns
predicted by forward rates. For rolling out-of-sample forecasts with rolling window size 120
months we report out-of-sample R2 by forecasting method relative to a rolling average benchmark.
We forecast monthly excess returns of bonds ranging from 2 to 15 years of maturity. The risk-free
rate is taken to be the 1-month T-bill rate from the CRSP Fama Risk-Free Rates Database. The set
of predictors includes the GSW forward rates for maturities from 1 to 15 years. The sample period is
1972-2010. Panel A presents results for commonly used simple benchmark models. Panels B and C
present results for competing models with, respectively, 1 and 2 forecasting factors. Panel D presents
results for models that do not impose common forecasting factor structure across the 14 bond excess
return series. Description of the models can be found in the text and in our model taxonomy table
A.1.

Out‐of‐sample	R2

Models rx(2) rx(3) rx(4) rx(5) rx(6) rx(7) rx(8) rx(9) rx(10) rx(11) rx(12) rx(13) rx(14) rx(15)

Panel	A:	Naïve	benchmark	models
Rolling	Average 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Random	Walk ‐0.514 ‐0.585 ‐0.640 ‐0.686 ‐0.728 ‐0.765 ‐0.797 ‐0.824 ‐0.846 ‐0.862 ‐0.874 ‐0.881 ‐0.883 ‐0.882

Panel	B:	Models	with	1	forecasting	factor
PCR‐1 ‐0.003 ‐0.010 ‐0.013 ‐0.014 ‐0.014 ‐0.013 ‐0.012 ‐0.011 ‐0.010 ‐0.009 ‐0.007 ‐0.006 ‐0.006 ‐0.005
RRRR1‐PC2 ‐0.020 ‐0.024 ‐0.027 ‐0.029 ‐0.030 ‐0.031 ‐0.031 ‐0.031 ‐0.032 ‐0.032 ‐0.032 ‐0.032 ‐0.032 ‐0.032
RRRR1‐PC3 ‐0.001 ‐0.002 ‐0.001 0.000 0.000 ‐0.001 ‐0.003 ‐0.006 ‐0.009 ‐0.012 ‐0.014 ‐0.017 ‐0.018 ‐0.020
RRRR1‐PC4 ‐0.080 ‐0.066 ‐0.058 ‐0.053 ‐0.050 ‐0.048 ‐0.046 ‐0.045 ‐0.044 ‐0.043 ‐0.042 ‐0.042 ‐0.041 ‐0.040
RRRR1‐PC5 ‐0.097 ‐0.084 ‐0.077 ‐0.073 ‐0.070 ‐0.067 ‐0.064 ‐0.062 ‐0.059 ‐0.056 ‐0.053 ‐0.049 ‐0.047 ‐0.044
RRRR1‐SMP ‐0.011 ‐0.020 ‐0.024 ‐0.026 ‐0.026 ‐0.026 ‐0.025 ‐0.023 ‐0.021 ‐0.020 ‐0.018 ‐0.017 ‐0.016 ‐0.014
RRRR1‐TMP 0.001 ‐0.005 ‐0.008 ‐0.009 ‐0.010 ‐0.010 ‐0.010 ‐0.010 ‐0.010 ‐0.010 ‐0.010 ‐0.010 ‐0.010 ‐0.010

Panel	C:	Models	with	2	forecasting	factors
PCR‐2 ‐0.026 ‐0.034 ‐0.037 ‐0.038 ‐0.036 ‐0.034 ‐0.031 ‐0.028 ‐0.026 ‐0.023 ‐0.021 ‐0.019 ‐0.017 ‐0.016
RRRR2‐PC3 ‐0.011 ‐0.010 ‐0.006 ‐0.002 0.000 ‐0.001 ‐0.004 ‐0.008 ‐0.012 ‐0.017 ‐0.020 ‐0.023 ‐0.026 ‐0.027
RRRR2‐PC4 ‐0.066 ‐0.053 ‐0.045 ‐0.041 ‐0.041 ‐0.043 ‐0.048 ‐0.054 ‐0.060 ‐0.066 ‐0.070 ‐0.074 ‐0.076 ‐0.077
RRRR2‐PC5 ‐0.083 ‐0.065 ‐0.054 ‐0.050 ‐0.051 ‐0.055 ‐0.062 ‐0.070 ‐0.078 ‐0.085 ‐0.091 ‐0.095 ‐0.098 ‐0.099
RRRR2‐SMP ‐0.027 ‐0.035 ‐0.039 ‐0.039 ‐0.038 ‐0.035 ‐0.033 ‐0.030 ‐0.027 ‐0.024 ‐0.022 ‐0.020 ‐0.019 ‐0.017
RRRR2‐TMP ‐0.001 ‐0.004 ‐0.001 0.004 0.007 0.009 0.009 0.008 0.006 0.004 0.002 0.000 ‐0.001 ‐0.002

Panel	D:	Models	with	14	forecasting	factors
RR‐SMP ‐0.013 ‐0.023 ‐0.027 ‐0.028 ‐0.028 ‐0.027 ‐0.025 ‐0.023 ‐0.021 ‐0.019 ‐0.017 ‐0.015 ‐0.014 ‐0.013
RR‐TMP 0.012 0.003 ‐0.006 ‐0.011 ‐0.012 ‐0.012 ‐0.012 ‐0.012 ‐0.012 ‐0.013 ‐0.015 ‐0.015 ‐0.011 ‐0.010
PLS‐1 ‐0.002 ‐0.006 ‐0.019 ‐0.020 ‐0.019 ‐0.017 ‐0.011 ‐0.011 ‐0.010 ‐0.010 ‐0.010 ‐0.010 ‐0.005 ‐0.005
PLS‐2 ‐0.051 ‐0.055 ‐0.056 ‐0.056 ‐0.054 ‐0.052 ‐0.052 ‐0.051 ‐0.051 ‐0.046 ‐0.043 ‐0.043 ‐0.041 ‐0.029
PLS‐3 ‐0.086 ‐0.058 ‐0.032 ‐0.018 ‐0.012 ‐0.017 ‐0.017 ‐0.018 ‐0.017 ‐0.026 ‐0.038 ‐0.046 ‐0.051 ‐0.057
PLS‐4 ‐0.102 ‐0.068 ‐0.049 ‐0.045 ‐0.044 ‐0.047 ‐0.055 ‐0.063 ‐0.073 ‐0.077 ‐0.080 ‐0.084 ‐0.085 ‐0.080
PLS‐5 ‐0.128 ‐0.093 ‐0.081 ‐0.073 ‐0.066 ‐0.067 ‐0.072 ‐0.082 ‐0.092 ‐0.098 ‐0.096 ‐0.100 ‐0.102 ‐0.102
3PRF‐1 ‐0.054 ‐0.043 ‐0.033 ‐0.026 ‐0.020 ‐0.019 ‐0.019 ‐0.020 ‐0.020 ‐0.020 ‐0.020 ‐0.022 ‐0.021 ‐0.011
3PRF‐2 ‐0.088 ‐0.044 ‐0.014 0.001 ‐0.001 0.004 0.012 0.014 0.009 0.001 ‐0.007 ‐0.014 ‐0.024 ‐0.032
3PRF‐3 ‐0.121 ‐0.082 ‐0.054 ‐0.040 ‐0.039 ‐0.037 ‐0.038 ‐0.043 ‐0.049 ‐0.053 ‐0.056 ‐0.059 ‐0.058 ‐0.059
3PRF‐4 ‐0.118 ‐0.076 ‐0.056 ‐0.054 ‐0.053 ‐0.049 ‐0.055 ‐0.065 ‐0.067 ‐0.067 ‐0.067 ‐0.066 ‐0.064 ‐0.063
3PRF‐5 ‐0.160 ‐0.124 ‐0.102 ‐0.089 ‐0.084 ‐0.081 ‐0.084 ‐0.085 ‐0.087 ‐0.086 ‐0.080 ‐0.081 ‐0.082 ‐0.082
OLS ‐0.567 ‐0.465 ‐0.413 ‐0.387 ‐0.377 ‐0.378 ‐0.385 ‐0.395 ‐0.404 ‐0.412 ‐0.417 ‐0.421 ‐0.424 ‐0.427
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Table A.6: Out-of-sample R2 by forecasting method for monthly bond excess returns
predicted by forward slopes. For rolling out-of-sample forecasts with rolling window size 120
months we report out-of-sample R2 by forecasting method relative to a rolling average benchmark.
We forecast monthly excess returns of bonds ranging from 2 to 15 years of maturity. The risk-free
rate is taken to be the 1-month T-bill rate from the CRSP Fama Risk-Free Rates Database. The
set of predictors includes the GSW forward slopes for maturities from 1 to 15 years. The sample
period is 1972-2010. Panel A presents results for commonly used simple benchmark models. Panels
B and C present results for competing models with, respectively, 1 and 2 forecasting factors. Panel
D presents results for models that do not impose common forecasting factor structure across the
14 bond excess return series. Description of the models can be found in the text and in our model
taxonomy table A.1.

Out‐of‐sample	R2

Models rx(2) rx(3) rx(4) rx(5) rx(6) rx(7) rx(8) rx(9) rx(10) rx(11) rx(12) rx(13) rx(14) rx(15)

Panel	A:	Naïve	benchmark	models
Rolling	Average 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Random	Walk ‐0.514 ‐0.585 ‐0.640 ‐0.686 ‐0.728 ‐0.765 ‐0.797 ‐0.824 ‐0.846 ‐0.862 ‐0.874 ‐0.881 ‐0.883 ‐0.882

Panel	B:	Models	with	1	forecasting	factor
PCR‐1 0.005 0.006 0.008 0.010 0.012 0.014 0.015 0.016 0.017 0.018 0.018 0.019 0.019 0.019
RRRR1‐PC2 0.046 0.035 0.029 0.026 0.023 0.021 0.019 0.017 0.014 0.012 0.009 0.007 0.004 0.002
RRRR1‐PC3 0.069 0.058 0.054 0.052 0.050 0.047 0.044 0.041 0.037 0.033 0.029 0.026 0.022 0.019
RRRR1‐PC4 ‐0.017 ‐0.009 0.002 0.010 0.017 0.021 0.023 0.024 0.023 0.023 0.021 0.020 0.018 0.017
RRRR1‐PC5 ‐0.047 ‐0.041 ‐0.031 ‐0.022 ‐0.015 ‐0.010 ‐0.007 ‐0.004 ‐0.003 ‐0.002 ‐0.002 ‐0.002 ‐0.002 ‐0.003
RRRR1‐SMP 0.006 0.006 0.008 0.011 0.013 0.014 0.016 0.017 0.018 0.018 0.019 0.019 0.020 0.020
RRRR1‐TMP 0.044 0.039 0.037 0.037 0.037 0.037 0.037 0.037 0.037 0.037 0.036 0.035 0.035 0.034

Panel	C:	Models	with	2	forecasting	factors
PCR‐2 0.014 0.011 0.011 0.013 0.015 0.017 0.018 0.018 0.018 0.017 0.017 0.016 0.015 0.015
RRRR2‐PC3 0.059 0.048 0.044 0.042 0.041 0.040 0.039 0.038 0.037 0.037 0.037 0.037 0.037 0.038
RRRR2‐PC4 ‐0.007 ‐0.001 0.008 0.015 0.019 0.020 0.019 0.016 0.013 0.009 0.006 0.003 0.000 ‐0.003
RRRR2‐PC5 ‐0.041 ‐0.030 ‐0.017 ‐0.010 ‐0.007 ‐0.008 ‐0.011 ‐0.015 ‐0.020 ‐0.024 ‐0.028 ‐0.032 ‐0.035 ‐0.037
RRRR2‐SMP 0.016 0.012 0.012 0.014 0.016 0.018 0.019 0.019 0.019 0.019 0.018 0.017 0.016 0.016
RRRR2‐TMP 0.044 0.039 0.037 0.037 0.037 0.037 0.037 0.037 0.037 0.037 0.036 0.035 0.035 0.034

Panel	D:	Models	with	14	forecasting	factors
RR‐SMP 0.006 0.006 0.008 0.011 0.013 0.014 0.016 0.017 0.018 0.018 0.019 0.019 0.020 0.020
RR‐TMP 0.075 0.065 0.060 0.055 0.049 0.044 0.040 0.036 0.033 0.032 0.030 0.029 0.029 0.029
PLS‐1 0.021 0.019 0.033 0.018 0.020 0.019 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020
PLS‐2 0.024 0.025 0.026 0.027 0.027 0.027 0.028 0.028 0.028 0.029 0.030 0.031 0.033 0.035
PLS‐3 0.016 0.021 0.026 0.029 0.029 0.028 0.027 0.026 0.027 0.028 0.030 0.032 0.033 0.032
PLS‐4 ‐0.054 ‐0.024 ‐0.003 0.008 0.013 0.014 0.012 0.000 ‐0.005 ‐0.012 ‐0.020 ‐0.024 ‐0.024 ‐0.018
PLS‐5 ‐0.089 ‐0.046 ‐0.026 ‐0.025 ‐0.030 ‐0.032 ‐0.036 ‐0.028 ‐0.028 ‐0.030 ‐0.032 ‐0.038 ‐0.041 ‐0.031
3PRF‐1 ‐0.020 ‐0.019 ‐0.014 ‐0.013 ‐0.013 ‐0.013 ‐0.012 ‐0.013 ‐0.016 ‐0.019 ‐0.022 ‐0.024 ‐0.023 ‐0.023
3PRF‐2 ‐0.046 ‐0.034 ‐0.022 ‐0.016 ‐0.011 ‐0.011 ‐0.012 ‐0.014 ‐0.016 ‐0.015 ‐0.013 ‐0.010 ‐0.008 ‐0.008
3PRF‐3 ‐0.098 ‐0.063 ‐0.038 ‐0.025 ‐0.018 ‐0.020 ‐0.019 ‐0.026 ‐0.031 ‐0.037 ‐0.043 ‐0.050 ‐0.055 ‐0.056
3PRF‐4 ‐0.110 ‐0.072 ‐0.049 ‐0.029 ‐0.029 ‐0.031 ‐0.033 ‐0.047 ‐0.061 ‐0.065 ‐0.071 ‐0.074 ‐0.080 ‐0.075
3PRF‐5 ‐0.123 ‐0.089 ‐0.067 ‐0.055 ‐0.048 ‐0.050 ‐0.057 ‐0.064 ‐0.071 ‐0.076 ‐0.087 ‐0.084 ‐0.082 ‐0.081
OLS ‐0.510 ‐0.397 ‐0.335 ‐0.301 ‐0.287 ‐0.284 ‐0.289 ‐0.298 ‐0.306 ‐0.314 ‐0.319 ‐0.321 ‐0.323 ‐0.323
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Table A.7: Out-of-sample R2 by forecasting method for monthly bond excess returns
predicted by yield curve slopes. For rolling out-of-sample forecasts with rolling window
size 120 months we report out-of-sample R2 by forecasting method relative to a rolling average
benchmark. We forecast monthly excess returns of bonds ranging from 2 to 15 years of maturity.
The risk-free rate is taken to be the 1-month T-bill rate from the CRSP Fama Risk-Free Rates
Database. The set of predictors includes the yield curve slopes for the 1-month and 3-month T-bill
rates from the CRSP Fama Risk-Free Rates Database and the GSW yields for maturities from 1
to 15 years. The sample period is 1972-2010. Panel A presents results for commonly used simple
benchmark models. Panels B and C present results for competing models with, respectively, 1 and
2 forecasting factors. Panel D presents results for models that do not impose common forecasting
factor structure across the 14 bond excess return series. Description of the models can be found in
the text and in our model taxonomy table A.1.

Out‐of‐sample	R2

Models rx(2) rx(3) rx(4) rx(5) rx(6) rx(7) rx(8) rx(9) rx(10) rx(11) rx(12) rx(13) rx(14) rx(15)

Panel	A:	Naïve	benchmark	models
Rolling	Average 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Random	Walk ‐0.514 ‐0.585 ‐0.640 ‐0.686 ‐0.728 ‐0.765 ‐0.797 ‐0.824 ‐0.846 ‐0.862 ‐0.874 ‐0.881 ‐0.883 ‐0.882

Panel	B:	Models	with	1	forecasting	factor
PCR‐1 0.019 0.019 0.020 0.022 0.024 0.025 0.026 0.027 0.027 0.027 0.028 0.028 0.028 0.028
RRRR1‐PC2 0.012 0.010 0.010 0.012 0.013 0.015 0.016 0.017 0.019 0.020 0.020 0.021 0.022 0.022
RRRR1‐PC3 0.053 0.039 0.034 0.032 0.030 0.030 0.029 0.029 0.029 0.029 0.029 0.030 0.031 0.032
RRRR1‐PC4 0.030 0.016 0.012 0.012 0.013 0.015 0.017 0.019 0.021 0.023 0.025 0.027 0.029 0.032
RRRR1‐PC5 0.059 0.051 0.053 0.056 0.059 0.060 0.061 0.060 0.059 0.058 0.056 0.055 0.054 0.053
RRRR1‐SMP 0.019 0.019 0.019 0.021 0.022 0.023 0.023 0.024 0.024 0.024 0.025 0.025 0.025 0.025
RRRR1‐TMP 0.045 0.038 0.036 0.036 0.036 0.037 0.037 0.038 0.038 0.038 0.039 0.039 0.039 0.040

Panel	C:	Models	with	2	forecasting	factors
PCR‐2 0.009 0.007 0.009 0.011 0.013 0.015 0.017 0.017 0.018 0.018 0.018 0.018 0.018 0.018
RRRR2‐PC3 0.030 0.024 0.024 0.025 0.027 0.029 0.030 0.031 0.031 0.032 0.033 0.033 0.034 0.035
RRRR2‐PC4 0.034 0.019 0.014 0.013 0.014 0.015 0.016 0.017 0.018 0.019 0.021 0.023 0.025 0.027
RRRR2‐PC5 0.071 0.063 0.063 0.064 0.063 0.060 0.056 0.050 0.045 0.040 0.036 0.034 0.032 0.031
RRRR2‐SMP 0.012 0.010 0.011 0.014 0.016 0.017 0.018 0.019 0.020 0.020 0.020 0.020 0.019 0.019
RRRR2‐TMP 0.039 0.030 0.028 0.028 0.029 0.030 0.031 0.032 0.033 0.034 0.035 0.035 0.036 0.037

Panel	D:	Models	with	14	forecasting	factors
RR‐SMP 0.018 0.016 0.017 0.019 0.020 0.022 0.023 0.024 0.024 0.025 0.025 0.026 0.026 0.026
RR‐TMP 0.074 0.058 0.050 0.045 0.041 0.039 0.037 0.036 0.036 0.035 0.035 0.035 0.035 0.036
PLS‐1 0.054 0.032 0.028 0.027 0.027 0.027 0.028 0.029 0.029 0.030 0.030 0.030 0.031 0.031
PLS‐2 0.005 0.002 0.004 0.014 0.021 0.014 0.026 0.029 0.029 0.028 0.026 0.026 0.025 0.024
PLS‐3 0.031 0.026 0.026 0.025 0.025 0.015 0.011 0.012 0.013 0.015 0.018 0.018 0.019 0.021
PLS‐4 0.006 0.001 0.002 0.009 0.019 0.026 0.028 0.051 0.034 0.032 0.033 0.034 0.038 0.037
PLS‐5 ‐0.025 0.002 0.027 0.042 0.047 0.044 0.036 0.027 0.017 0.005 ‐0.002 0.004 0.015 0.026
3PRF‐1 ‐0.032 ‐0.001 0.010 0.019 0.024 0.022 0.017 0.012 0.007 0.003 ‐0.001 ‐0.002 ‐0.002 ‐0.002
3PRF‐2 0.023 0.021 0.022 0.024 0.021 0.017 0.018 0.017 0.017 0.016 0.016 0.019 0.021 0.023
3PRF‐3 0.006 0.001 0.002 0.009 0.014 0.015 0.014 0.012 0.010 0.010 0.010 0.012 0.015 0.021
3PRF‐4 ‐0.025 ‐0.002 0.015 0.030 0.038 0.035 0.026 0.015 0.003 ‐0.003 0.001 0.011 0.017 0.022
3PRF‐5 ‐0.047 ‐0.016 0.001 0.008 0.011 0.007 0.001 ‐0.009 ‐0.018 ‐0.026 ‐0.025 ‐0.022 ‐0.020 ‐0.016
OLS ‐0.549 ‐0.424 ‐0.361 ‐0.330 ‐0.318 ‐0.316 ‐0.320 ‐0.327 ‐0.333 ‐0.337 ‐0.340 ‐0.340 ‐0.338 ‐0.336
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Table A.8: Out-of-sample R2 by forecasting method for monthly bond excess returns
predicted by the combined set of yield curve slopes and corresponding maturity-related
cycles of Cieslak & Povala (2011). For rolling out-of-sample forecasts with rolling window
size 120 months we report out-of-sample R2 by forecasting method relative to a rolling average
benchmark. We forecast monthly excess returns of bonds ranging from 2 to 15 years of maturity.
The risk-free rate is taken to be the 1-month T-bill rate from the CRSP Fama Risk-Free Rates
Database. The set of predictors is given by the yield curve slopes for the 1-month and 3-month
T-bill rates from the CRSP Fama Risk-Free Rates Database and the GSW yields for maturities
from 1 to 15 years in combination with the maturity-related cycles of Cieslak & Povala (2011) for
GSW yields from 1 to 15 years. The sample period is 1972-2010. Panel A presents results for
commonly used simple benchmark models. Panels B and C present results for competing models
with, respectively, 1 and 2 forecasting factors. Panel D presents results for models that do not
impose common forecasting factor structure across the 14 bond excess return series. Description of
the models can be found in the text and in our model taxonomy table A.1.

Out‐of‐sample	R2

Models rx(2) rx(3) rx(4) rx(5) rx(6) rx(7) rx(8) rx(9) rx(10) rx(11) rx(12) rx(13) rx(14) rx(15)

Panel	A:	Naïve	benchmark	models
Rolling	Average 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Random	Walk ‐0.514 ‐0.585 ‐0.640 ‐0.686 ‐0.728 ‐0.765 ‐0.797 ‐0.824 ‐0.846 ‐0.862 ‐0.874 ‐0.881 ‐0.883 ‐0.882

Panel	B:	Models	with	1	forecasting	factor
PCR‐1 ‐0.019 ‐0.011 ‐0.006 ‐0.002 0.000 0.002 0.003 0.003 0.004 0.004 0.004 0.004 0.004 0.005
RRRR1‐PC2 0.034 0.036 0.040 0.043 0.047 0.051 0.054 0.056 0.059 0.061 0.062 0.063 0.065 0.065
RRRR1‐PC3 0.012 0.017 0.024 0.030 0.035 0.041 0.045 0.050 0.053 0.057 0.059 0.062 0.064 0.065
RRRR1‐PC4 0.027 0.021 0.022 0.025 0.029 0.034 0.038 0.042 0.045 0.048 0.051 0.053 0.056 0.058
RRRR1‐PC5 0.057 0.046 0.045 0.048 0.053 0.059 0.065 0.071 0.077 0.082 0.087 0.091 0.095 0.099
RRRR1‐SMP 0.034 0.036 0.040 0.043 0.047 0.051 0.054 0.056 0.059 0.061 0.062 0.063 0.065 0.065
RRRR1‐TMP 0.027 0.029 0.034 0.039 0.044 0.049 0.054 0.057 0.061 0.064 0.066 0.068 0.070 0.071

Panel	C:	Models	with	2	forecasting	factors
PCR‐2 0.023 0.028 0.034 0.040 0.045 0.049 0.053 0.056 0.058 0.060 0.062 0.063 0.064 0.065
RRRR2‐PC3 0.017 0.022 0.028 0.034 0.039 0.043 0.047 0.050 0.052 0.054 0.055 0.056 0.057 0.058
RRRR2‐PC4 0.004 0.008 0.017 0.025 0.031 0.037 0.041 0.044 0.046 0.048 0.049 0.050 0.051 0.051
RRRR2‐PC5 0.033 0.030 0.035 0.042 0.050 0.059 0.066 0.073 0.079 0.084 0.089 0.093 0.096 0.099
RRRR2‐SMP 0.020 0.026 0.033 0.040 0.045 0.050 0.054 0.057 0.059 0.061 0.063 0.065 0.066 0.067
RRRR2‐TMP ‐0.012 0.003 0.016 0.028 0.038 0.045 0.051 0.056 0.059 0.062 0.064 0.065 0.066 0.067

Panel	D:	Models	with	14	forecasting	factors
RR‐SMP 0.020 0.026 0.033 0.040 0.045 0.050 0.054 0.057 0.059 0.061 0.063 0.065 0.066 0.067
RR‐TMP 0.015 0.023 0.032 0.039 0.045 0.050 0.054 0.058 0.060 0.063 0.064 0.066 0.067 0.068
PLS‐1 ‐0.003 0.011 0.023 0.033 0.042 0.048 0.053 0.057 0.060 0.062 0.064 0.066 0.067 0.068
PLS‐2 0.019 0.027 0.034 0.044 0.041 0.046 0.052 0.054 0.052 0.055 0.058 0.060 0.063 0.065
PLS‐3 0.011 0.016 0.025 0.032 0.039 0.044 0.047 0.048 0.053 0.055 0.058 0.062 0.061 0.063
PLS‐4 ‐0.008 ‐0.006 0.000 0.012 0.022 0.026 0.035 0.035 0.041 0.052 0.057 0.059 0.062 0.066
PLS‐5 0.019 0.023 0.027 0.037 0.035 0.039 0.046 0.051 0.054 0.056 0.059 0.061 0.067 0.069
3PRF‐1 ‐0.028 ‐0.013 ‐0.002 0.013 0.024 0.018 0.014 0.009 0.001 ‐0.002 ‐0.003 ‐0.002 ‐0.001 0.001
3PRF‐2 0.062 0.063 0.066 0.067 0.064 0.060 0.061 0.061 0.057 0.056 0.056 0.053 0.052 0.051
3PRF‐3 0.050 0.036 0.037 0.046 0.055 0.058 0.062 0.065 0.066 0.068 0.068 0.069 0.069 0.069
3PRF‐4 0.024 0.033 0.037 0.044 0.051 0.055 0.057 0.063 0.066 0.072 0.080 0.083 0.084 0.086
3PRF‐5 0.019 0.031 0.042 0.048 0.052 0.050 0.053 0.056 0.055 0.051 0.055 0.057 0.061 0.066
OLS ‐0.597 ‐0.478 ‐0.414 ‐0.381 ‐0.364 ‐0.358 ‐0.357 ‐0.357 ‐0.358 ‐0.357 ‐0.354 ‐0.349 ‐0.343 ‐0.336

Bond	Excess	Returns
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Appendix B. Proofs

Appendix B.1. Random Matrix Theory Proofs

Since we shall work with sequences of matrices of increasing size, it will be convenient to work with

the spectral norm for bounded linear operators in addition to the trace norm (Frobenious norm). For

any square n× n matrix A as

‖|A‖| = max
x∈Rn,x 6=0

‖Ax‖2
‖x‖2

= αmax

where λmax is the largest eigenvalue of the square matrix A and ‖x‖2 is the usual l2 norm for vectors.

The spectral norm is sub-multiplicative (i.e. ‖|AB‖| ≤ ‖|A‖| ‖|B‖|) and consistent (the norm definition

is identical for any n > 0).

Another useful lemma is Weyl’s inequality for Hermitian matrices.

Lemma 1 (Weyl’s inequality). Let S, T, U be Hermitian n× n matrices with ordered eigenvalues {σ1 ≥
. . . ≥ σn}, {τ1 ≥ . . . ≥ τn}, and {υ1 ≥ . . . ≥ υn} respectively. If S = T + U , then

τi + υn ≤ σi ≤ τi + υ1 (B.1)

Proof of Proposition 3. Apply Weyl’s lemma (Lemma 1) with S = SXX , T = Λ′Λ, and U = Ωn.

Since the eigenvalues of Omegan are bounded by Theorem 1, and τ1, . . . , τr tend to infinity by Assumption

4, it is clear that σ1, . . . , σr will also diverge. Next, since τr+1 = · · · = τn = 0, tells us that ∀i > r, the

limiting value of σi is bounded between (1−√γ)2 and (1 +
√
γ)2.

Appendix B.2. Proofs of RRRR results

Lemma 2. Let Γ,Λ be positive semidefinite n× n matrices and Λ be invertible, then

A? = arg max
{A∈Rn×k:A′ΛA=Ik×k}

tr{A′ΓA (A′ΛA)−1} (B.2)

is given by the k eigenvectors belonging to the k largest eigenvalues from the generalized eigenvalue problem

|Γ− λΛ| = 0 (B.3)

Proof. Follows from the fact that if (λi, ci) is an eigenvalue-eigenvector pair of (B.3), then λiΛci = Γci,

and C = (c1, . . . , cn) is a basis for Rn where for i 6= j, c′iΛcj = 0. The first order condition with respect

to A in (B.2) yields

[(A′ΓA)(A′ΛA)−1]A′Λ = A′Γ

Note that the term in brackets above is simply our objective whose trace we wish to maximize. Since the

trace operator only involves the diagonal elements, the proof now proceeds by induction. Suppose k = 1,

then the term in square brackets above is a scalar, and clearly is maximized when A is the eigenvector

associated with the largest eigenvalue of (B.3). Next, given the first k− 1 columns of A, it is now trivial

to see that the objective is maximized by setting the kth column equal to the eigenvector belonging to

the kth largest eigenvalue.
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Proof of Proposition 1. The optimal A solves

min
A
tr{W 1/2SY YW

1/2 −W 1/2SY XA(A′[SXX − ρ2R′R]A)−1A′SXYW
1/2}

= max
A

tr{A′SXYWSY XA[A′(SXX − ρ2R′R]A)−1}

The statement of the proposition now follows from Lemma 2 with Γ = SXYWSY X and Λ = SXX −
ρ2R′R.

Proof of Corollary 1. Let A be restricted to be of the form A = P⊥a for some a ∈ R(n−f)×k. The

optimal a then solves

max
a

tr{(P⊥a)′SXY SY X(P⊥a)
(
(P⊥a)′[SXX − ρ2R′R](P⊥a)

)−1}

The main result of the proposition now follows directly from Lemma 2 with the (n−f)× (n−f) matrices

Γ = P⊥′SXY SY XP
⊥ and Λ = P⊥′[SXX − ρ2R′R]P⊥

Proof of Corollary 2. Let the singular value decomposition of X be given by (3)-(4), then the

principal components of X are given by F = XVrΣ−1
r . The optimal loadings on F in the two-step

approach are given by the matrix a ∈ Rr×k consisting of the k principal eigenvectors of

0 = |SFY S
′
FY − λSFF | ⇒ 0 = |SUrY S

′
UrY − λIr| (B.4)

and the resulting loading on X is therefore given by Ã = VrΣ−1
r a.

The regularized (via spectral truncation) reduced rank factor loadings, A, solve the generalized eigen-

value problem

0 = |VrΣ−2
r V ′rSXY S

′
XY − λIn| ⇒ 0 = |VrΣ−1

r SUrY [S′UrY ΣrV
′
r + S′Un−rY Σn−rV

′
n−r]− λIn| (B.5)

To see if the two solutions are identical, we take an eigenvalue-eigenvector pair (λi, ai) of (??) and check

whether Ãi = VrΣ−1
r ai is an eigenvalue of (B.5) corresponding to the eigenvalue λi:

VrΣ−1
r SUrY [S′UrY ΣrV

′
r + S′Un−rY Σn−rV

′
n−r]Ãi = VrΣ−1

r SUrY [S′UrY ΣrV
′
r + SUn−rY ai (B.6)

= λiVrΣ−1
r ai = λiÃi (B.7)

where the last equality follows from the fact that (λi, ai) is an eigenvalue-eigenvector pair for (B.4).
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