Short-term GDP forecasting with a mixed frequency dynamic factor model with stochastic volatility

Massimiliano Marcellino¹, Mario Porqueddu² and Fabrizio Venditti²

¹EUI and Bocconi University

²Banca d'Italia - Research Department

Plan of the talk

- Motivation
- The model
- Estimation strategy
- An empirical application: forecasting euro area GDP
- Full sample results
- Daily business: some bayesian tools for nowcasting
- Out of sample: point and density forecast evaluation
- Some concluding remarks

Motivation 1

- Interest in policy making and forecasting in probability distributions around a central forecast
- Fan charts: Bank of England, Bank of Canada, Norges Bank, SA Reserve and Sveriges Riksbank, more recently Bank of Italy and also the US Fed (2008)
- Density forecasts are sensitive to shifts in the parameters of the model:
 Jore, Mitchell, and Vahey (2010), Clark (2011)
- Discrete breaks far away in the past: use sample split
- More recently: increasing interest in modeling small continuous breaks (time varying parameter models, Cogley and Sargent, 2003, Primiceri, 2005, large literature following)
- The Great Recession: spot light on volatility breaks (end to the Great Moderation?)

Motivation 2

- Most of the work on density forecast/time varying models falls in the medium/long term forecasting literature
- Nowcasting/Short term forecasting is a world of its own
 - mixed frequency data
 - ragged edge data
 - different timeliness (soft/hard data)
- There are existing tools that deal with the above issues but
 - No applications on density forecasts
 - Time constant parameters (some allow for discrete random breaks in the mean: MS models)
- Galvao (2009), STAR-MIDAS Guerin Marcellino (2011) MS-MIDAS Carriero, Clark, Marcellino (2012) U-MIDAS with stochastic volatility in the context of Nowcasting/Short term forecasting

Our contribution

- Extend the mixed frequency factor model by Mariano and Murasawa (2003) to account for continuous shifts in volatility
- Derive some interesting tools:
 - Density forecasts / fan charts for GDP short term forecasts
 - Probability distributions of the news content of indicator releases

Empirical application: forecasting euro area GDP

- We document a dramatic increase in both common and idiosyncratic business cycle volatility in the euro area in the past few years
- Evaluate the contribution to forecast accuracy of stochastic volatility in terms of:
 - Point forecast accuracy (RMSE)
 - S-vol lowers uniformly but marginally RMSE
 - Ability to produce normalized forecast errors (computed via PITS) which are close to normal
 - The model produces good pits with and without S-vol
 - Interval forecast accuracy (coverage rates)
 - S-vol improves significantly the coverage rates

The model

$$\begin{pmatrix} y_{1t}^{\star} \\ y_{2t} \end{pmatrix} = \begin{pmatrix} \mu_{1}^{\star} \\ \mu_{2} \end{pmatrix} + \beta f_{t} + \begin{pmatrix} u_{1,t} \\ u_{2,t} \end{pmatrix}$$

$$y_{1t} = \frac{1}{3} y_{1,t}^{\star} + \frac{2}{3} y_{1,t-1}^{\star} + y_{1,t-2}^{\star} + \frac{2}{3} y_{1,t-3}^{\star} + \frac{1}{3} y_{1,t-4}^{\star}$$

$$\begin{pmatrix} y_{1t} \\ y_{2t} \end{pmatrix} = \begin{pmatrix} \mu_{1} \\ \mu_{2} \end{pmatrix} + \begin{pmatrix} \beta_{1} (\frac{1}{3} f_{t} + \frac{2}{3} f_{t-1} + f_{t-2} + \frac{2}{3} f_{t-3} + \frac{1}{3} f_{t-4}) \\ \beta_{2} f_{t} \end{pmatrix} + \begin{pmatrix} \frac{1}{3} u_{1,t} + \frac{2}{3} u_{1,t-1} + u_{1,t-2} + \frac{2}{3} u_{1,t-3} + \frac{1}{3} u_{1,t-4} \\ u_{2,t} \end{pmatrix}$$

Idiosyncratic shocks: the baseline model

$$f_{t} = \sum_{j=1}^{p_{f}} \phi_{j}^{f} f_{t-j} + \epsilon_{t}^{f} \qquad \epsilon_{t}^{f} \sim N(0, \sigma_{f})$$

$$u_{1,t} = \sum_{j=1}^{p_{1}} \phi_{j}^{1} u_{1,t-j} + \epsilon_{t}^{1} \qquad \epsilon_{t}^{1} \sim N(0, \sigma_{1})$$

$$u_{2,t} = \sum_{j=1}^{p_{2}} \phi_{j}^{2} u_{2,t-j} + \epsilon_{t}^{2} \qquad \epsilon_{t}^{2} \sim N(0, \sigma_{2})$$

Stochastic volatility

$$f_{t} = \sum_{j=1}^{p_{f}} \phi_{j}^{f} f_{t-j} + \epsilon_{t}^{f} (\lambda_{f,t})^{0.5} \qquad \epsilon_{t}^{f} \sim N(0,1)$$

$$u_{1,t} = \sum_{j=1}^{p_{1}} \phi_{j}^{1} u_{1,t-j} + \epsilon_{t}^{1} (\lambda_{1,t})^{0.5} \qquad \epsilon_{t}^{1} \sim N(0,\sigma_{1})$$

$$u_{2,t} = \sum_{j=1}^{p_{2}} \phi_{j}^{2} u_{2,t-j} + \epsilon_{t}^{2} (\lambda_{2,t})^{0.5} \qquad \epsilon_{t}^{2} \sim N(0,\sigma_{2})$$

 We let the log-stochastic volatility components follow a random walk without drift

$$log(\lambda_{i,t}) = log(\lambda_{i,t-1}) + \eta_{i,t} \qquad \eta_{i,t} \sim N(0, \sigma_{\eta,i})$$

State space representation

The model has a time varying state space representation

$$y_t = F\mu_t$$

$$\mu_t = H\mu_{t-1} + \eta_t \quad \eta_t \sim N(0, Q_t)$$

$$\Lambda_t = \Lambda_{t-1} + \zeta_t \quad \zeta_t \sim N(0, \Xi)$$

- y_t collects both quarterly and monthly variables,
- ullet μ_t includes the unobserved factor and idiosyncratic shocks
- Q_t collects the drifting volatilities $\sigma_i \lambda_{i,t}$

6 blocks of parameters: 6 steps Metropolis Hastings within Gibbs algorithm

$$y_t = F\mu_t$$

$$\mu_t = H\mu_{t-1} + \eta_t \quad \eta_t \sim N(0, Q_t)$$

$$\Lambda_t = \Lambda_{t-1} + \zeta_t \quad \zeta_t \sim N(0, \Xi)$$

- Elements of F (β)
- 2 Elements of H (ϕ)
- **3** Time constant elements of Q_t (σ_i)
- Time varying elements of Q_t ($\lambda_{i,t}$)
- **5** Variances of s-vol $(\sigma_{\eta,i})$
- **o** The unobserved state vector (μ_t)

Uncorrelated disturbances: estimation can be performed equation by equation

Steps 1-2: β_i and σ_i

Take a measurement equation

$$y_{i,t} = \beta_i f_t + u_{i,t}$$

- Autocorrelated $1-\phi(L)$ and heteroscedastic $\lambda_{i,t}^{0.5}$ residuals
- ullet Filter with $1-\phi(L)$ and divide by $\lambda_{i,t}^{0.5}$
- \bullet f_t and all other parameters can be treated as known
- This is a standard regression
- ullet Normal-gamma conjugate prior o Normal-gamma posterior

Step 3: ϕ_i

• Take a transition equation

$$\mu_{i,t} = \sum_{j=1}^{p_i} \phi_i \mu_{i,t-j} + \eta_{i,t}$$

- heteroscedastic $\lambda_{i,t}^{0.5}$ residuals
- divide by $\lambda_{i,t}^{0.5}$
- This is a standard regression
- $\bullet \ \, \mathsf{Normal} \ \, \mathsf{conjugate} \ \, \mathsf{prior} \, \to \, \mathsf{Normal} \ \, \mathsf{posterior} \\$
- Discard explosive roots

Step 4-5: $\lambda_{i,t}$, $\sigma_{\eta,i}$

- Use block-by-block Jacquier-Polson-Rossi algorithm
- Involves drawing from a candidate density (log-normal)
- Metropolis acceptance step

Step 6: μ_t

- Conditional on $F(\beta)$, $H(\phi)$, $Q_t(\sigma_i, \lambda_{i,t})$ use state space representation
- ullet Durbin and Koopman disturbance smoother gives draws of μ_t
- Missing values in GDP equation are treated as in Mariano/Murasawa (skip the filtering step)

Priors

- ullet Estimate with OLS on a training sample of au initial observations
- Normal prior means are set at OLS estimates, variances at 10³ the OLS variances
- ullet Gamma degrees of freedom set to au+1 for time constant variances
- Gamma degrees of freedom for the variance of $\lambda_{i,t}$ set to 1 and scale parameter to 0.025 (in line with Clark, 2011)
- We set τ to 36 (first three years of data).

Empirical application: Euro area GDP forecasting - indicators

Table: Variable selection summary

Indicator	Country
Quarterly series	
GDP	Euro Area
Monthly series	
Industrial Production	Euro Area
Industrial Production - Pulp/paper	Euro Area
Business Climate - IFO	Germany
Economic Sentiment Indicator	Euro Area
PMI composite	Euro Area
Exchange rate	US-Euro
10y spread	US-Euro
Michigan Consumer Sentiment	US

FULL SAMPLE RESULTS

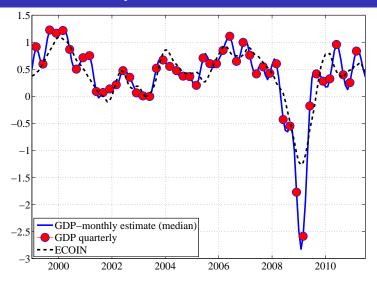
section

Factor Loadings - posterior estimates

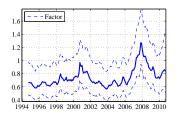
Table: Factor Loadings - posterior estimates

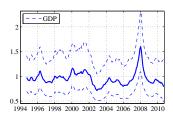
Percentiles	25th	50th	75th
GDP	0.27	0.38	0.54
IP	0.40	0.49	0.60
IP-PULP	0.23	0.29	0.36
IFO	0.10	0.12	0.13
ESI	0.10	0.12	0.14
PMI	0.12	0.13	0.15
US \$ TO EURO	-0.08	-0.05	-0.02
US-spread	-0.06	-0.04	-0.02
Michigan Consumer	0.04	0.06	80.0

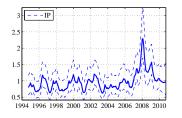
GDP: Median monthly estimate and Eurocoin

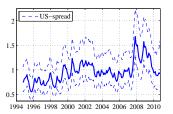


Stochastic volatilities - factor and selected indicators









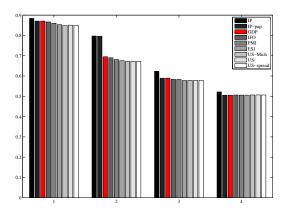
NEWS AND FORECASTS

section

Stylized data release calendar

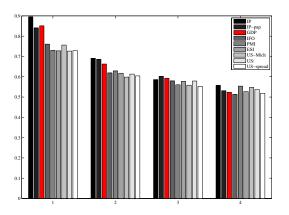
Indicator	Timing	Publication lag	
IP	$11^{th}-15^{th}$ of month	2	
IP-PULP	$11^{th}-15^{th}$ of month	2	
GDP	1 day after IP	2	
IFO	$20^{th} - 30^{th}$ of month	0	
PMI	$20^{th} - 30^{th}$ of month	0	
ESI	$20^{th} - 30^{th}$ of month	0	
Michigan Consumer	Last Friday of the month	0	
dollar-euro	Last day of month(Monthly ave.)	0	
US-spread	Last day of month(Monthly ave.)	0	

RMSE at different releases



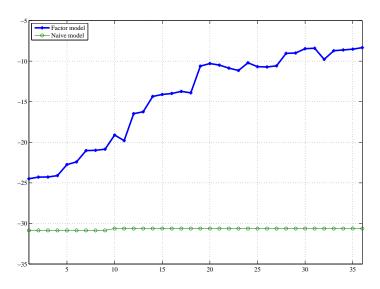
Note: ratio of the RMSE of the factor model with stochastic volatility to that of a naive constant growth model.

Forecast dispersion at different releases



Note: Standardized interquartile range (difference between the 75th and the 25th percentiles standardized by the median)

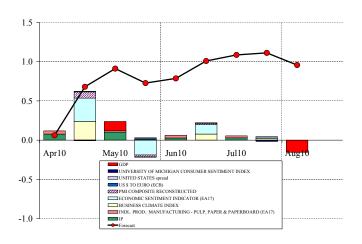
Log-predictive score at different releases



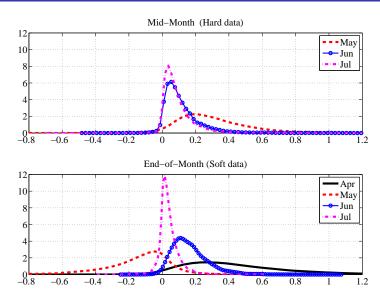
News content of data releases

- Kalman smoother allows you to "dissect" the news content of each data release, taking into account the ragged-edge nature of monthly releases
- Various definitions of "news" in the literature: they all have flaws
- Recent contribution by Banbura-Modugno settles the issue. They show how to map monthly variables forecast errors into projection revisions
- We use their methodology to decompose the forecast revisions for 2010Q2 as new information accumulates

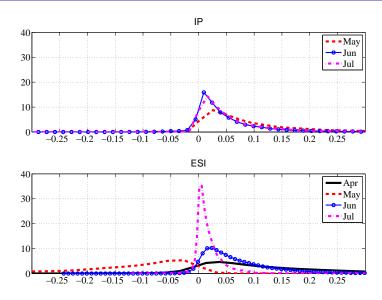
News and forecast evolution 2010Q2: median posterior estimate



Our model assigns a probability to the overall revision...

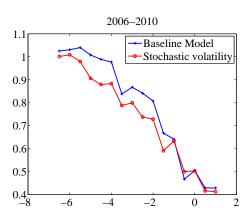


... and to the contributions!



FORECAST EVALUATION

Relative RMSE at different horizons



Coverage baseline

Table: Coverage Rates - Baseline Model

Nom Cov	Backcast		Nowcast		1 step	ahead
	Coverage	P-value	Coverage	P-value	Coverage	P-value
0.1	0.14	0.63	0.15	0.25	0.17	0.15
0.2	0.32	0.26	0.23	0.60	0.26	0.29
0.3	0.50	0.08	0.41	0.08	0.42	0.05
0.4	0.59	0.09	0.50	0.11	0.55	0.02
0.5	0.59	0.41	0.56	0.33	0.58	0.22
0.6	0.64	0.73	0.67	0.26	0.59	0.88
0.7	0.77	0.44	0.73	0.62	0.61	0.13
0.8	0.86	0.41	0.79	0.81	0.65	0.01
0.9	1.00	0.09	0.88	0.60	0.74	0.01

Coverage Stochastic Volatility

Table: Coverage Rates - Model with Stochastic Volatility

Nom Cov	Backcast		Nowcast		1 step	ahead
	Coverage	P-value	Coverage	P-value	Coverage	P-value
0.1	0.09	0.89	0.14	0.40	0.05	0.04
0.2	0.18	0.83	0.26	0.29	0.23	0.60
0.3	0.32	0.86	0.32	0.75	0.30	0.96
0.4	0.45	0.62	0.41	0.88	0.44	0.52
0.5	0.59	0.41	0.47	0.63	0.48	0.81
0.6	0.68	0.43	0.61	0.92	0.58	0.69
0.7	0.86	0.04	0.73	0.62	0.71	0.83
0.8	0.91	0.10	0.82	0.71	0.73	0.19
0.9	0.95	0.24	0.89	0.87	0.77	0.02

Some concluding remarks

- We introduce a mixed frequency factor model with stochastic volatility, and develop a Bayesian procedure for its estimation.
- We use it to model quarterly euro area GDP growth and a set of monthly indicators.
- In sample results show the relevance of changes in volatility. In addition, the estimated monthly GDP tracks very well the much more complex Eurocoin.
- We also show how, in a given quarter, the factor model can be used to assess the uncertainty around the news content of monthly releases of hard, soft and financial indicators.
- Finally, we evaluate out of sample point and density forecasts accuracy of the model, finding that SV improves substantially density forecasts

THANK YOU FOR THE ATTENTION