Comments on “Prediction Using Several Macroeconomic Models” by Gianni Amisano and John Geweke

James Mitchell*,†

*Department of Economics, University of Leicester
†National Institute of Economic and Social Research, London

5 May 2012
AG emphasise densities (move beyond RMSE loss) and combination

AG’s empirical conclusions

1. Full Bayesian (FB) predictive densities beat ‘plug-in’ densities (which use the posterior mode)
2. Pooling either using equal or optimised weights (but not BMA) is better than any individual FB density
Amisano and Geweke (AG)

- AG emphasise densities (move beyond RMSE loss) and combination
- AG’s empirical conclusions
 1. Full Bayesian (FB) predictive densities beat ‘plug-in’ densities (which use the posterior mode)
 2. Pooling either using equal or optimised weights (but not BMA) is better than any individual FB density
 - Equal weights is better than real-time optimised weights
 - But suspect the equal weighted combination is still poorly calibrated on the basis of pits (absolute) density forecast evaluation tests
My comments

1. Things to do with forecast densities
2. Things to do with combination and the model space
AG emphasise both densities and combination

Difficulties with RMSE based evaluation increasingly recognised

AG build on this push towards densities in macro using the log score and pits as evaluation tools

Brings us back to the first of their empirical conclusions:

Full Bayesian (FB) predictive densities beat ‘plug-in’ densities (which use the posterior mode)

But each of their (intrinsic) densities is Gaussian

Is FB working as it provides one means of introducing some much needed non-Gaussianity?
AG emphasise both densities and combination

Difficulties with RMSE based evaluation increasingly recognised

AG build on this push towards densities in macro using the log score and *pits* as evaluation tools

Brings us back to the first of their empirical conclusions:

- Full Bayesian (FB) predictive densities beat ‘plug-in’ densities (which use the posterior mode)

But each of their (intrinsic) densities is Gaussian
AG emphasise both densities and combination
Difficulties with RMSE based evaluation increasingly recognised

AG build on this push towards densities in macro using the log score and pits as evaluation tools

Brings us back to the first of their empirical conclusions:

- Full Bayesian (FB) predictive densities beat ‘plug-in’ densities (which use the posterior mode)

But each of their (intrinsic) densities is Gaussian

- Is FB working as it provides one means of introducing some much needed non-Gaussianity?
Statistical vs. economic loss

- AG use statistical evaluation tests which look at the *whole* density
 - But what about outliers and use of CRPS or median, rather than mean, log score?
- More generally, what’s the *relevant* region of the forecast density?
 - i.e., what are the forecasts for?

Garratt, Mitchell & Vahey (2012) evaluate using a loss function based on the probability of deflation

Find that economic evaluation of a deflation event provides more discrimination between competing densities than statistical tests

See Diks, Panchenko and van Dijk (2011, JoE) on the statistical evaluation of tail events
AG use statistical evaluation tests which look at the *whole* density

- But what about outliers and use of CRPS or median, rather than mean, log score?

More generally, what’s the *relevant* region of the forecast density?

- i.e., what are the forecasts for?

Garratt, Mitchell & Vahey (2012) evaluate using a loss function based on the probability of deflation

- Find that economic evaluation of a deflation event provides more discrimination between competing densities than statistical tests
AG use statistical evaluation tests which look at the *whole* density
- But what about outliers and use of CRPS or median, rather than mean, log score?

More generally, what’s the *relevant* region of the forecast density?
- i.e., what are the forecasts for?

Garratt, Mitchell & Vahey (2012) evaluate using a loss function based on the probability of deflation
- Find that economic evaluation of a deflation event provides more discrimination between competing densities than statistical tests
- See Diks, Panchenko and van Dijk (2011, JoE) on the statistical evaluation of tail events
Combining probabilistic forecasts

- AG is part of a programme of work on combining models/forecasts
- AG combine several models; others combine many models
- Models might all be individually misspecified
 - What use is the Bayes Factor between two misspecified models?
Combining probabilistic forecasts

- AG is part of a programme of work on combining models/forecasts
- AG combine several models; others combine many models
- Models might all be individually misspecified

 - What use is the Bayes Factor between two misspecified models?
Combining probabilistic forecasts

- AG is part of a programme of work on combining models/forecasts
- AG combine *several* models; others combine *many* models
- Models might all be individually misspecified
 - What use is the Bayes Factor between two misspecified models?
- Density combination (ensembling) a great way to produce more accurate/robust probabilistic forecasts
- Now used at central banks (in particular Norges Bank) when nowcasting & forecasting using a suite of models
- Probabilistic Forecasting Institute (ProFI) has been set up
 - to stimulate and coordinate research into new methods for probabilistic forecasting, evaluation and communication
 - to exchange ideas for operationalising methodologies
Equal vs. weighted combinations

- In AG equal weights appears to beat real-time optimised weights as the 3 models perform *pretty* similarly (in fact badly on basis of *pits*).
- When there’s more **diversity** between the models than in AG it can pay to use real-time optimised weights.
Equal vs. weighted combinations

- In AG equal weights appears to beat real-time optimised weights as the 3 models perform *pretty* similarly (in fact badly on basis of *pits*)
- When there’s more *diversity* between the models than in AG it can pay to use real-time optimised weights

 - Hall & Mitchell (2005/7 OBES/IJF) combine BoE, NIESR and AR densities; Jore, Mitchell & Vahey (2010, JAE) combine break and no-break VARs; Bache et al. (2011, JEDC) combine many VARs with Norges Bank’s DSGE
Equal vs. weighted combinations

- In AG equal weights appears to beat real-time optimised weights as the 3 models perform *pretty* similarly (in fact badly on basis of *pits*)
- When there’s more *diversity* between the models than in AG it can pay to use real-time optimised weights

- Hall & Mitchell (2005/7 OBES/IJF) combine BoE, NIESR and AR densities; Jore, Mitchell & Vahey (2010, JAE) combine break and no-break VARs; Bache et al. (2011, JEDC) combine many VARs with Norges Bank’s DSGE
- In a nowcasting application, Mazzi *et al.* (2010, Eurostat) find use of Occam’s Window restores advantages of equal weighted density combinations, by eliminating *bad* models from the combination
In AG equal weights appears to beat real-time optimised weights as the 3 models perform *pretty* similarly (in fact badly on basis of *pits*)

When there’s more diversity between the models than in AG it can pay to use real-time optimised weights

- Hall & Mitchell (2005/7 OBES/IJF) combine BoE, NIESR and AR densities; Jore, Mitchell & Vahey (2010, JAE) combine break and no-break VARs; Bache et al. (2011, JEDC) combine many VARs with Norges Bank’s DSGE
- In a nowcasting application, Mazzi *et al.* (2010, Eurostat) find use of Occam’s Window restores advantages of equal weighted density combinations, by eliminating *bad* models from the combination
In AG equal weights appears to beat real-time optimised weights as the 3 models perform *pretty* similarly (in fact badly on basis of *pits*)

When there’s more *diversity* between the models than in AG it can pay to use real-time optimised weights

- Hall & Mitchell (2005/7 OBES/IJF) combine BoE, NIESR and AR densities; Jore, Mitchell & Vahey (2010, JAE) combine break and no-break VARs; Bache et al. (2011, JEDC) combine many VARs with Norges Bank’s DSGE
- In a nowcasting application, Mazzi *et al.* (2010, Eurostat) find use of Occam’s Window restores advantages of equal weighted density combinations, by eliminating *bad* models from the combination

More general question is, how should we choose the model space? Statistically, economically...
Outstanding puzzles: selecting the model space

- AG combine a DFM, a DSGE and a (B)VAR density
AG combine a DFM, a DSGE and a (B)VAR density

All individually poor: intrinsic densities in each case are Gaussian
And the 3 models are pretty similar; they’re all linear or linearised Gaussian
So with equal weights - if the world is non-linear, non-Gaussian - it is hard to see how this AG sparse linear combination is getting it any more than one of their individual models
None of them explicitly accommodate TVP, breaks, nonlinearities etc.
Indeed all models estimated (recursively) on data back to 1951q1
Outstanding puzzles: selecting the model space

- AG combine a DFM, a DSGE and a (B)VAR density
 - All individually poor: intrinsic densities in each case are Gaussian
 - And the 3 models are pretty similar; they’re all linear or linearised Gaussian
 - So with equal weights - if the world is non-linear, non-Gaussian - it is hard to see how this AG sparse linear combination is getting it any more than one of their individual models
 - None of them explicitly accommodate TVP, breaks, nonlinearities etc.
 - Indeed all models estimated (recursively) on data back to 1951q1

- What use is it to know that model X is the most valued member of this combination?
 - Should we look for (one or many?) model(s) in the area of X?
Outstanding puzzles: selecting the model space

- AG combine a DFM, a DSGE and a (B)VAR density
 - All individually poor: intrinsic densities in each case are Gaussian
 - And the 3 models are pretty *similar*; they’re all linear or linearised Gaussian
 - So with equal weights - if the world is non-linear, non-Gaussian - it is hard to see how this AG sparse linear combination is getting it any more than one of their individual models
 - None of them explicitly accommodate TVP, breaks, nonlinearities etc.
 - Indeed all models estimated (recursively) on data back to 1951q1

- What use is it to know that model X is the most valued member of this combination?
 - Should we look for (one or many?) model(s) in the area of X?
Outstanding puzzles: selecting the model space

- AG combine a DFM, a DSGE and a (B)VAR density
 - All individually poor: intrinsic densities in each case are Gaussian
 - And the 3 models are pretty similar; they’re all linear or linearised Gaussian
 - So with equal weights - if the world is non-linear, non-Gaussian - it is hard to see how this AG sparse linear combination is getting it any more than one of their individual models
 - None of them explicitly accommodate TVP, breaks, nonlinearities etc.
 - Indeed all models estimated (recursively) on data back to 1951q1

- What use is it to know that model X is the most valued member of this combination?
 - Should we look for (one or many?) model(s) in the area of X?

- ‘Dependence’ between models
 - AG look simply at the correlation between the 3 models’ log scores
 - X=DFM ‘moves against the market’ (negative correlation)
 - But dependence is lower in the tails ⇒ nonlinear dependence, copula?
Combining several or many models?

- Strategies for selecting the model space (rather than how we combine)
Combining several or many models?

- Strategies for selecting the model space (rather than how we combine)

1. ‘Ensemble’ modelling
 - Combining many, many models rather than a small number as in AG
 - Some similarities with the meteorology literature
Combining several or many models?

- Strategies for selecting the model space (rather than how we combine)

1. ‘Ensemble’ modelling
 - Combining many, many models rather than a small number as in AG
 - Some similarities with the meteorology literature

2. Grand ensemble’ (Garratt, Mitchell & Vahey, 2012)
 - Combine one group of models prior to combining with another group
Forecast diversity is important

- Recall Tobin’s advice when picking financial assets:
 - ‘don’t put your eggs in one basket’
Forecast diversity is important

- Recall Tobin’s advice when picking financial assets:
 - ‘don’t put your eggs in one basket’
- So why not combine many models? Still manageable computationally
- Linear Opinion Pool becomes more flexible as N increases: better ability to approximate non-Gaussian and non-linear DGPs
- There is then no need, as in AG, to select one DFM, one DSGE and one VAR
Forecast diversity is important

- Recall Tobin’s advice when picking financial assets:
 - ‘don’t put your eggs in one basket’
- So why not combine many models? Still manageable computationally
- Linear Opinion Pool becomes more flexible as N increases: better ability to approximate non-Gaussian and non-linear DGPs
- There is then no need, as in AG, to select one DFM, one DSGE and one VAR
- What do AG’s pooled densities look like?
 - Are they approximately Gaussian?
 - What feature of them accounts for their improvement over BMA?
 - Their shape (seems unlikely) or their location?
Unclear if AG’s combinations/pools pass the *pits* tests; if not, perhaps we should question their model space and/or its size?
The research agenda

- Unclear if AG’s combinations/pools pass the *pits* tests; if not, perhaps we should question their model space and/or its size?

- Jore *et al.* (2010, JAE) find pooling many $N >> 3$ (simple) misspecified VAR models does, in fact, deliver well-calibrated densities on basis of *pits*
The research agenda

- Unclear if AG’s combinations/pools pass the *pits* tests; if not, perhaps we should question their model space and/or its size?
- Jore *et al.* (2010, JAE) find pooling many $N >> 3$ (simple) misspecified VAR models does, in fact, deliver well-calibrated densities on basis of *pits*
- Bache *et al.* (2011, JEDC) find an ensemble of a DSGE and many VARs is again effective in terms of *pits*
The research agenda

- Unclear if AG’s combinations/pools pass the *pits* tests; if not, perhaps we should question their model space and/or its size?
- Jore *et al.* (2010, JAE) find pooling many $N \gg 3$ (simple) misspecified VAR models does, in fact, deliver well-calibrated densities on basis of *pits*
- Bache *et al.* (2011, JEDC) find an ensemble of a DSGE and many VARs is again effective in terms of *pits*
- Aastveit *et al.* (2011, Norges Bank) find a ‘grand ensemble’ of VAR, leading indicator and factor models is effective when nowcasting...
The research agenda

- Unclear if AG’s combinations/pools pass the *pits* tests; if not, perhaps we should question their model space and/or its size?

- Jore *et al.* (2010, JAE) find pooling many $N >> 3$ (simple) misspecified VAR models does, in fact, deliver well-calibrated densities on basis of *pits*

- Bache *et al.* (2011, JEDC) find an ensemble of a DSGE and many VARs is again effective in terms of *pits*

- Aastveit *et al.* (2011, Norges Bank) find a ‘grand ensemble’ of VAR, leading indicator and factor models is effective when nowcasting

- Isn’t the practical trick in portfolio management to find the assets that allow one to spread idiosyncratic risk?
The research agenda

- Unclear if AG’s combinations/pools pass the \textit{pits} tests; if not, perhaps we should question their model space and/or its size?

- Jore \textit{et al.} (2010, JAE) find pooling many \(N >> 3 \) (simple) misspecified VAR models does, in fact, deliver well-calibrated densities on basis of \textit{pits}

- Bache \textit{et al.} (2011, JEDC) find an ensemble of a DSGE and many VARs is again effective in terms of \textit{pits}

- Aastveit \textit{et al.} (2011, Norges Bank) find a ‘grand ensemble’ of VAR, leading indicator and factor models is effective when nowcasting

- Isn’t the practical trick in portfolio management to find the assets that allow one to spread idiosyncratic risk?

- … similarly when combining models, more attention should be paid to how the model space is selected to accommodate forecast diversity
The research agenda

- Unclear if AG’s combinations/pools pass the *pits* tests; if not, perhaps we should question their model space and/or its size?

- Jore *et al.* (2010, JAE) find pooling many $N > 3$ (simple) misspecified VAR models does, in fact, deliver well-calibrated densities on basis of *pits*

- Bache *et al.* (2011, JEDC) find an ensemble of a DSGE and many VARs is again effective in terms of *pits*

- Aastveit *et al.* (2011, Norges Bank) find a ‘grand ensemble’ of VAR, leading indicator and factor models is effective when nowcasting

- Isn’t the practical trick in portfolio management to find the assets that allow one to spread idiosyncratic risk?

- ... similarly when combining models, more attention should be paid to how the model space is selected to accommodate forecast diversity

 - Especially in the face of structural instabilities
The research agenda

- Unclear if AG’s combinations/pools pass the *pits* tests; if not, perhaps we should question their model space and/or its size?
- Jore *et al.* (2010, JAE) find pooling many $N \gg 3$ (simple) misspecified VAR models does, in fact, deliver well-calibrated densities on basis of *pits*
- Bache *et al.* (2011, JEDC) find an ensemble of a DSGE and many VARs is again effective in terms of *pits*
- Aastveit *et al.* (2011, Norges Bank) find a ‘grand ensemble’ of VAR, leading indicator and factor models is effective when nowcasting
- Isn’t the practical trick in portfolio management to find the assets that allow one to spread idiosyncratic risk?
- ... similarly when combining models, more attention should be paid to how the model space is selected to accommodate forecast diversity
 - Especially in the face of structural instabilities
 - A known and leading cause of forecast failure
Modelling with structural instabilities

- Macro data are characterised by instabilities in, at least, both the mean and variance
- How should we accommodate these instabilities?
 1. In the individual/component models; and/or
Macro data are characterised by instabilities in, at least, both the mean and variance.

How should we accommodate these instabilities?

1. In the individual/component models; and/or
2. When combining
Can think of using robust extensions to AG’s 3 models
Can think of using *robust* extensions to AG’s 3 models

1. Time Varying Parameter DFM
2. TVP BVAR with stochastic volatility; Clark (2011, JBES)
3. DSGEs with time-variation; e.g. Justiniano and Primiceri (2008, AER)
 - Flexible stochastic trends; e.g. Canova (2011, QE), not simply deterministic as in Smets & Wouters (2007, AER)
Or accommodating structural instabilities when combining

- An ensemble of VARs (Jore and Garratt et al.) or DSGEs (Bache et al. 2010) estimated over different estimation windows
 - Crude but effective means of robustifying individually misspecified models to breaks in the conditional mean and importantly the variance

What about explicitly time-varying weights?

AG finds optimised weights vary across pre, great and post Moderation 'regimes'

3 models differ most in the probabilities they assign to tail events

Why compute weights unconditionally (albeit recursively) over the whole evaluation period?

AG's result suggests use of conditional, nonlinear, time-varying...

Estimate combo weights separately over pre, great or post Moderation data (condition)

Waggoner & Zha (2012) Markov-switching weights

Let the weights vary by region; e.g. DSGE good in middle of density, some other model better in the tails
Or accommodating structural instabilities when combining

- An ensemble of VARs (Jore and Garratt *et al.*.) or DSGEs (Bache *et al.* 2010) estimated over different estimation windows
 - Crude but effective means of robustifying individually misspecified models to breaks in the conditional mean and importantly the variance
- What about explicitly time-varying weights?
 - AG find optimised weights vary across pre, great and post Moderation ‘regimes’
 - 3 models differ most in the probabilities they assign to tail events
- Why compute weights unconditionally (albeit recursively) over the whole evaluation period?
Or accommodating structural instabilities when combining

- An ensemble of VARs (Jore and Garratt et al.) or DSGEs (Bache et al. 2010) estimated over different estimation windows
 - Crude but effective means of robustifying individually misspecified models to breaks in the conditional mean and importantly the variance

- What about explicitly time-varying weights?
 - AG find optimised weights vary across pre, great and post Moderation ‘regimes’
 - 3 models differ most in the probabilities they assign to tail events

- Why compute weights unconditionally (albeit recursively) over the whole evaluation period?
 - AG’s result suggests use of conditional, nonlinear, time-varying...
 - Estimate combo weights separately over pre, great or post Moderation data (condition)
Or accommodating structural instabilities when combining

- An ensemble of VARs (Jore and Garratt et al.) or DSGEs (Bache et al. 2010) estimated over different estimation windows
 - Crude but effective means of robustifying individually misspecified models to breaks in the conditional mean and importantly the variance

- What about explicitly time-varying weights?
 - AG find optimised weights vary across pre, great and post Moderation ‘regimes’
 - 3 models differ most in the probabilities they assign to tail events

- Why compute weights unconditionally (albeit recursively) over the whole evaluation period?
- AG’s result suggests use of conditional, nonlinear, time-varying... weights
 - Estimate combo weights separately over pre, great or post Moderation data (condition)
Or accommodating structural instabilities when combining

- An ensemble of VARs (Jore and Garratt et al.) or DSGEs (Bache et al. 2010) estimated over different estimation windows
 - Crude but effective means of robustifying individually misspecified models to breaks in the conditional mean and importantly the variance
- What about explicitly time-varying weights?
 - AG find optimised weights vary across pre, great and post Moderation ‘regimes’
 - 3 models differ most in the probabilities they assign to tail events
- Why compute weights unconditionally (albeit recursively) over the whole evaluation period?
- AG’s result suggests use of conditonal, nonlinear, time-varying...
 weights
 - Estimate combo weights separately over pre, great or post Moderation data (condition)
 - Let the weights vary by region; e.g. DSGE good in middle of density, some other model better in the tails
Only linear opinion pools (LOP)...

- AG invoke McConway’s marginalisation result to motivate LOP
- But what about log pools?
 - Kascha & Ravazzolo (2010, JoF) and Wallis (2011, AFE)
- Log pool is externally Bayesian when the weights sum to unity; Genest (1984, Annals of Statistics)
- LOP vs. LogOP depends on which way round you do the KLIC minimisation
 - The combined density is that density KLIC closest to the N individual density forecasts
- Nonlinear (copula) pools model the dependence between the component densities; Garratt, Mitchell & Vahey (2012)
 - Found COP beats optimised LOP in simulations
AG use multivariate log score (but they could be clearer on this)
Captures dependence across variables, j
 But is this basically linear, given intrinsic normality assumption?
Why use univariate not multivariate *pits*? Guess calibration will only be worse if we evaluate the joint density directly
What about tuning the combination weights to reflect the variable of interest?
More generally, can think of tailoring the optimisation to reflect your (economic?) loss function across the vector \mathbf{Y}_t
Minor Suggestions

- Does the DSGE do better at longer forecast horizons?
 - Will complicate *pits* tests due to overlap
 - Sensitivity to estimation window (plausibility of a single common deterministic trend is contingent on sample period)

- Focus on specific regions of the density of economic interest

- Relationship of your moments-based *pits* test with that of Malte Knüppel’s similar sounding test?

- Test if differences in log scores are statistically significant using Amisano/Giacomini test?
 - But does this mean you need rolling estimation for asymptotics?

- No need to ignore data revisions
 - Could add in a component model to handle revisions predictability