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One-slide summary

I Main research question: Is it possible to forecast with large data
sets, while allowing for nonlinear relations between target variable
and predictors?

I Background: Large data sets are increasingly available in
macroeconomics and finance, but forecasting is mostly limited to a
linear framework

I Solution: Kernel ridge regression (KRR), which avoids the curse of
dimensionality by manipulating the forecast equation in a clever way:
the kernel trick

I Contributions:

I Extension of KRR to models with “preferred” predictors
I Monte Carlo and empirical evidence that KRR works, and improves

upon conventional techniques such as principal component regression
I Clearer understanding of the choice of kernel and tuning parameters

(companion paper)

I Joint work with Patrick Groenen, Christiaan Heij, and Dick van Dijk
(Econometric Institute, Erasmus University Rotterdam)
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Introduction

I How to forecast in today’s data-rich environment?

I In an ideal world:

I use all available information
I flexible functional forms

I In practice:

I the simpler the better
I “curse of dimensionality”
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Possible ways out

I Handling high-dimensionality:

I Principal components regression (Stock and Watson, 2002)
I Partial least squares (Groen and Kapetanios, 2008)
I Selecting variables (Bai and Ng, 2008)
I Bayesian regression (De Mol, Giannone, Reichlin, 2008)

I Handling nonlinearity:

I Neural networks (Teräsvirta, Van Dijk, Medeiros, 2005)
I Linear regression on nonlinear PCs (Bai and Ng, 2008)
I Nonlinear regression on linear PCs (Giovannetti, 2011)

I Unified approach: kernel ridge regression

Peter Exterkate (CREATES, Aarhus University) Nonlinear Forecasting with Many Predictors using Kernel Ridge Regression



Introduction
Methodology

Simulation study
Macroeconomic application

Conclusions

Possible ways out

I Handling high-dimensionality:

I Principal components regression (Stock and Watson, 2002)
I Partial least squares (Groen and Kapetanios, 2008)
I Selecting variables (Bai and Ng, 2008)
I Bayesian regression (De Mol, Giannone, Reichlin, 2008)

I Handling nonlinearity:
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I Neural networks (Teräsvirta, Van Dijk, Medeiros, 2005)
I Linear regression on nonlinear PCs (Bai and Ng, 2008)
I Nonlinear regression on linear PCs (Giovannetti, 2011)

I Unified approach: kernel ridge regression

Peter Exterkate (CREATES, Aarhus University) Nonlinear Forecasting with Many Predictors using Kernel Ridge Regression



Introduction
Methodology

Simulation study
Macroeconomic application

Conclusions

Possible ways out

I Handling high-dimensionality:
I Principal components regression (Stock and Watson, 2002)
I Partial least squares (Groen and Kapetanios, 2008)
I Selecting variables (Bai and Ng, 2008)
I Bayesian regression (De Mol, Giannone, Reichlin, 2008)

I Handling nonlinearity:
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Forecasting context

I We aim to forecast y∗ ∈ R, using a set of predictors x∗ ∈ RN

I Historical observations are collected in y ∈ RT and X ∈ RT×N

I Assuming a linear relation, we would use OLS to minimize
||y − Xβ||2

I Forecast would be ŷ∗ = x ′∗β̂ = x ′∗ (X ′X )
−1

X ′y

I This requires N ≤ T (in theory) or N � T (in practice)
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Ridge regression

I A standard solution is ridge regression: given some λ > 0, minimize
||y − Xβ||2 + λ ||β||2

I In this case, the forecast becomes ŷ∗ = x ′∗β̂ = x ′∗ (X ′X + λI )
−1

X ′y ,
even if N > T

I So, for nonlinear forecasts, let z = ϕ (x) with ϕ : RN → RM , and

ŷ∗ = z ′∗ (Z ′Z + λI )−1 Z ′y

I For very large M, the inversion is numerically unstable and
computationally intensive

I Typical example: N = 132, quadratic model ⇒ M = 8911
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Kernel trick (Boser, Guyon, Vapnik, 1992)

I Essential idea: if M � T , working with T -dimensional objects is
easier than working with M-dimensional objects

I We wish to compute ŷ∗ = z ′∗ (Z ′Z + λI )−1 Z ′y

I Some algebra yields ŷ∗ = z ′∗Z
′ (ZZ ′ + λI )−1 y

I So if we know k∗ = Zz∗ ∈ RT and K = ZZ ′ ∈ RT×T , computing
ŷ∗ = k ′∗ (K + λI )−1 y is feasible

I Define the kernel function κ (xs , xt) = ϕ (xs)′ ϕ (xt)

I tth element of k∗ is z ′tz∗ = κ (xt , x∗)
I (s, t)th element of K is z ′szt = κ (xs , xt)

I If we choose ϕ smartly, κ (and hence ŷ∗) will be easy to compute!
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Bayesian interpretation

I Like “normal” ridge regression, KRR has a Bayesian interpretation:

I Likelihood: p
(
y |X , β, θ2

)
= N

(
Zβ, θ2I

)
I Priors: p

(
θ2
)
∝ θ−2, p (β|θ) = N

(
0,
(
θ2/λ

)
I
)

I Posterior distribution of y∗ is Student’s t with T degrees of freedom,
mode ŷ∗, variance also analytically available

I Note that we can interpret λ in terms of the signal-to-noise ratio
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mode ŷ∗, variance also analytically available

I Note that we can interpret λ in terms of the signal-to-noise ratio

Peter Exterkate (CREATES, Aarhus University) Nonlinear Forecasting with Many Predictors using Kernel Ridge Regression



Introduction
Methodology

Simulation study
Macroeconomic application

Conclusions

Bayesian interpretation

I Like “normal” ridge regression, KRR has a Bayesian interpretation:

I Likelihood: p
(
y |X , β, θ2

)
= N

(
Zβ, θ2I

)
I Priors: p

(
θ2
)
∝ θ−2, p (β|θ) = N

(
0,
(
θ2/λ

)
I
)

I Posterior distribution of y∗ is Student’s t with T degrees of freedom,
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Function approximation (Hofmann, Schölkopf, Smola, 2008)

I Other way to look at KRR: it also solves, for some Hilbert space H,

min
f∈H

T∑
t=1

(yt − f (xt))2 + λ ||f ||2H

I Choosing a kernel function implies choosing H and its norm ||·||H

I The “complexity” of the prediction function is measured by ||f ||H
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Conclusions

Choosing the kernel function

I We can understand KRR from a Bayesian/ridge point of view, or as
a function approximation technique

I Thus, our choice of kernel can be guided in two ways:

I The prediction function x 7→ y will be linear in ϕ (x), so choose a κ
that leads to a ϕ for which this makes sense

I Complexity of the prediction function is penalized through ||·||H, so
choose a κ for which this penalty ensures “smoothness”

I We will give examples of both
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Polynomial kernel functions (Poggio, 1975)

I Linear ridge regression: ϕ (x) = x implies κ (xs , xt) = x ′sxt

I Obvious extension: ϕ (x) =
(
1, x1, x2, . . . , x

2
1 , x

2
2 , . . . , x1x2, . . .

)′
I However, κ does not take a particularly simple form in this case

I Better: ϕ (x) =
(

1,
√
2
σ x1,

√
2
σ x2, . . . ,

1
σ2 x2

1 ,
1
σ2 x2

2 , . . . ,
√
2

σ2 x1x2, . . .
)′

,

which implies κ (xs , xt) =
(

1 +
x′
s xt
σ2

)2
I More generally, κ (xs , xt) =

(
1 +

x′
s xt
σ2

)d
corresponds to

ϕ (x) = (all monomials in x up to degree d)

I Interpretation of tuning parameter: higher σ ⇒ smaller coefficients
on higher-order terms ⇒ smoother prediction function

Peter Exterkate (CREATES, Aarhus University) Nonlinear Forecasting with Many Predictors using Kernel Ridge Regression



Introduction
Methodology

Simulation study
Macroeconomic application

Conclusions

Polynomial kernel functions (Poggio, 1975)

I Linear ridge regression: ϕ (x) = x implies κ (xs , xt) = x ′sxt

I Obvious extension: ϕ (x) =
(
1, x1, x2, . . . , x

2
1 , x

2
2 , . . . , x1x2, . . .

)′
I However, κ does not take a particularly simple form in this case

I Better: ϕ (x) =
(

1,
√
2
σ x1,

√
2
σ x2, . . . ,

1
σ2 x2

1 ,
1
σ2 x2

2 , . . . ,
√
2

σ2 x1x2, . . .
)′

,

which implies κ (xs , xt) =
(

1 +
x′
s xt
σ2

)2
I More generally, κ (xs , xt) =

(
1 +

x′
s xt
σ2

)d
corresponds to

ϕ (x) = (all monomials in x up to degree d)

I Interpretation of tuning parameter: higher σ ⇒ smaller coefficients
on higher-order terms ⇒ smoother prediction function

Peter Exterkate (CREATES, Aarhus University) Nonlinear Forecasting with Many Predictors using Kernel Ridge Regression



Introduction
Methodology

Simulation study
Macroeconomic application

Conclusions

Polynomial kernel functions (Poggio, 1975)

I Linear ridge regression: ϕ (x) = x implies κ (xs , xt) = x ′sxt

I Obvious extension: ϕ (x) =
(
1, x1, x2, . . . , x

2
1 , x

2
2 , . . . , x1x2, . . .

)′

I However, κ does not take a particularly simple form in this case

I Better: ϕ (x) =
(

1,
√
2
σ x1,

√
2
σ x2, . . . ,

1
σ2 x2

1 ,
1
σ2 x2

2 , . . . ,
√
2

σ2 x1x2, . . .
)′

,

which implies κ (xs , xt) =
(

1 +
x′
s xt
σ2

)2
I More generally, κ (xs , xt) =

(
1 +

x′
s xt
σ2

)d
corresponds to

ϕ (x) = (all monomials in x up to degree d)

I Interpretation of tuning parameter: higher σ ⇒ smaller coefficients
on higher-order terms ⇒ smoother prediction function

Peter Exterkate (CREATES, Aarhus University) Nonlinear Forecasting with Many Predictors using Kernel Ridge Regression



Introduction
Methodology

Simulation study
Macroeconomic application

Conclusions

Polynomial kernel functions (Poggio, 1975)

I Linear ridge regression: ϕ (x) = x implies κ (xs , xt) = x ′sxt

I Obvious extension: ϕ (x) =
(
1, x1, x2, . . . , x

2
1 , x

2
2 , . . . , x1x2, . . .

)′
I However, κ does not take a particularly simple form in this case

I Better: ϕ (x) =
(

1,
√
2
σ x1,

√
2
σ x2, . . . ,

1
σ2 x2

1 ,
1
σ2 x2

2 , . . . ,
√
2

σ2 x1x2, . . .
)′

,

which implies κ (xs , xt) =
(

1 +
x′
s xt
σ2

)2
I More generally, κ (xs , xt) =

(
1 +

x′
s xt
σ2

)d
corresponds to

ϕ (x) = (all monomials in x up to degree d)

I Interpretation of tuning parameter: higher σ ⇒ smaller coefficients
on higher-order terms ⇒ smoother prediction function

Peter Exterkate (CREATES, Aarhus University) Nonlinear Forecasting with Many Predictors using Kernel Ridge Regression



Introduction
Methodology

Simulation study
Macroeconomic application

Conclusions

Polynomial kernel functions (Poggio, 1975)

I Linear ridge regression: ϕ (x) = x implies κ (xs , xt) = x ′sxt

I Obvious extension: ϕ (x) =
(
1, x1, x2, . . . , x

2
1 , x

2
2 , . . . , x1x2, . . .

)′
I However, κ does not take a particularly simple form in this case

I Better: ϕ (x) =
(

1,
√
2
σ x1,

√
2
σ x2, . . . ,

1
σ2 x2

1 ,
1
σ2 x2

2 , . . . ,
√
2

σ2 x1x2, . . .
)′

,

which implies κ (xs , xt) =
(

1 +
x′
s xt
σ2

)2

I More generally, κ (xs , xt) =
(

1 +
x′
s xt
σ2

)d
corresponds to

ϕ (x) = (all monomials in x up to degree d)

I Interpretation of tuning parameter: higher σ ⇒ smaller coefficients
on higher-order terms ⇒ smoother prediction function

Peter Exterkate (CREATES, Aarhus University) Nonlinear Forecasting with Many Predictors using Kernel Ridge Regression



Introduction
Methodology

Simulation study
Macroeconomic application

Conclusions

Polynomial kernel functions (Poggio, 1975)

I Linear ridge regression: ϕ (x) = x implies κ (xs , xt) = x ′sxt

I Obvious extension: ϕ (x) =
(
1, x1, x2, . . . , x

2
1 , x

2
2 , . . . , x1x2, . . .

)′
I However, κ does not take a particularly simple form in this case

I Better: ϕ (x) =
(

1,
√
2
σ x1,

√
2
σ x2, . . . ,

1
σ2 x2

1 ,
1
σ2 x2

2 , . . . ,
√
2

σ2 x1x2, . . .
)′

,

which implies κ (xs , xt) =
(

1 +
x′
s xt
σ2

)2
I More generally, κ (xs , xt) =

(
1 +

x′
s xt
σ2

)d
corresponds to

ϕ (x) = (all monomials in x up to degree d)

I Interpretation of tuning parameter: higher σ ⇒ smaller coefficients
on higher-order terms ⇒ smoother prediction function

Peter Exterkate (CREATES, Aarhus University) Nonlinear Forecasting with Many Predictors using Kernel Ridge Regression



Introduction
Methodology

Simulation study
Macroeconomic application

Conclusions

Polynomial kernel functions (Poggio, 1975)

I Linear ridge regression: ϕ (x) = x implies κ (xs , xt) = x ′sxt

I Obvious extension: ϕ (x) =
(
1, x1, x2, . . . , x

2
1 , x

2
2 , . . . , x1x2, . . .

)′
I However, κ does not take a particularly simple form in this case

I Better: ϕ (x) =
(

1,
√
2
σ x1,

√
2
σ x2, . . . ,

1
σ2 x2

1 ,
1
σ2 x2

2 , . . . ,
√
2

σ2 x1x2, . . .
)′

,

which implies κ (xs , xt) =
(

1 +
x′
s xt
σ2

)2
I More generally, κ (xs , xt) =

(
1 +

x′
s xt
σ2

)d
corresponds to

ϕ (x) = (all monomials in x up to degree d)

I Interpretation of tuning parameter: higher σ ⇒ smaller coefficients
on higher-order terms ⇒ smoother prediction function

Peter Exterkate (CREATES, Aarhus University) Nonlinear Forecasting with Many Predictors using Kernel Ridge Regression



Introduction
Methodology

Simulation study
Macroeconomic application

Conclusions

The Gaussian kernel function (Broomhead and Lowe, 1988)

I Examine the effects of ||f ||H on f̃ , the Fourier transform of the
prediction function. Popular choice: set the kernel κ such that

||f ||H ∝
∫
RN

∣∣∣f̃ (ω)
∣∣∣2

σN exp
(
− 1

2σ
2ω′ω

)dω

I As σ ↑, components at high frequencies ω are penalized more
heavily, leading to a smoother f

I Corresponding kernel is κ (xs , xt) = exp
(
−1
2σ2 ||xs − xt ||2

)
I For a ridge regression interpretation, we would need to build

infinitely many regressors of the form exp
(
− x′x

2σ2

)∏N
n=1

xdn
n

σdn
√
dn!

, for

nonnegative integers d1, d2, . . . , dN . Thus, the kernel trick allows us
to implicitly work with an infinite number of regressors
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Tuning parameters

I Several tuning parameters:

I Penalty parameter λ
I Smoothness parameter σ
I In our application: lag lengths (for y and X )

I Leave-one-out cross-validation can be implemented in a
computationally efficient way (Cawley and Talbot, 2008)

I A small (5× 5) grid of “reasonable” values for λ and σ is proposed
in a companion paper (Exterkate, February 2012)
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“Preferred” predictors

I In econometrics, we often want to include some “preferred”
predictors (e.g. lags of y) individually, linearly, and without
penalizing their coefficients

I Thus, instead of yt = ϕ (xt)
′
β + ut , we aim to estimate

yt = w ′tγ + ϕ (xt)
′
β + ut

I We show that replacing ŷ∗ = k ′∗ (K + λI )−1 y by

ŷ∗ =

(
k∗
w∗

)′(
K + λI W

W ′ 0

)−1(
y
0

)
solves this problem

I Computationally efficient leave-one-out cross-validation still works

Peter Exterkate (CREATES, Aarhus University) Nonlinear Forecasting with Many Predictors using Kernel Ridge Regression



Introduction
Methodology

Simulation study
Macroeconomic application

Conclusions

“Preferred” predictors

I In econometrics, we often want to include some “preferred”
predictors (e.g. lags of y) individually, linearly, and without
penalizing their coefficients

I Thus, instead of yt = ϕ (xt)
′
β + ut , we aim to estimate

yt = w ′tγ + ϕ (xt)
′
β + ut

I We show that replacing ŷ∗ = k ′∗ (K + λI )−1 y by
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ŷ∗ =

(
k∗
w∗

)′(
K + λI W

W ′ 0

)−1(
y
0

)
solves this problem

I Computationally efficient leave-one-out cross-validation still works

Peter Exterkate (CREATES, Aarhus University) Nonlinear Forecasting with Many Predictors using Kernel Ridge Regression



Introduction
Methodology

Simulation study
Macroeconomic application

Conclusions

Time-series models

I So far, we have considered yt = f (xt) + ut

I What if xt includes yt−1, . . . , yt−p+1?

I Recall Bayesian interpretation and write
p (y) = p (y1, . . . , yp) · p (yp+1|yp, . . . , y1) · · · p (yT |yT−1, . . . , y1)

I Nothing changes, provided that we condition on p initial values
I Even stationarity does not seem to be an issue

I What if yt is multivariate?

I No problem whatsoever, whether or not Et−1[utu
′
t ] is diagonal

I So, we could treat e.g. nonlinear VAR-like models

I What if Et−1
[
u2
t

]
(or Et−1[utu

′
t ]) depends on yt−1, . . . , yt−p+1?

I Does not seem analytically tractable
I Work in progress, using an iterative approach to estimate mean and

log-volatility equations
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Factor models

I In the paper: simulation study for linear and nonlinear factor models

I We compare kernel ridge regression to

I PC: regression of y on the principal components (PCs) of X
I PC2: regression of y on the PCs of X and the squares of these PCs

(Bai and Ng, 2008)
I SPC: regression of y on the PCs of

(
X X 2

)
(Bai and Ng, 2008)

I Main findings:

I Kernels perform competitively for “standard” DGPs, and better for
nonstandard DGPs

I Gaussian kernel is a “catch-all” method: never performs poorly;
performs very well for “difficult” DGPs
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Other cross-sectional models

I In the companion paper: simulation study for wide range of models,
to study the effects of choosing “wrong” kernel or tuning parameters

I Main findings:

I Rules of thumb for selecting tuning parameters work well
I Gaussian kernel acts as a “catch-all” method again, moreso than

polynomial kernels
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Data

I 132 U.S. macroeconomic variables, 1959:1-2010:1, monthly
observations, transformed to stationarity (Stock and Watson, 2002)

I We forecast four key series: Industrial Production, Personal Income,
Manufacturing & Trade Sales, and Employment

I h-month-ahead out-of-sample forecasts of annualized h-month
growth rate yh

t+h = 1200
h ln (yt+h/yt), for h = 1, 3, 6, 12

I Rolling estimation window of length 120 months
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Competing models

I Standard benchmarks: mean, random walk, AR

I DI-AR-Lag framework (Stock and Watson, 2002): regressors are
lagged yt and lagged factors

I Factors extracted using PC, PC2, or SPC
I Lag lengths and number of factors reselected for each forecast by

minimizing BIC

I Kernel ridge regression: same setup, but with lagged factors
replaced by ϕ (lagged xt)

I Polynomial kernels of degree 1 and 2, and the Gaussian kernel
I Lag lengths, λ and σ selected by leave-one-out cross-validation
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MSPEs for Industrial Production and Personal Income

Forecast Industrial Production Personal Income
method h = 1 h = 3 h = 6 h = 12 h = 1 h = 3 h = 6 h = 12
Mean 1.02 1.05 1.07 1.08 1.02 1.06 1.10 1.17
RW 1.27 1.08 1.34 1.64 1.60 1.36 1.14 1.35
AR 0.93 0.89 1.02 1.02 1.17 1.05 1.10 1.15

PC 0.81 0.71 0.77 0.63 1.04 0.79 0.90 0.90
PC2 0.94 0.85 1.20 1.07 1.09 0.92 1.03 1.15
SPC 0.88 0.98 1.35 0.99 1.07 1.04 1.05 1.50

Poly(1) 0.79 0.73 0.75 0.68 0.98 0.88 0.89 0.91
Poly(2) 0.79 0.72 0.80 0.68 0.97 0.85 0.93 0.96
Gauss 0.76 0.66 0.73 0.66 0.93 0.83 0.87 0.85
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MSPEs for Industrial Production and Personal Income

I Simple PC performs better than its nonlinear extensions

I Kernel methods perform even slightly better

I “Infinite-dimensional”, smooth Gaussian kernel is a safe choice

I Good results at all horizons
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MSPEs for Manufacturing & Trade Sales and Employment

Forecast Manufacturing & Trade Sales Employment
method h = 1 h = 3 h = 6 h = 12 h = 1 h = 3 h = 6 h = 12
Mean 1.01 1.03 1.05 1.08 0.98 0.96 0.97 0.97
RW 2.17 1.49 1.45 1.53 1.68 0.95 1.00 1.20
AR 1.01 1.02 1.10 1.08 0.96 0.85 0.90 0.96

PC 0.89 0.80 0.77 0.63 0.76 0.56 0.48 0.48
PC2 0.94 0.97 1.13 1.06 0.76 0.61 0.69 0.60
SPC 0.99 1.18 1.59 1.02 0.81 0.81 0.90 0.72

Poly(1) 0.94 0.88 0.78 0.64 0.90 0.69 0.65 0.55
Poly(2) 0.96 0.88 0.81 0.67 0.95 0.70 0.69 0.64
Gauss 0.94 0.87 0.80 0.64 0.88 0.68 0.64 0.59
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MSPEs for Manufacturing & Trade Sales and Employment

I Small losses at all horizons

I Linear model is apparently sufficient here, but Gaussian KRR
continues to yield adequate results

I Both PC and KRR work very well

I PC outperforms all other methods
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A closer look at performance

I So, KRR performs worse than PC only if PC performs very well

I To see if this result also holds over time, we computed mean squared
prediction errors for each ten-year window separately

I All methods yield larger errors in more volatile periods

I However: smaller relative errors in more volatile periods

I KRR produces more volatile relative errors than PC
⇒ KRR most valuable in turmoil periods, including 2008-9 crisis
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Forecast encompassing regressions

I Forecast encompassing regression:

yh
t+h = α ŷh, PC or KRR

t+h|t + (1− α) ŷh, AR
t+h|t + uh

t+h

I Hypotheses of interest: α = 0 and α = 1

I Across all series and horizons, α = 0 is strongly rejected for PC and
for all KRR forecasts

I In many cases, α = 1 cannot be rejected

I Thus, PC and KRR forecasts encompass AR forecasts
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Forecast encompassing regressions

I Also compare kernels and PC:

yh
t+h = α ŷh, KRR

t+h|t + (1− α) ŷh, PC
t+h|t + uh

t+h

I In most cases, we reject both α = 0 and α = 1

I That is, 0 < α < 1: KRR and PC forecasts are complements
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Conclusions

I Kernel ridge regression provides a natural way of dealing with
high-dimensionality and nonlinearity

I It can also handle time-series models with constant conditional
volatilities and correlations, even if they are nonstationary

I Selection of kernel and tuning parameters can be fully automated:
easy-to-use black-box implementation for nonlinear forecasting

I Macro forecasting: KRR outperforms more traditional methods

I Best forecast performance in turmoil periods

I The “smooth” Gaussian kernel generally performs best
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Current research

I Examine a wider range of kernel functions

I So far, Gaussian kernel holds up very well

I Extend the methodology to models with time-varying volatility

I This will enable applications to financial data
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